计算题必考专题:小数乘除法巧算(专项训练)数学五年级上册人教版(含解析)

资源下载
  1. 二一教育资源

计算题必考专题:小数乘除法巧算(专项训练)数学五年级上册人教版(含解析)

资源简介

中小学教育资源及组卷应用平台
计算题必考专题:小数乘除法巧算(专项训练)数学五年级上册人教版
1.怎样简便怎样计算。
3.8+4.29+2.71+4.2 4.75×99+4.75 14.28÷3.5÷2
2.计算,能简算的要简算.
3.8÷2.5÷4 106.02÷9.3-4.6 7.52÷4.7×0.65 37.3-1.5÷0.24
3.脱式计算.(能简算的要简算)
80.4×2.7-2.6     21.36÷0.8+12.9
2.7×19.5+7.3×19.5    1.08×0.8÷0.27
4.计算下面各题,能简算的要简算。
0.56×102-0.2×5.6 10.1×8.3 10.2÷34×120
0.85÷0.17÷5 2.5×1.25×0.32 15×0.11+0.89
5.用简便方法计算下面各题。
5.2×2.3+5.8×2.3-2.3 1.25×2.5×32
3.6×102 27.27÷2.5÷0.4
6.计算下面各题,能简算的要简算。

7.用简便方法计算下面各题。
3.45×0.68+0.68×1.55 (3.2+0.48)÷0.8 0.41×101
8.简算。
7.4×0.56+0.44×7.4 32.5÷2.5÷0.4 9.4×10.1
9.计算下面各题,能简算的要简算。
4.25+3.26-0.16+5.75 17.86×102-2×17.86 3.68÷0.25÷4
(12.5-0.125)×0.8 5.56×0.5-1.56÷2 5.4×[(3.2+4.06)÷6.05]
10.简便计算。
7.39+5.1+2.61+21.9 2.3×2.4+2.3×8.6-2.3
4.4×25 2.64÷5÷0.2
11.计算下面各题,你认为怎样简便就怎样算。
2.5×125×0.32 2.7×4.5+7.3×4.5
1.2+29.4÷7 45.8÷12.5÷0.8
12.选择合理的方法计算。


13.用你喜欢的方法计算。
(6.2-3.7)×40 (8.8+0.6×6)÷3.1 5.5×9.3+8.7×5.5
14.脱式计算。
4.68÷(22-14.2) 2.02÷0.8÷1.25 0.85×7.2-8.5×0.52
15.脱式计算。(能简算的要简算)
4×1.98×0.25 12.5×2.5×3.2 0.46÷0.25÷4 48÷0.24÷2
16.脱式计算,能用简便方法计算的用简便方法计算。
0.01+1.01×99 26×20.2-8.4-1.8
5.1÷(4.25×0.8) 36.45×0.8÷2.7
17.简便计算。
4.5×101-4.5 17.2÷4÷0.25
18.计算题。


参考答案:
1.15;475;2.04
【分析】根据数据自身的特点以及凑整的简便方法,可交换加数的位置,运用交换律来简便运算;
可逆用乘法分配律,先提取相同的因数4.75,再把剩下的部分相加,最后用这个和乘公有因数即可;
运用除法的性质,变连续除以两个数为除以这两个数的乘积,可起到简算的效果。
【详解】3.8+4.29+2.71+4.2
=(3.8+4.2)+(4.29+2.71)
=8+7
=15
4.75×99+4.75
=4.75×(99+1)
=4.75×100
=475
14.28÷3.5÷2
=14.28÷(3.5×2)
=14.28÷7
=2.04
2.0.38;6.8;1.04;31.05
【解析】略
3.214.48 39.6 195 3.2
【解析】略
4.56;83.83;36
1;1;2.54
【分析】(1)先根据积不变的规律,将0.2×5.6改写成2×0.56,然后根据乘法分配律逆运算a×c+b×c=(a+b)×c进行简算;
(2)先把10.1分解成10+0.1,然后根据乘法分配律(a+b)×c=a×c+b×c进行简算;
(3)从左往右依次计算;
(4)根据除法的性质a÷b÷c=a÷(b×c)进行简算;
(5)先把0.32分解成0.4×0.8,然后根据乘法交换律a×b=b×a,乘法结合律(a×b)×c=a×(b×c)进行简算;
(6)先算乘法,再算加法。
【详解】(1)0.56×102-0.2×5.6
=0.56×102-2×0.56
=0.56×(102-2)
=0.56×100
=56
(2)10.1×8.3
=(10+0.1)×8.3
=10×8.3+0.1×8.3
=83+0.83
=83.83
(3)10.2÷34×120
=0.3×120
=36
(4)0.85÷0.17÷5
=0.85÷(0.17×5)
=0.85÷0.85
=1
(5)2.5×1.25×0.32
=2.5×1.25×(0.4×0.8)
=(2.5×0.4)×(1.25×0.8)
=1×1
=1
(6)15×0.11+0.89
=1.65+0.89
=2.54
5.23;100
367.2;27.27
【分析】(1)根据乘法分配律逆运算a×c+b×c=(a+b)×c进行简算;
(2)先把32分解成4×8,然后根据乘法交换律a×b=b×a,乘法结合律(a×b)×c=a×(b×c)进行简算;
(3)先把102分解成100+2,然后根据乘法分配律(a+b)×c=a×c+b×c进行简算;
(4)根据除法的性质a÷b÷c=a÷(b×c)进行简算。
【详解】(1)5.2×2.3+5.8×2.3-2.3
=5.2×2.3+5.8×2.3-2.3×1
=2.3×(5.2+5.8-1)
=2.3×10
=23
(2)1.25×2.5×32
=1.25×2.5×(4×8)
=(1.25×8)×(2.5×4)
=10×10
=100
(3)3.6×102
=3.6×(100+2)
=3.6×100+3.6×2
=360+7.2
=367.2
(4)27.27÷2.5÷0.4
=27.27÷(2.5×0.4)
=27.27÷1
=27.27
6.35;1;77.22;0.12
【分析】(1)(3)运用乘法分配律简便运算;
(2)运用乘法结合律简便运算;
(4)运用除法性质简便运算。
【详解】(1)
=35
(2)
=1
(3)
=77.22
(4)
=0.12
7.3.4;4.6;41.41
【分析】(1)(3)利用乘法分配律:a(b+c)=ab+ac简便计算;
(2)利用(a+b)÷c=a÷c+b÷c简便计算。
【详解】(1)3.45×0.68+0.68×1.55
=(3.45+1.55)×0.68
=5×0.68
=3.4
(2)(3.2+0.48)÷0.8
=3.2÷0.8+0.48÷0.8
=4+0.6
=4.6
(3)0.41×101
=0.41×(100+1)
=0.41×100+0.41×1
=41+0.41
=41.41
8.7.4;32.5;94.94
【分析】(1)根据乘法分配律逆运算a×c+b×c=(a+b)×c进行简算;
(2)根据除法的性质a÷b÷c=a÷(b×c)进行简算;
(3)先把10.1分解成10+0.1,然后根据乘法分配律(a+b)×c=a×c+b×c进行简算。
【详解】(1)7.4×0.56+0.44×7.4
=7.4×(0.56+0.44)
=7.4×1
=7.4
(2)32.5÷2.5÷0.4
=32.5÷(2.5×0.4)
=32.5÷1
=32.5
(3)9.4×10.1
=9.4×(10+0.1)
=9.4×10+9.4×0.1
=94+0.94
=94.94
9.13.1;1786;3.68;
9.9;2;6.48
【分析】4.25+3.26-0.16+5.75,根据交换结合律进行简算;
17.86×102-2×17.86,利用乘法分配律进行简算;
3.68÷0.25÷4,利用除法的性质,将后两个数先乘起来,再计算;
(12.5-0.125)×0.8,利用乘法分配律进行简算;
5.56×0.5-1.56÷2,÷2等于×0.5,利用乘法分配律进行简算;
5.4×[(3.2+4.06)÷6.05],先算加法,再算除法,最后算乘法。
【详解】4.25+3.26-0.16+5.75
=(4.25+5.75)+(3.26-0.16)
=10+3.1
=13.1
17.86×102-2×17.86
=(102-2)×17.86
=100×17.86
=1786
3.68÷0.25÷4
=3.68÷(0.25×4)
=3.68÷1
=3.68
(12.5-0.125)×0.8
=12.8×0.8-0.125×0.8
=10-0.1
=9.9
5.56×0.5-1.56÷2
=(5.56-1.56)×0.5
=4×0.5
=2
5.4×[(3.2+4.06)÷6.05]
=5.4×(7.26÷6.05)
=5.4×1.2
=6.48
10.37;23;
110;2.65
【分析】(1)运用加法的交换律和结合律简算;
(2)运用乘法分配律进行简算;
(3)把4.4分为4×1.1,再运用乘法结合律简算;
(4)运用除法性质简算。
【详解】7.39+5.1+2.61+21.9
=(7.39+2.61)+(5.1+21.9)
=10+27
=37
2.3×2.4+2.3×8.6-2.3
=(2.4+8.6-1)×2.3
=10×2.3
=23
4.4×25
=4×25×1.1
=100×1.1
=110
2.64÷5÷0.2
=2.65÷(5×0.2)
=2.65÷1
=2.65
11.100;45;
5.4;4.58;
【分析】(1)把0.32拆成4×0.08,然后运用乘法交换律和乘法结合律进行计算即可。
(2)运用乘法分配律进行计算即可。
(3)根据四则运算法则,先算乘除法,后算加减法即可。
(4)运用除法的性质进行计算即可。
【详解】2.5×125×0.32
=(2.5×4)×(125×0.08)
=10×10
=100
2.7×4.5+7.3×4.5
=4.5×(2.7+7.3)
=4.5×10
=45
1.2+29.4÷7
=1.2+4.2
=5.4
45.8÷12.5÷0.8
=45.8÷(12.5×0.8)
=45.8÷10
=4.58
12.42.42;58;17.6;
54.72;38.65;790
【分析】(1)先把10.1化为(10+0.1),再利用乘法分配律简便计算;
(2)先利用乘法交换律交换0.36和29的位置,再加小括号计算小数除法,最后计算括号外面的小数乘法;
(3)按照四则混合运算的顺序,先计算小数乘法和小数除法,再计算小数减法;
(4)按照四则混合运算的顺序,先计算小数除法,再计算小数加法;
(5)利用除法性质简便计算;
(6)利用乘法分配律简便计算。
【详解】(1)



=42.42
(2)



=58
(3)

=17.6
(4)

=54.72
(5)


=38.65
(6)


=790
13.100;4;99
【分析】(6.2-3.7)×40,先算减法,再算乘法;
(8.8+0.6×6)÷3.1,先算乘法,再算加法,最后算除法;
5.5×9.3+8.7×5.5,利用乘法分配律进行简算。
【详解】(6.2-3.7)×40
=2.5×40
=100
(8.8+0.6×6)÷3.1
=(8.8+3.6)÷3.1
=12.4÷3.1
=4
5.5×9.3+8.7×5.5
=5.5×(9.3+8.7)
=5.5×18
=99
14.0.6;2.02;1.7
【分析】“4.68÷(22-14.2)”先计算减法,再计算除法;
“2.02÷0.8÷1.25”根据除法的性质计算;
“0.85×7.2-8.5×0.52”根据乘法分配律计算。
【详解】4.68÷(22-14.2)
=4.68÷7.8
=0.6
2.02÷0.8÷1.25
=2.02÷(0.8×1.25)
=2.02÷1
=2.02
0.85×7.2-8.5×0.52
=0.85×7.2-0.85×5.2
=0.85×(7.2-5.2)
=0.85×2
=1.7
15.1.98;100;0.46;100
【分析】(1)根据乘法交换律交换4和1.98的位置,再根据乘法结合律,4与0.25结合。
(2)先将3.2拆为8×0.4,然后12.5与8结合,2.5与0.4结合。
(3)、(4)根据除法的运算性质a÷b÷c=a÷(b×c)(b、c均不为0)进行简算。
【详解】4×1.98×0.25
=1.98×4×0.25
=1.98×(4×0.25)
=1.98×1
=1.98
12.5×2.5×3.2
=12.5×2.5×(8×0.4)
=(12.5×8)×(2.5×0.4)
=100×1
=100
0.46÷0.25÷4
=0.46÷(0.25×4)
=0.46÷1
=0.46
48÷0.24÷2
=48÷(0.24×2)
=48÷0.48
=100
16.100;515
1.5;10.8
【分析】(1)先把1.01分解成1+0.01,然后根据乘法分配律(a+b)×c=a×c+b×c,加法交换律a+b=b+a进行简算。
(2)先算乘法,然后根据减法的性质a-b-c=a-(b+c)进行简算;
(3)先算括号里面的乘法,再算括号外面的除法;
(4)从左往右依次计算。
【详解】(1)0.01+1.01×99
=0.01+(1+0.01)×99
=0.01+1×99+0.01×99
=0.01+99+0.99
=0.01+0.99+99
=1+99
=100
(2)26×20.2-8.4-1.8
=525.2-(8.4+1.8)
=525.2-10.2
=515
(3)5.1÷(4.25×0.8)
=5.1÷3.4
=1.5
(4)36.45×0.8÷2.7
=29.16÷2.7
=10.8
17.450;17.2
【分析】(1)利用乘法分配律简便计算;
(2)利用除法性质简便计算。
【详解】(1)4.5×101-4.5
=4.5×101-4.5×1
=4.5×(101—1)
=4.5× 100
=450
(2)17.2÷4÷0.25
=17.2÷(4×0.25)
=17.2÷1
=17.2
18.;20
2.1;3
【分析】,交换减数和加数的位置再计算;
,先算除法,再算加法;
,利用乘法分配律进行简算;
,先算减法,再算除法,最后算乘法。
【详解】
=15.7+4.3
=20
=2.1×(0.6+0.4)
=2.1×1
=2.1
=2.4÷0.4×0.5
=6×0.5
=3
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网(www.21cnjy.com)

展开更多......

收起↑

资源预览