2007年全国100多个地区数学中考试题分类汇编之有关动态问题

资源下载
  1. 二一教育资源

2007年全国100多个地区数学中考试题分类汇编之有关动态问题

资源简介

2007年中考数学试题分类-动态几何
(2007年滨州)如图12-1所示,在中,,,为的中点,动点在边上自由移动,动点在边上自由移动.
(1)点的移动过程中,是否能成为的等腰三角形?若能,请指出为等腰三角形时动点的位置.若不能,请说明理由.
(2)当时,设,,求与之间的函数解析式,写出的取值范围.
(3)在满足(2)中的条件时,若以为圆心的圆与相切(如图12-2),试探究直线与的位置关系,并证明你的结论.
动态与四边形 动态与极值
(2007年河北省)如图16,在等腰梯形ABCD中,AD∥BC,AB=DC=50,AD=75,BC=135.点P从点B出发沿折线段BA-AD-DC以每秒5个单位长的速度向点C匀速运动;点Q从点C出发沿线段CB方向以每秒3个单位长的速度匀速运动,过点Q向上作射线QK⊥BC,交折线段CD-DA-AB于点E.点P、Q同时开始运动,当点P与点C重合时停止运动,点Q也随之停止.设点P、Q运动的时间是t秒(t>0).
(1)当点P到达终点C时,求t的值,并指出此时BQ的长;
(2)当点P运动到AD上时,t为何值能使PQ∥DC??
(3)设射线QK扫过梯形ABCD的面积为S,分别求出点E运动到CD、DA上时,S与t的函数关系式;(不必写出t的取值范围)
(4)△PQE能否成为直角三角形?若能,写出t的取值范围;若不能,请说明理由.
(2007年遵义市)如图,已知一次函数的图象与轴,轴分别相交于两点,点在上以每秒1个单位的速度从点向点运动,同时点在线段上以同样的速度从点向点运动,运动时间用(单位:秒)表示.
(1)求的长;
(2)当为何值时,与相似?并直接写出此时点的坐标;
(3)的面积是否有最大值?若有,此时为何值?若没有,请说明理由.
(2007年湘潭市)如图,已知半径为5,弦长为8,点为弦上一
动点,连结,则线段的最小长度是 .

(2007年淮安市)(本小题14分)在平面直角坐标系中,放置一个如图所示的直角三角形纸片AOB,已知OA=2,∠AOB=30°。D、E两点同时从原点O出发,D点以每秒个单位长度的速度沿x轴正方向运动,E点以每秒1个单位长度的速度沿y轴正方向运动,设D、E两点的运动时间为t秒。
(1)点A的坐标为______________,点B的坐标为______________;
(2)在点D、E的运动过程中,直线DE与直线OA垂直吗?请说明理由;
(3)当时间t在什么范围时,直线DE与线段OA有公共点?
(4)将直角三角形纸片AOB在直线DE下方的部分沿DE向上折叠,设折叠后重叠部分面积为S,请写出S与t的函数关系式,并求出S的最大值。
(2007年济南市)已知:如图,直角梯形中,,,,.
(1)求梯形的面积;
(2)点分别是上的动点,点从点出发向点运动,点从点出发向点运动,若两点均以每秒1个单位的速度同时出发,连接.求面积的最大值,并说明此时的位置.

(2007年湘潭市)如图28—1,设抛物线交轴于两点,顶点为.以为直径作半圆,圆心为,半圆交轴负半轴于.
(1)求抛物线的对称轴;
(2)将绕圆心顺时针旋转,得到三角形,如图28—2.求点的坐标; (3)有一动点在线段上运动,的周长在不断变化时是否存在最小值?若存在,求点的坐标;若不存在,说明理由.

(2007年佛山市)在中,,
点在所在的直线上运动,作
(按逆时针方向).
(1)如图1,若点在线段上运动,交于.
①求证:;
②当是等腰三角形时,求的长.
(2)①如图2,若点在的延长线上运动,的反向延长线与的延长线相交于点,是否存在点,使是等腰三角形?若存在,写出所有点的位置;若不存在,请简要说明理由;
②如图3,若点在的反向延长线上运动,是否存在点,使是等腰三角形?若存在,写出所有点的位置;若不存在,请简要说明理由.
(2007年盐城市)如图,矩形的边,在平行四边形中,,,点在同一直线上,且,矩形从点开始以1cm/s的速度沿直线向右运动,当边所在直线到达点即停止.
(1)在矩形运动过程中,何时矩形的一边恰好通过平行四边形的边或的中点?
(2)若矩形运动的同时,点从点出发沿的路线,以cm/s的速度运动,矩形停止时点也即停止运动,则点在矩形一边上运动的时间为多少s?
(3)在矩形运动过程中,当矩形与平行四边形重叠部分为五边形时,求出重叠面积与运动时间之间的函数关系式,并写出时间的范围.是否存在某一时刻,使得重叠部分的面积?若存在,求出时间,若不存在,说明理由.
(2007年眉山市)如图,已知等腰直角的直角边长与正方形的边长均为20厘米,与在同一直线上,开始时点与点重合,让以每秒2厘米的速度向左运动,最终点与点重合,则重叠部分面积(厘米)与时间(秒)之间的函数关系式为 .

(2007年扬州市)如图,矩形中,厘米,厘米().动点同时从点出发,分别沿,运动,速度是厘米/秒.过作直线垂直于,分别交,于.当点到达终点时,点也随之停止运动.设运动时间为秒.
(1)若厘米,秒,则______厘米;
(2)若厘米,求时间,使,并求出它们的相似比;
(3)若在运动过程中,存在某时刻使梯形与梯形的面积相等,求的取值范围;
(4)是否存在这样的矩形:在运动过程中,存在某时刻使梯形,梯形,梯形的面积都相等?若存在,求的值;若不存在,请说明理由.
(2007年乐山市)如图(13),在矩形中,,.直角尺的直角顶点在上滑动时(点与不重合),一直角边经过点,另一直角边交于点.我们知道,结论“”成立.
(1)当时,求的长;
(2)是否存在这样的点,使的周长等于周长的倍?若存在,求出的长;若不存在,请说明理由.
我选做的是_____________________.
(2007年潍坊市)已知等腰中,,平分交于点,在线段上任取一点(点除外),过点作,分别交于点,作,交于点,连结.
(1)求证:四边形为菱形;
(2)当点在何处时,菱形的面积为四边形面积的一半?
(2007年潍坊市)设是函数在第一象限的图像上任意一点,点关于原点的对称点为,过作平行于轴,过作平行于轴,与交于点,则的面积( )
A.等于2 B.等于4 C.等于8 D.随点的变化而变化

(2007年泰州市)如图①,中,,.它的顶点的坐标为,顶点的坐标为,,点从点出发,沿的方向匀速运动,同时点从点出发,沿轴正方向以相同速度运动,当点到达点时,两点同时停止运动,设运动的时间为秒.
(1)求的度数.
(2)当点在上运动时,的面积(平方单位)与时间(秒)之间的函数图象为抛物线的一部分,(如图②),求点的运动速度.
(3)求(2)中面积与时间之间的函数关系式及面积取最大值时点的坐标.
(4)如果点保持(2)中的速度不变,那么点沿边运动时,的大小随着时间的增大而增大;沿着边运动时,的大小随着时间的增大而减小,当点沿这两边运动时,使的点有几个?请说明理由.

(2007年连云港)如图,在直角坐标系中,矩形的顶点与坐标原点重合,顶点在坐标轴上,,.动点从点出发,以的速度沿轴匀速向点运动,到达点即停止.设点运动的时间为.
(1)过点作对角线的垂线,垂足为点.求的长与时间的函数关系式,并写出自变量的取值范围;
(2)在点运动过程中,当点关于直线的对称点恰好落在对角线上时,求此时直线的函数解析式;
(3)探索:以三点为顶点的的面积能否达到矩形面积的?请说明理由.

(2007年浙江丽水)如图,在平面直角坐标系中,直角梯形的边落在轴的正半轴上,且∥,,=4,=6,=8.正方形的两边分别落在坐标轴上,且它的面积等于直角梯形面积.将正方形沿轴的正半轴平行移动,设它与直角梯形的重叠部分面积为.
(1)分析与计算:
求正方形的边长;
(2)操作与求解:
①正方形平行移动过程中,通过操作、观察,试判断(>0)的变化情况是 ;
A.逐渐增大 B.逐渐减少 C.先增大后减少 D.先减少后增大
②当正方形顶点移动到点时,求的值;
(3)探究与归纳:
设正方形的顶点向右移动的距离为,求重叠部分面积与的函数关系式.
(2007年双柏县)如图所示,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的—个动点,点P不与点0、点A重合.连结CP,过点P作PD交AB于点D.
(1)求点B的坐标;
(2)当点P运动什么位置时,△OCP为等腰三角形,求这时点P的坐标;
(3)当点P运动什么位置时,使得∠CPD=∠OAB,且,求这时点P的坐标.
(2007年梅州市)如图12,直角梯形中,,动点从点出发,沿方向移动,动点从点出发,在边上移动.设点移动的路程为,点移动的路程为,线段平分梯形的周长.
(1)求与的函数关系式,并求出的取值范围;
(2)当时,求的值;
(3)当不在边上时,线段能否平分梯形的面积?若能,求出此时的值;若不能,说明理由.
( 2007年诸暨)如图,正方形ABCD和正方形EFGH的边长分别为,对角线BD、FH都在直线L上,O1、O2分别是正方形的中心,线段O1O2的长叫做两个正方形的中心距。当中心O2在直线L上平移时,正方形EFGH也随平移,在平移时正方形EFGH的形状、大小没有改变。
(1)计算:O1D= ,O2F= 。
(2)当中心O2在直线L上平移到两个正方形只有一个公共点时,中心距O1O2= 。
(3)随着中心O2在直线L上的平移,两个正方形的公共点的个数还有哪些变化?并求出相对应的中心距的值或取值范围(不必写出计算过程)。
(2007年哈尔滨市)如图,梯形在平面直角坐标系中,上底平行于轴,下底交轴于点,点(4,),点,,.
(1)求直线的解析式;
(2)若点的坐标为,动点从出发,以1个单位/秒的速度沿着边向点运动(点可以与点或点重合),求的面积()随动点的运动时间秒变化的函数关系式(写出自变量的取值范围);
(3)在(2)的条件下,当秒时,点停止运动,此时直线与轴交于点.另一动点开始从出发,以1个单位/秒的速度沿着梯形的各边运动一周,即由到,然后由到,再由到,最后由回到(点可以与梯形的各顶点重合).设动点的运动时间为秒,点为直线上任意一点(点不与点重合),在点的整个运动过程中,求出所有能使与相等的的值.

(2007年嘉兴市)如图,已知A(8,0),B(0,6),两个动点P、Q同时在△OAB的边上按逆时针方向(→O→A→B→O→)运动,开始时点P在点B位置,点Q在点O位置,点P的运动速度为每秒2个单位,点Q的运动速度为每秒1个单位.
(1)在前3秒内,求△OPQ的最大面积;
(2)在前10秒内,求P、Q两点之间的最小距离,并求此时点P、Q的坐标;
(3)在前15秒内,探究PQ平行于△OAB一边的情况,并求平行时点P、Q的坐标.
(2007年湖州)如图,正方形ABCD的周长为40米,甲、乙两人分别从A,B同时出发,沿正方形的边行走,甲按逆时针方向每分钟行55米.乙按顺时针方向每分钟行30米.
(1)出发后___________分钟时,甲乙两人第一次在正方形的顶点处相遇.
(2)如果用记号(a,b)的表示两人行了a分钟,并相遇过b次,那么当两人出发后第一次处在正方形的两个相对顶点位置时,对应的记号应是______________。
(2007年邵阳)如图(十一),直线与轴,轴分别相交于点.将绕点按顺时针方向旋转角(),可得.
(1)求点的坐标;
(2)当点落在直线上时,直线与相交于点,和的重叠部分为(图①).求证:;
(3)除了(2)中的情况外,是否还存在和的重叠部分与相似,若存在,请指出旋转角的度数;若不存在,请说明理由;
(4)当时(图②),与分别相交于点与相交于点,试求与的重叠部分(即四边形)的面积.
(2007年广州市)已知Rt△ABC中,AB=AC,在Rt△ADE中,AD=DE,连结EC,取EC中点M,连结DM和BM,
(1)若点D在边AC上,点E在边AB上且与点B不重合,如图①,求证:BM=DM且BM⊥DM;
(2)如图①中的△ADE绕点A逆时针转小于45°的角,如图②,那么(1)中的结论是否仍成立?如果不成立,请举出反例;如果成立,请给予证明。
(2005年杭州)在直角梯形中,,高(如图1),动点同时从点出发,点沿运动到点停止,点沿运动到点停止,两点运动时的速度都是1cm/s,而当点到达点时,点正好到达点.设同时从点出发,经过的时间为时,的面积为(如图2).分别以为横、纵坐标建立直角坐标系,已知点在边上从到运动时,与的函数图象是图3中的线段.
(1)分别求出梯形中的长度;
(2)写出图3中两点的坐标;
(3)分别写出点在边上和边上运动时,与的函数关系式(注明自变量的取值范围),并在答题卷的图4(放大了的图3)中补全整个运动中关于的函数关系的大致图象.
(2007年温州市)在中,现有两个动点P、Q分别从点A和点B同时出发,其中点P以1cm/s的速度,沿AC向终点C移动;点Q以1.25cm/s的速度沿BC向终点C移动。过点P作PE∥BC交AD于点E,连结EQ。设动点运动时间为x秒。
(1)用含x的代数式表示AE、DE的长度;
(2)当点Q在BD(不包括点B、D)上移动时,设△EDQ的面积为,求与月份的函数关系式,并写出自变量的取值范围;
(3)当为何值时,△EDQ为直角三角形。
(2007年益阳市)如图9,M是边长为4的正方形AD边的中点,动点P自A点起,由A→B→C→D匀速运动,直线MP扫过正方形所形成的面积为Y,点P运动的路程为X,请解答下列问题:
(1)当x=1时,求y的值;
(2)就下列各种情况,求y与x之间的函数关系式:
①0≦x≦4; ②4<x≦8 ③8<x≦12;
(3)在给出的直角坐标系(图10)中,画出(2)中函数的图像。

(2007年南充)如图, 等腰梯形ABCD中,AB=15,AD=20,∠C=30o.点M、N同时以相同速度分别从点A、点D开始在AB、AD(包括端点)上运动. (1)设ND的长为x,用x表示出点N到AB的距离,并写出x的取值范围. (2)当五边形BCDNM面积最小时,请判断△AMN的形状. 
(2007年青岛)已知:如图,△ABC是边长3cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC方向匀速移动,它们的速度都是1cm/s,当点P到达点B时,P、Q两点停止运动.设点P的运动时间为t(s),解答下列问题:
(1)当t为何值时,△PBQ是直角三角形?
(2)设四边形APQC的面积为y(cm2),求y与t的关系式;是否存在某一时刻t,使四边形APQC的面积是△ABC面积的三分之二?如果存在,求出相应的t值;不存在,说明理由;
(3)设PQ的长为x(cm),试确定y与x之间的关系式.
解:⑴ 根据题意:AP=t cm,BQ=t cm.
△ABC中,AB=BC=3cm,∠B=60°,
∴BP=(3-t ) cm.
△PBQ中,BP=3-t,BQ=t,
若△PBQ是直角三角形,则∠BQP=90°或∠BPQ=90°.
当∠BQP=90°时,BQ=BP.
即t=(3-t ),
t=1 (秒).
当∠BPQ=90°时,BP=BQ.
3-t=t,
t=2 (秒).
答:当t=1秒或t=2秒时,△PBQ是直角三角形. …………………4′
⑵ 过P作PM⊥BC于M .
Rt△BPM中,sin∠B=,
∴PM=PB·sin∠B=(3-t ).
∴S△PBQ=BQ·PM=· t ·(3-t ).
∴y=S△ABC-S△PBQ
=×32×-· t ·(3-t )
=.
∴y与t的关系式为: y=. …………………6′
假设存在某一时刻t,使得四边形APQC的面积是△ABC面积的,
则S四边形APQC=S△ABC .
∴=××32×.
∴t 2-3 t+3=0.
∵(-3) 2-4×1×3<0,
∴方程无解.
∴无论t取何值,四边形APQC的面积都不可能是△ABC面积的.……8′
⑶ 在Rt△PQM中,
MQ==.
MQ 2+PM 2=PQ 2.
∴x2=[(1-t ) ]2+[(3-t ) ]2

==3t2-9t+9. ……………………………10′
∴t2-3t=.
∵y=,
∴y===.
∴y与x的关系式为:y=. ……………………………12′
(2007年内江)如图,在等腰△ACB中,AC=BC=5,AB=8,D为底边AB上一动点(不与点A,B重合),DE⊥AC,DF⊥BC,垂足分别为E,F,则DE+DF= .

(2007年重庆)如图,在矩形ABCD中,AB=3,BC=4,点P在BC边上运
动,连结DP,过点A作AE⊥DP,垂足为E,设DP=,AE
=,则能反映与之间函数关系的大致图象是( )

(A) (B) (C) (D)

展开更多......

收起↑

资源预览