专题01 有理数(压轴必刷30题8种题型专项训练)【2023秋人教七上数学月考期中期末专题复习】(原卷版+解析版)

资源下载
  1. 二一教育资源

专题01 有理数(压轴必刷30题8种题型专项训练)【2023秋人教七上数学月考期中期末专题复习】(原卷版+解析版)

资源简介

中小学教育资源及组卷应用平台
第1章 有理数(压轴必刷30题8种题型专项训练)
正数和负数
有理数
数轴
绝对值
有理数的乘法
有理数的乘方
非负数的性质:偶次方
有理数的混合运算
一.正数和负数(共1小题)
1.(2022秋 江都区期中)“十一”国庆期间,俄罗斯特技飞行队在黄山湖公园特技表演,其中一架飞机起飞后的高度变化如表:
高度变化 记作
上升4.4km 4.4km
下降3.2km ﹣3.2km
上升1.1km +1.1km
下降1.5km ﹣1.5km
(1)此时这架飞机比起飞点高了多少千米?
(2)如果飞机每上升或下降1千米需消耗2升燃油,那么这架飞机在这4个动作表演过程中,一共消耗了多少升燃油?
【分析】(1)根据表格列出算式,计算即可得到结果;
(2)求出表格中数据绝对值之和,再乘以2即可得到结果.
【解答】解:(1)4.4﹣3.2+1.1﹣1.5=0.8(千米),
答:这架飞机比起飞点高了0.8千米;
(2)|4.4|+|﹣3.2|+|+1.1|+|﹣1.5|
=10.2(千米)
10.2×2=20.4升.
答:一共消耗了20.4升燃油.
【点评】此题考查了有理数的加减混合运算,正数和负数,弄清题意是解本题的关键.
二.有理数(共1小题)
2.(2022秋 浏阳市期中)在解决数学问题的过程中,我们常用到“分类讨论”的数学思想,下面是运用分类讨论的数学思想解决问题的过程,请仔细阅读,并解答问题.
【提出问题】三个有理数a,b,c满足abc>0,求的值.
【解决问题】
解:由题意,得a,b,c三个有理数都为正数或其中一个为正数,另两个为负数.
①a,b,c都是正数,即a>0,b>0,c>0时,则;
②当a,b,c中有一个为正数,另两个为负数时,不妨设a>0,b<0,c<0,则.
综上所述,值为3或﹣1.
【探究】请根据上面的解题思路解答下面的问题:
(1)三个有理数a,b,c满足abc<0,求的值;
(2)若a,b,c为三个不为0的有理数,且,求的值.
【分析】(1)仿照题目给出的思路和方法,解决(1)即可;
(2)根据已知等式,利用绝对值的代数意义判断出a,b,c中负数有2个,正数有1个,判断出abc的正负,原式利用绝对值的代数意义化简计算即可.
【解答】解:(1)∵abc<0,
∴a,b,c都是负数或其中一个为负数,另两个为正数,
①当a,b,c都是负数,即a<0,b<0,c<0时,
则:=++=﹣1﹣1﹣1=﹣3;
②a,b,c有一个为负数,另两个为正数时,设a<0,b>0,c>0,
则=++=﹣1+1+1=1.
(2)∵a,b,c为三个不为0的有理数,且,
∴a,b,c中负数有2个,正数有1个,
∴abc>0,
∴==1.
【点评】本题主要考查了绝对值的意义、分类讨论的思想方法.能不重不漏的分类,会确定字母的范围和字母的值是关键.
三.数轴(共11小题)
3.(2022秋 阳新县校级期末)已知在数轴上A,B两点对应数分别为﹣4,20.
(1)若P点为线段AB的中点,求P点对应的数.
(2)若点A、点B同时分别以2个单位长度/秒的速度相向运动,点M(M点在原点)同时以4个单位长度/秒的速度向右运动.
①几秒后点M到点A、点B的距离相等?求此时M对应的数.
②是否存在M点,使3MA=2MB?若存在,求出点M对应的数;若不存在,请说明理由.
【分析】(1)利用中点坐标计算方法直接得出答案即可;
(2)①画出图形,设t秒后点M到点A、点B的距离相等,分别表示出AM和BM的长度,建立方程求得答案即可;
②利用(2)中的AM和BM的长度,分两种情况:M在AB之间,A在BM之间,结合3MA=2MB建立方程求得答案即可.
【解答】解:(1)P点表示的数是=8;
(2)①如图,
设t秒后点M到点A、点B的距离相等,
AM=4t﹣(﹣4+2t)=2t+4,BM=20﹣2t﹣4t=20﹣6t,
则2t+4=20﹣6t,
解得t=2,
M表示2×4=8.
A、B重合时,MA=BM,此时t=6,此时M表示24.
②如图①,
AM=4t﹣(﹣4+2t)=2t+4,BM=20﹣2t﹣4t=20﹣6t,
∵3MA=2MB,
∴3(2t+4)=2(20﹣6t),
∴t=,
∴点M表示×4=;
如图②,
AM=4t﹣(﹣4+2t)=2t+4,BM=2t+4t﹣20=6t﹣20,
∵3MA=2MB,
∴3(2t+4)=2(6t﹣20),
∴t=,
∴点M表示×4=.
【点评】此题考查数轴,一元一次方程的实际运用,利用图形,得出数量关系是解决问题的关键.
4.(2022秋 鲤城区校级期末)如图,数轴上点A、C对应的数分别为a、c,且a、c满足|a+4|+(c﹣1)2=0.,点B对应的数为﹣3,
(1)求a、c的值;
(2)点A,B沿数轴同时出发向右匀速运动,点A速度为2个单位长度/秒,点B速度为1个单位长度/秒,若运动时间为t秒,运动过程中,当A,B两点到原点O的距离相等时,求t的值;
(3)在(2)的条件下,若点B运动到点C处后立即以原速返回,到达自己的出发点后停止运动,点A运动至点C处后又以原速返回,到达自己的出发点后又折返向点C运动,当点B停止运动时,点A随之停止运动,在此运动过程中,A,B两点同时到达的点在数轴上表示的数是 ﹣2,0,﹣ .(说明:直接在横线上写出答案,答案不唯一,不解、错解均不得分,少解、漏解酌情给分)
【分析】(1)根据非负数的性质列式求解即可得到a、c的值;
(2)求出AB,再根据到原点距离相等时,分两种情况:①点A、B重合,②点A在原点的右边,点B在原点的左边,列出方程求解即可;
(3)由(2)可知A,B两点第一次同时到达的点为﹣2,A,B两点第二次同时到达的点,是在A点到达C点返回与B点相遇的点,A,B两点第三次同时到达的点,是在A点返回到出发点后又折返向点C运动,与B点运动到点C处后返回的相遇点.
【解答】解:(1)∵|a+4|+(c﹣1)2=0,且|a+4|≥0,+(c﹣1)2≥0,
∴a+4=0,c﹣1=0,
∴a=﹣4,c=1;
(2)由(1)可知A点表示的数为﹣4,C点表示的数为1,
∵点B对应的数为﹣3,
∴AB=1,
由A,B两点到原点O的距离相等,
分两种情况:①点A、B重合,②点A在原点的右边,点B在原点的左边
①当点A、B重合时,A、B均在原点的左边,此时A点运动的距离等于B点运动的距离+1,
即:2t=t+1,
解得:t=1;
②当点A在原点的右边,点B在原点的左边时,A、B两点表示的数互为相反数,
即:(2t﹣4)+(﹣3+t)=0,
解得:t=,
综上所述当t=1或t=时,A,B两点到原点O的距离相等;
(3)由(2)可知A,B两点第一次同时到达的点,在数轴上表示的数为:﹣2;
A,B两点第二次同时到达的点,
A点从﹣2到达C点(C点表示1)时,用时1.5秒,此时B点运动1.5个单位长度,到达﹣2+1.5=﹣0.5的位置,
A、B之间相距1.5个单位长度,经过1.5÷(1+2)=0.5秒,A、B相遇,此时A、B两点均在原点,
即A,B两点第二次同时到达的点在数轴上表示的数为:0;
A,B两点第三次同时到达的点,
在第二次相遇后,B到C点用时1秒,A点到出发点(表示﹣4的点)用时2秒,此时B点有到达原点,
A、B两点再一次相遇用时4÷(2+1)=秒,此时A、B两点均在数轴上表示的数为﹣.
综上所述,在此运动过程中,A,B两点同时到达的点在数轴上表示的数是﹣2,0,﹣.
故答案为:﹣2,0,﹣.
【点评】此题考查了数轴的有关知识,解题的关键是:借助数轴分析A,B两点同时到达的点.
5.(2022秋 新城区期中)一辆货车从仓库0出发在东西街道上运送水果,规定向东为正方向,依次到达的5个销售地点分别为A,B,C,D,E,最后回到仓库0.货车行驶的记录(单位:千米)如下:+1,+3,﹣6,﹣1,﹣2,+5.请问:
(1)请以仓库0为原点,向东为正方向,选择适当的单位长度,画出数轴,并标出A,B,C,D,E的位置;
(2)试求出该货车共行驶了多少千米?
(3)如果货车运送的水果以100千克为标准重量,超过的千克数记为正数,不足的千克数记为负数,则运往A,B,C,D,E五个地点的水果重量可记为:+50,﹣15,+25,﹣10,﹣15,则该货车运送的水果总重量是多少千克?
【分析】(1)根据数轴的三要素画出数轴,并根据题意在数轴上表示出A、B、C、D、E的位置;
(2)求出行驶记录的数据的绝对值的和即可;
(3)根据有理数的加法进行计算即可.
【解答】解:(1如图所示:取1个单位长度表示1千米,

(2)1+3+|﹣6|+|﹣1|+|﹣2|+5=18,
答:该货车共行驶了18千米;
(3)100×5+50﹣15+25﹣10﹣15=535(千克),
答:货车运送的水果总重量是535千克.
【点评】本题考查了正数和负数和数轴,掌握数轴的画法,掌握正负数所表示的意义是解决问题的关键.
6.(2022秋 法库县期中)如图在数轴上A点表示数a,B点表示数b,a、b满足|a+2|+|b﹣4|=0;
(1)点A表示的数为 ﹣2 ;点B表示的数为 4 ;
(2)若在原点O处放一挡板,一小球甲从点A处以1个单位/秒的速度向左运动;同时另一小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动,设运动的时间为t(秒),
①当t=1时,甲小球到原点的距离= 3 ;乙小球到原点的距离= 2 ;
当t=3时,甲小球到原点的距离= 5 ;乙小球到原点的距离= 2 ;
②试探究:甲,乙两小球到原点的距离可能相等吗?若不能,请说明理由.若能,请直接写出甲,乙两小球到原点的距离相等时经历的时间.
【分析】(1)利用绝对值的非负性即可确定出a,b即可;
(2)①根据运动确定出运动的单位数,即可得出结论.
②根据(I)0<t≤2,(Ⅱ)t>2,根据甲、乙两小球到原点的距离相等列出关于t的方程,解方程即可.
【解答】解:(1)∵|a+2|+|b﹣4|=0;
∴a=﹣2,b=4,
∴点A表示的数为﹣2,点B表示的数为4,
故答案为:﹣2,4;
(2)①当t=1时,
∵一小球甲从点A处以1个单位/秒的速度向左运动,
∴甲小球1秒钟向左运动1个单位,此时,甲小球到原点的距离=3,
∵一小球乙从点B处以2个单位/秒的速度也向左运动,
∴乙小球1秒钟向左运动2个单位,此时,乙小球到原点的距离=4﹣2=2,
故答案为:3,2;
当t=3时,
∵一小球甲从点A处以1个单位/秒的速度向左运动,
∴甲小球3秒钟向左运动3个单位,此时,甲小球到原点的距离=5,
∵一小球乙从点B处以2个单位/秒的速度也向左运动,
∴乙小球2秒钟向左运动2个单位,此时,刚好碰到挡板,改变方向向右运动,再向右运动1秒钟,运动2个单位,
∴乙小球到原点的距离=2.
②当0<t≤2时,得t+2=4﹣2t,
解得t=;
当t>2时,得t+2=2t﹣4,
解得t=6.
故当t=秒或t=6秒时,甲乙两小球到原点的距离相等.
故答案为:5,2.
【点评】此题主要考查了数轴,点的运动特点,解本题的关键是抓住运动特点确定出结论.
7.(2022秋 宜兴市期中)已知数轴上A,B两点表示的有理数分别为a,b,且(a﹣1)2+|b+2|=0.
(1)求a,b的值;
(2)点C在数轴上表示的数是c,且与A、B两点的距离和为11,求c值;
(3)小蜗牛甲以1个单位长度/s的速度从点B出发向其左边6个单位长度外的食物爬去,3s后位于点A的小蜗牛乙收到它的信号,以2个单位长度/s的速度也迅速爬向食物,小蜗牛甲到达后背着食物立即返回,与小蜗牛乙在数轴上D点相遇,则点D表示的有理数是什么?从出发至此时,小蜗牛甲共用去多少时间?
【分析】(1)根据几个非负数的和为0的性质得到a﹣1=0,b+2=0,求出a、b的值;
(2)分类讨论:点C在点B的左边时或点C在点A的右边,利用数轴上两点间的距离表示方法得到关于c的方程,解方程求出c的值即可;
(3)设小蜗牛乙收到信号后经过t秒和小蜗牛甲相遇,根据题意得到t+2t=1﹣(﹣2)﹣(﹣6)+(6﹣1×3),解方程得t=4,点D表示的有理数是1﹣2×4,小蜗牛甲共用的时间为3+4.
【解答】解:(1)根据题意得 a﹣1=0,b+2=0,
解得a=1,b=﹣2.
(2)①当点C在点B的左边时,
1﹣c+(﹣2﹣c)=11,解得c=﹣6;
②当点C在点A的右边时,
c﹣1+c﹣(﹣2)=11,解得c=5;
(3)设小蜗牛乙收到信号后经过t秒和小蜗牛甲相遇,根据题意得:
t+2t=1﹣(﹣2)﹣(﹣6)+(6﹣1×3),
∴t=4,
∴1﹣2×4=﹣7,
3+4=7.
答:点D表示的有理数是﹣7,小蜗牛甲共用去7秒.
【点评】本题考查了数轴的三要素:正方向、原点和单位长度.也考查了几个非负数的和为0的性质以及数轴上两点间的距离.
8.(2022秋 天河区校级期中)如图,数轴上有A、B、C三个点,A、B、C对应的数分别是a、b、c,且满足|a+24|+|b+10|+(c﹣10)2=0,动点P从A出发,以每秒1个单位的速度向终点C运动,设运动时间为t秒.
(1)求a、b、c的值;
(2)若点P到A点的距离是点P到B点的距离的2倍,求点P对应的数;
(3)当点P运动到B点时,点Q从点A出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回,运动到终点A.在点Q开始运动后第几秒时,P、Q两点之间的距离为4?请说明理由.
【分析】(1)根据绝对值和偶次幂具有非负性可得a+24=0,b+10=0,c﹣10=0,解可得a、b、c的值;
(2)分两种情况讨论可求点P的对应的数;
(3)分类讨论:当P点在Q点的右侧,且Q点还没追上P点时;当P在Q点左侧时,且Q点追上P点后;当Q点到达C点后,当P点在Q点左侧时;当Q点到达C点后,当P点在Q点右侧时,根据两点间的距离是4,可得方程,根据解方程,可得答案.
【解答】解:(1)∵|a+24|+|b+10|+(c﹣10)2=0
∴a+24=0,b+10=0,c﹣10=0
解得a=﹣24,b=﹣10,c=10
(2)﹣10﹣(﹣24)=14,
①点P在AB之间,AP=14×=,
﹣24+=﹣,
点P的对应的数是﹣;
②点P在AB的延长线上,AP=14×2=28,
﹣24+28=4,
点P的对应的数是4;
(3)设在点Q开始运动后第a秒时,P、Q两点之间的距离为4,
当P点在Q点的右侧,且Q点还没追上P点时,3a+4=14+a,解得a=5;
当P在Q点左侧时,且Q点追上P点后,3a﹣4=14+a,解得a=9;
当Q点到达C点后,当P点在Q点左侧时,14+a+4+3a﹣34=34,a=12.5;
当Q点到达C点后,当P点在Q点右侧时,14+a﹣4+3a﹣34=34,解得a=14.5,
综上所述:当Q点开始运动后第5、9、12.5、14.5秒时,P、Q两点之间的距离为4.
【点评】此题主要考查了一元一次方程的应用,关键是正确理解题意,掌握非负数的性质,再结合数轴解决问题.
9.(2022秋 临平区月考)如图,A、B分别为数轴上的两点,A点对应的数为﹣20,B点对应的数为100.
(1)请写出与A、B两点距离相等的点M所对应的数;
(2)现有一只电子蚂蚁P从B点出发,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4个单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C点相遇,你知道C点对应的数是多少吗?
(3)若当电子蚂蚁P从B点出发时,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4个单位/秒的速度也向左运动,请问:当它们运动多少时间时,两只蚂蚁间的距离为20个单位长度?
【分析】(1)根据中点坐标公式即可求解;
(2)此题是相遇问题,先求出相遇所需的时间,再求出点Q走的路程,根据左减右加的原则,可求出﹣20向右运动到相遇地点所对应的数;
(3)此题是追及问题,分相遇前两只蚂蚁间的距离为20个单位长度,相遇后两只蚂蚁间的距离为20个单位长度,列出算式求解即可.
【解答】解:(1)M点对应的数是(﹣20+100)÷2=40;
(2)A,B之间的距离为120,
它们的相遇时间是120÷(6+4)=12(秒),
即相同时间Q点运动路程为:12×4=48(个单位),
即从数﹣20向右运动48个单位到数28;
(3)相遇前:(100+20﹣20)÷(6﹣4)=50(秒),
相遇后:(100+20+20)÷(6﹣4)=70(秒).
故当它们运动50秒或70秒时间时,两只蚂蚁间的距离为20个单位长度.
【点评】此题考查的是数轴上点的运动,还有相遇问题与追及问题.注意用到了路程=速度×时间.
10.(2022秋 南安市月考)点A、B、C为数轴上三点,如果点C在A、B之间且到A的距离是点C到B的距离3倍,那么我们就称点C是{A,B}的奇点.
例如,如图1,点A表示的数为﹣3,点B表示的数为1.表示0的点C到点A的距离是3,到点B的距离是1,那么点C是{A,B}的奇点;又如,表示﹣2的点D到点A的距离是1,到点B的距离是3,那么点D就不是{A,B}的奇点,但点D是{B,A}的奇点.
如图2,M、N为数轴上两点,点M所表示的数为﹣3,点N所表示的数为5.
(1)数  3 所表示的点是{M,N}的奇点;数  ﹣1 所表示的点是{N,M}的奇点;
(2)如图3,A、B为数轴上两点,点A所表示的数为﹣50,点B所表示的数为30.现有一动点P从点B出发向左运动,到达点A停止.P点运动到数轴上的什么位置时,P、A和B中恰有一个点为其余两点的奇点?
【分析】(1)根据定义发现:奇点表示的数到{ M,N}中,前面的点M是到后面的数N的距离的3倍,从而得出结论;
根据定义发现:奇点表示的数到{N,M}中,前面的点N是到后面的数M的距离的3倍,从而得出结论;
(2)点A到点B的距离为80,由奇点的定义可知,分2种情况讨论:①P是{A,B}的奇点;②P是{B,A}的奇点.
【解答】解:(1)5﹣(﹣3)=8,
8÷(3+1)=2,
5﹣2=3;
﹣3+2=﹣1.
故数3所表示的点是{ M,N}的奇点;数﹣1所表示的点是{N,M}的奇点.
故答案为:3;﹣1;
(2)∵A、B为数轴上两点,点A所表示的数为﹣50,点B所表示的数为30,
∴AB=30﹣(﹣50)=80.
分2种情况:
①P是{A,B}的奇点,PA=3PB,∴PB=20,P点表示的数为10;
②P是{B,A}的奇点,PB=3PA,∴PB=60,P点表示的数为﹣30;
故P点运动到数轴上的10或﹣30的位置时,P、A和B中恰有一个点为其余两点的奇点.
【点评】本题考查了数轴及数轴上两点的距离、动点问题,认真理解新定义:奇点表示的数是与前面的点A的距离是到后面的数B的距离的3倍,列式可得结果.
11.(2022秋 魏都区校级月考)操作探究:已知在纸面上有一数轴(如图所示),
操作一:
(1)折叠纸面,使表示的1点与﹣1表示的点重合,则﹣3表示的点与 3 表示的点重合;
操作二:
(2)折叠纸面,使﹣1表示的点与3表示的点重合,回答以下问题:
①5表示的点与数 ﹣3 表示的点重合;
②若数轴上A、B两点之间距离为11,(A在B的左侧),且A、B两点经折叠后重合,求A、B两点表示的数是多少.
【分析】(1)1与﹣1重合,可以发现1与﹣1互为相反数,因此﹣3表示的点与3表示的点重合;
(2)①﹣1表示的点与3表示的点重合,则折痕点为1,因此5表示的点与数﹣3表示的点重合;
②由①知折痕点为1,且A、B两点之间距离为11,则A表示1﹣5.5=﹣4.5,B点表示1+5.5=6.5.
【解答】解:(1)∵1与﹣1重合,
∴折痕点为原点,
∴﹣3表示的点与3表示的点重合.
故答案为:3.
(2)①∵由表示﹣1的点与表示3的点重合,
∴可确定折痕点是表示1的点,
∴5表示的点与数﹣3表示的点重合.
故答案为:﹣3.
②由题意可得,A、B两点距离折痕点的距离为11÷2=5.5,
∵折痕点是表示1的点,
∴A、B两点表示的数分别是﹣4.5,6.5.
【点评】题目考查了数轴上点的对称,通过点的对称,发现对称点的规律,题目设计新颖,难易程度适中,适合课后训练.
12.(2022秋 槐荫区校级月考)如图,已知数轴上的点A表示的数为6,点B表示的数为﹣4,点C是AB的中点,动点P从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为x秒(x>0).
(1)当x= 5 秒时,点P到达点A.
(2)运动过程中点P表示的数是 2x﹣4 (用含x的代数式表示);
(3)当P,C之间的距离为2个单位长度时,求x的值.
【分析】(1)直接得出AB的长,进而利用P点运动速度得出答案;
(2)根据题意得出P点运动的距离减去4即可得出答案;
(3)利用当点P运动到点C左侧2个单位长度时,当点P运动到点C右侧2个单位长度时,分别得出答案.
【解答】解:(1)∵数轴上的点A表示的数为6,点B表示的数为﹣4,
∴AB=10,
∵动点P从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,
∴运动时间为10÷2=5(秒),
故答案为:5;
(2)∵动点P从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,
∴运动过程中点P表示的数是:2x﹣4;
故答案为:2x﹣4;
(3)点C表示的数为:[6+(﹣4)]÷2=1,
当点P运动到点C左侧2个单位长度时,
2x﹣4=1﹣2
解得:x=1.5,
当点P运动到点C右侧2个单位长度时,
2x﹣4=1+2
解得:x=3.5
综上所述,x=1.5或3.5.
【点评】此题主要考查了数轴,正确分类讨论得出PC的长是解题关键.
13.(2022秋 和平区校级期中)数轴上点A,C对应的数分别是a,c,且a,c满足:|a+6|+(c﹣1)2=0,点B对应的数是﹣2.
(1)填空:a= ﹣6 ,c= 1 ;在数轴上描出点A,B,C;
(2)若点M在数轴上对应的数为m,且满足|m﹣1|+|m+6|=15,则m= ﹣10或5 ;
(3)若A,B两点同时沿数轴正方向匀速运动,点A的速度为每秒2个单位长度,点B的速度为每秒1个单位长度,在运动过程中,点A到点C的距离是点B到点C距离的3倍时,点A对应的数是多少?
【分析】(1)根据非负数的性质得出a、c的值,再在数轴上描点即可得;
(2)分m<﹣6、﹣6≤m≤1、m>1三种情况去绝对值符号,再解所得方程可得;
(3)设运动时间为t,则点A表示的数为﹣6+2t,点B表示的数为﹣2+t,根据点A到点C的距离是点B到点C距离的3倍列出方程|﹣6+2t﹣1|=3|﹣2+t﹣1|,解之可得.
【解答】解:(1)∵|a+6|+(c﹣1)2=0,
∴a+6=0且c﹣1=0,
解得:a=﹣6、c=1,
如图所示:

故答案为:﹣6、1;
(2)若m<﹣6,则1﹣m﹣m﹣6=15,解得:m=﹣10;
若﹣6≤m≤1时,1﹣m+m+6=5≠15,此情况不存在;
若m>1,则m﹣1+m+6=15,解得:m=5;
综上,m=﹣10或5,
故答案为:﹣10或5;
(3)设t秒时,点A到点C的距离是点B到点C距离的3倍,
则此时点A表示的数为﹣6+2t,点B表示的数为﹣2+t,
则|﹣6+2t﹣1|=3|﹣2+t﹣1|,
整理,得:|2t﹣7|=3|t﹣3|,
∴2t﹣7=3(t﹣3)或2t﹣7=﹣3(t﹣3),
解得:t=2或t=,
∴点A表示的数为﹣2或,
答:点A到点C的距离是点B到点C距离的3倍,点A对应的数为﹣2或.
【点评】本题考查了一元一次方程的应用与数轴,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.
四.绝对值(共6小题)
14.(2022秋 包河区期末)若不等式|x﹣2|+|x+3|+|x﹣1|+|x+1|≥a对一切数x都成立,则a的取值范围是 a≤7 .
【分析】数形结合.绝对值的几何意义:|x﹣y|表示数轴上两点x,y之间的距离.
【解答】解:数形结合.绝对值的几何意义:|x﹣y|表示数轴上两点x,y之间的距离.
画数轴易知,|x﹣2|+|x+3|+|x﹣1|+|x+1|表示x 到﹣3,﹣1,1,2这四个点的距离之和.
令y=|x﹣2|+|x+3|+|x﹣1|+|x+1|,x=﹣3时,y=11,
x=﹣1时,y=7,
x=1时,y=7,
x=2时,y=9,
可以观察知:当﹣1≤x≤1时,由于四点分列在x两边,恒有y=7,
当﹣3≤x<﹣1时,7<y≤11,
当x<﹣3时,y>11,
当1≤x<2时,7≤y<9,
当x≥2时,y≥9,
综合以上:y≥7 所以:a≤7
即|x﹣2|+|x+3|+|x﹣1|+|x+1|≥7对一切实数x恒成立.
从而a的取值范围为a≤7.
【点评】本题考查绝对值,解题的关键是学会利用数形结合的思想解决问题,属于中考填空题中的压轴题.
15.(2022秋 深圳校级期中)已知a,b,c,d分别是一个四位数的千位,百位,十位,个位上的数字,且低位上的数字不小于高位上的数字,当|a﹣b|+|b﹣c|+|c﹣d|+|d﹣a|取得最大值时,这个四位数的最小值是  1119 .
【分析】依题意a≤b≤c≤d 原式=(b﹣a)+(c﹣b)+(d﹣c)+(d﹣a)=2(d﹣a)最大,所以d=9,a=1,即可求解.
【解答】解:依题意a≤b≤c≤d,
则原式=(b﹣a)+(c﹣b)+(d﹣c)+(d﹣a)=2(d﹣a)最大,
则d=9,a=1 四位数要取最小值且可以重复,
故答案为1119.
【点评】此题考查了绝对值的性质,同时要根据低位上的数字不小于高位上的数字进行逻辑推理.
16.(2022秋 定远县期中)同学们都知道,|5﹣(﹣2)|表示5与﹣2之差的绝对值,实际上也可理解为5与﹣2两数在数轴上所对的两点之间的距离.试探索
(1)求|5﹣(﹣2)|= 7 ;
(2)同样道理|x+1008|=|x﹣1005|表示数轴上有理数x所对点到﹣1008和1005所对的两点距离相等,则x= ﹣1.5 
(3)类似的|x+5|+|x﹣2|表示数轴上有理数x所对点到﹣5和2所对的两点距离之和,请你找出所有符合条件的整数x,使得|x+5|+|x﹣2|=7,这样的整数是 ﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2 .
(4)由以上探索猜想对于任何有理数x,|x﹣3|+|x﹣6|是否有最小值?如果有,写出最小值;如果没有,说明理由.
【分析】(1)5与﹣2两数在数轴上所对的两点之间的距离为5﹣(﹣2)=7;
(2)在数轴上,找到﹣1008和1005的中点坐标即可求解;
(3)利用数轴解决:把|x+5|+|x﹣2|=7理解为:在数轴上,某点到﹣5所对应的点的距离和到2所对应的点的距离之和为7,然后根据数轴可写出满足条件的整数x;
(4)把丨x﹣3丨+丨x﹣6丨理解为:在数轴上表示x到3和6的距离之和,求出表示3和6的两点之间的距离即可.
【解答】解:(1)|5﹣(﹣2)|=7;
(2)(﹣1008+1005)÷2=﹣1.5;
(3)式子|x+5|+|x﹣2|=7理解为:在数轴上,某点到﹣5所对应的点的距离和到2所对应的点的距离之和为7,
所以满足条件的整数x可为﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2;
(4)有,最小值为﹣3﹣(﹣6)=3.
故答案为:7;﹣1.5;﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2.
【点评】此题主要考查了去绝对值和数轴相联系的综合试题以及去绝对值的方法和去绝对值在数轴上的运用,难度较大,去绝对的关键是确定绝对值里面的数的正负性.
17.(2022秋 南城县校级月考)先阅读,后探究相关的问题
【阅读】|5﹣2|表示5与2差的绝对值,也可理解为5与2两数在数轴上所对应的两点之间的距离;|5+2|可以看作|5﹣(﹣2)|,表示5与﹣2的差的绝对值,也可理解为5与﹣2两数在数轴上所对应的两点之间的距离.
(1)如图,先在数轴上画出表示点2.5的相反数的点B,再把点A向左移动1.5个单位,得到点C,则点B和点C表示的数分别为  ﹣2.5 和  1 ,B,C两点间的距离是  3.5 ;
(2)数轴上表示x和﹣1的两点A和B之间的距离表示为  |x﹣(﹣1)| ;如果|AB|=3,那么x为  ﹣4,2 ;
(3)若点A表示的整数为x,则当x为  ﹣1 时,|x+4|与|x﹣2|的值相等;
(4)要使代数式|x+5|+|x﹣2|取最小值时,相应的x的取值范围是  ﹣5≤x≤2 .
【分析】(1)根据数先在数轴上描出点,再根据点得出两点间的距离;
(2)根据数轴上两点间的距离公式,可得到一点距离相等的点有两个;
(3)根据到两点距离相等的点是这两个点的中点,可得答案;
(4)根据线段上的点到这两点的距离最小,可得范围.
【解答】解:(1)如图,点B为所求点.B点表示的数﹣2.5,C点表示的数1,BC的长度是1﹣(﹣2.5)=3.5;
(2)数轴上表示x和﹣1的两点A和B之间的距离表示为|x﹣(﹣1)|,如果|AB|=3,那么x为﹣4,2;
(3)若点A表示的整数为x,则当x为﹣1,时,|x+4|与|x﹣2|的值相等;
(4)要使代数式|x+5|+|x﹣2|取最小值时,相应的x的取值范围是﹣5≤x≤2,
故答案为:﹣2.5,1,3.5;|x﹣(﹣1)|,﹣4,2;﹣1;﹣5≤x≤2.
【点评】本题考查了绝对值,由数轴上点的关系,得出到一点距离相等的点有两个,到两点相等的点是这两点的中点,到两点距离和最小的点是这条线段上的点.
18.(2022秋 隆昌市校级月考)同学们都知道,|4﹣(﹣2)|表示4与﹣2的差的绝对值,实际上也可理解为4与﹣2两数在数轴上所对应的两点之间的距离;同理|x﹣3|也可理解为x与3两数在数轴上所对应的两点之间的距离.试探索:
(1)求|4﹣(﹣2)|= 6 .
(2)若|x﹣2|=5,则x= ﹣3或7 
(3)同理|x﹣4|+|x+2|=6表示数轴上有理数x所对应的点到4和﹣2所对应的两点距离之和,请你找出所有符合条件的整数x,使得|x﹣4|+|x+2|=6,这样的整数是 ﹣2、﹣1、0、1、2、3、4 .
【分析】(1)根据4与﹣2两数在数轴上所对应的两点之间的距离是6,可得|4﹣(﹣2)|=6.
(2)根据|x﹣2|=5表示x与2两数在数轴上所对应的两点之间的距离是5,可得x=﹣3或7.
(3)因为4与﹣2两数在数轴上所对应的两点之间的距离是6,所以使得|x﹣4|+|x+2|=6成立的整数是﹣2和4之间的所有整数(包括﹣2和4),据此求出这样的整数有哪些即可.
【解答】解:(1)∵4与﹣2两数在数轴上所对应的两点之间的距离是6,
∴|4﹣(﹣2)|=6.
(2)|x﹣2|=5表示x与2两数在数轴上所对应的两点之间的距离是5,
∵﹣3或7与2两数在数轴上所对应的两点之间的距离是5,
∴若|x﹣2|=5,则x=﹣3或7.
(3)∵4与﹣2两数在数轴上所对应的两点之间的距离是6,
∴使得|x﹣4|+|x+2|=6成立的整数是﹣2和4之间的所有整数(包括﹣2和4),
∴这样的整数是﹣2、﹣1、0、1、2、3、4.
故答案为:6;﹣3或7;﹣2、﹣1、0、1、2、3、4.
【点评】(1)此题主要考查了绝对值的含义和应用,要熟练掌握,解答此题的关键是要明确:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.
(2)解答此题的关键是要明确:|x﹣a|既可以理解为x与a的差的绝对值,也可理解为x与a两数在数轴上所对应的两点之间的距离.
19.(2022秋 花垣县月考)同学们都知道:|5﹣(﹣2)|表示5与﹣2之差的绝对值,实际上也可理解为5与﹣2两数在数轴上所对应的两点之间的距离.请你借助数轴进行以下探索:
(1)数轴上表示5与﹣2两点之间的距离是 7 ,
(2)数轴上表示x与2的两点之间的距离可以表示为 |x﹣2| .
(3)如果|x﹣2|=5,则x= 7或﹣3 .
(4)同理|x+3|+|x﹣1|表示数轴上有理数x所对应的点到﹣3和1所对应的点的距离之和,请你找出所有符合条件的整数x,使得|x+3|+|x﹣1|=4,这样的整数是 ﹣3、﹣2、﹣1、0、1 .
(5)由以上探索猜想对于任何有理数x,|x﹣3|+|x﹣6|是否有最小值?如果有,直接写出最小值;如果没有,说明理由.
【分析】(1)根据距离公式即可解答;
(2)利用距离公式求解即可;
(3)利用绝对值求解即可;
(4)利用绝对值及数轴求解即可;
(5)根据绝对值的几何意义,即可解答.
【解答】解:(1)数轴上表示5与﹣2两点之间的距离是|5﹣(﹣2)|=|5+2|=7,故答案为:7;
(2)数轴上表示x与2的两点之间的距离可以表示为|x﹣2|,故答案为:|x﹣2|;
(3)∵|x﹣2|=5,
∴x﹣2=5或x﹣2=﹣5,
解得:x=7或x=﹣3,
故答案为:7或﹣3;
(4)∵|x+3|+|x﹣1|表示数轴上有理数x所对应的点到﹣3和1所对应的点的距离之和,|x+3|+|x﹣1|=4,
∴这样的整数有﹣3、﹣2、﹣1、0、1,
故答案为:﹣3、﹣2、﹣1、0、1;
(5)根据绝对值的几何意义可知当3≤x≤6时,有最小值是3.
【点评】本题是一道去绝对值和数轴相联系的综合试题,考查了取绝对值的方法,取绝对值在数轴上的运用.难度较大.去绝对的关键是确定绝对值里面的数的正负性.
五.有理数的乘法(共1小题)
20.(2022秋 钦南区校级月考)阅读下列材料:|x|=,即当x<0时,=﹣1.用这个结论可以解决下面问题:
(1)已知a,b是有理数,当ab≠0时,求的值;
(2)已知a,b,c是有理数,当abc≠0时,求的值;
(3)已知a,b,c是有理数,a+b+c=0,abc<0,求的值.
【分析】(1)对a、b进行讨论,即a、b同正,a、b同负,a、b异号,根据绝对值的意义计算+得到结果;
(2)对a、b、c进行讨论,即a、b、c同正、同负、两正一负、两负一正,然后计算++得结果;
(3)根据a,b,c是有理数,a+b+c=0,把求转化为求++的值,根据abc<0得结果.
【解答】解:(1)已知a,b是有理数,当ab≠0时,
①a<0,b<0,+=﹣1﹣1=﹣2;
②a>0,b>0,+=1+1=2;
③a,b异号,+=0.
故+的值为±2或0.
(2)已知a,b,c是有理数,当abc≠0时,
①a<0,b<0,c<0,++=﹣1﹣1﹣1=﹣3;
②a>0,b>0,c>0,++=1+1+1=3;
③a,b,c两负一正,++=﹣1﹣1+1=﹣1;
④a,b,c两正一负,++=﹣1+1+1=1.
故++的值为±1,或±3.
(3)已知a,b,c是有理数,a+b+c=0,abc<0.
所以b+c=﹣a,a+c=﹣b,a+b=﹣c,a,b,c两正一负,
所以++
=++
=﹣[++]
=﹣1.
【点评】本题考查了有理数的加法、绝对值的化简,解决本题的关键是对a、b、c的分类讨论.注意=±1(x>0,结果为1,x<0,结果为﹣1)
六.有理数的乘方(共1小题)
21.(2022秋 鲤城区校级期中)阅读以下内容,并解决所提出的问题.我们知道,23=2×2×2,25=2×2×2×2×2,所以:23×25=(2×2×2)×(2×2×2×2×2)=28.
(1)根据上述信息,试计算填空:53×56=5(),a2 a5=a(),am an=a(),
(2)已知2m=3,2n=5,试根据(1)问的结论计算:2m+n+1的值.
【分析】(1)利用题中的方法求出所求即可;
(2)原式变形后,将已知等式代入计算即可求出值.
【解答】解:(1)根据题意得:53×56=59;a2 a5=a7;am an=am+n;
(2)∵2m=3,2n=5,
∴原式=2m×2n×2=30.
【点评】此题考查了有理数的乘方,熟练掌握乘方的意义是解本题的关键.
七.非负数的性质:偶次方(共2小题)
22.(2022秋 越城区期中)根据右边的数值转换器,当输入的x与y满足时,请列式求出输出的结果.
【分析】根据非负数的性质,求出x、y的值,再由转换器(x2+2y+1)÷2,求得输出的值即可.
【解答】解:∵,
∴x+1=0,y﹣=0,
解得x=﹣1,y=,
把x=﹣1,y=代入(x2+2y+1)÷2,得(1+2)÷2=1.5,
故答案为1.5.
【点评】本题考查了非负数的性质,有限个非负数的和为零,那么每一个加数也必为零.
把转换器用数学符号表示是解决此题的关键.
23.(2022秋 鼓楼区校级月考)在数轴上有三个点A、B、C,它们表示的有理数分别为a、b、c.已知a是最大的负整数,且|b+4|+(c﹣2)2=0.
(1)求A、B、C三点表示的有理数分别是多少?
(2)填空:
①如果数轴上点D到A,C两点的距离相等,则点D表示的数为  ;
②如果数轴上点E到点A的距离为2,则点E表示的数为 1或﹣3 ;
(3)在数轴上是否存在一点F,使点F到点A的距离是点F到点B的距离的2倍?若存在,请直接写出点F表示的数;若不存在,请说明理由.
【分析】(1)根据有理数的概念求出a,再根据非负数的性质列式求出b、c的值,然后写出A、B、C三点表示的数即可;
(2)①设点D表示的数为x,然后表示出点D到点A、C的距离并列出方程求解即可;
②设点E表示的数为y,然后列出绝对值方程求解即可;
(3)设点F表示的数为z,然后列出绝对值方程,再求解即可.
【解答】解:(1)∵a是最大的负整数,
∴a=﹣1,
由题意得,b+4=0,c﹣2=0,
解得b=﹣4,c=2,
所以,点A、B、C表示的数分别为﹣1、﹣4、2;
(2)①设点D表示的数为x,
由题意得,x﹣(﹣1)=2﹣x,
解得x=,
所以,点D表示的数为;
②设点E表示的数为y,
由题意得,|y﹣(﹣1)|=2,
所以,y+1=2或y+1=﹣2,
解得y=1或y=﹣3,
所以,点E表示的数为1或﹣3;
故答案为:;1或﹣3.
(3)设点F表示的数为z,
∵F到点A的距离为|z﹣(﹣1)|,到点B的距离为|z﹣(﹣4)|,点F到点A的距离是点F到点B的距离的2倍,
∴|z﹣(﹣1)|=2|z﹣(﹣4)|,
所以,z+1=2(z+4)或z+1=﹣2(z+4),
解得z=﹣7或z=﹣3,
所以,点F表示的数为﹣7或﹣3.
【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0,数轴上两点间的距离的表示,准确列出方程是解题的关键.
八.有理数的混合运算(共7小题)
24.(2022秋 淮滨县期中)“十 一”黄金周期间,武汉东湖风景区在7天假期中每天旅游人数变化如下表(正号表示人数比前一天多,负号表示比前天少).
日期 1日 2日 3日 4日 5日 6日 7日
人数变化 单位:万人 +1.8 ﹣0.6 +0.2 ﹣0.7 ﹣1.3 +0.5 ﹣2.4
(1)若9月30日的旅客人数为4.2万人,则10月4日的旅客人数为  4.9 万人;
(2)七天中旅客人数最多的一天比最少的一天多  4.3 万人;
(3)如果每万人带来的经济收入约为100万元,则黄金周七天的旅游总收入约为多少万元?
【分析】(1)根据题意列得算式,计算即可得到结果;
(2)根据表格找出旅客人数最多的与最少的,相减计算即可得到结果;
(3)根据表格得出1日到7日每天的人数,相加后再乘以100即可得到结果.
【解答】解:(1)根据题意列得:4.2+(1.8﹣0.6+0.2﹣0.7)=4.2+0.7=4.9(万人);
(2)根据表格得:七天中旅客最多的是1日为6万人,最少的是7日为1.7万人,
则七天中旅客人数最多的一天比最少的一天多6﹣1.7=4.3(万人);
(3)根据表格得:每天旅客人数分别为6万人、5.4万人、5.6万人、4.9万人、3.6万人、4.1万人、1.7万人,
则黄金周七天的旅游总收入约为(6+5.4+5.6+4.9+3.6+4.1+1.7)×100=3130(万元).
故答案为:(1)4.9;(2)4.3
【点评】此题考查了有理数的混合运算的应用,弄清题意是解本题的关键.
25.(2022秋 将乐县期中)如图所示,小明有5张写着不同数字的卡片,请你按要求抽出卡片,完成下列各题;
(1)若从中抽出2张卡片,且这2个数字的差最小,应如何抽取?最小值是多少?
(2)若从中抽出2张卡片,且这2个数字的积最大,应如何抽取?最大值是多少?
(3)若从中抽出4张卡片,运用加、减、乘、除、乘方、括号等运算符号,使得结果为24,请写出运算式.(只需写出1种)
【分析】(1)找出两张卡片,使其差最小即可;
(2)找出两张卡片,使其积最大即可;
(3)找出四张卡片,利用24点游戏规律列出算式即可.
【解答】解:(1)抽取的2张卡片是﹣8、6,差的最小值是﹣8﹣6=﹣14;
(2)抽取的2张卡片是﹣4、﹣8,它们积最大,最大值是(﹣4)×(﹣8)=32;
(3)抽取的4张卡片是3、﹣4、6、﹣8,算式为(﹣8+6)×3×(﹣4)=24(答案不唯一).
【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.
26.(2022秋 历城区期中)李强靠勤工俭学的收入维持上大学的费用.下面是他某一周的收支情况表(收入为正,支出为负,单位为元)
周一 周二 三 四 五 六 日
+15 +10 0 +20 +15 +10 +14
﹣8 ﹣12 ﹣19 ﹣10 ﹣9 ﹣11 ﹣8
(1)到这个周末,李强有多少节余?
(2)照这样,李强一个月(按30天计算)能有多少节余?
(3)按以上的支出水平,李强一个月(按30天计算)至少有多少收入才能维持正常开支?
【分析】(1)根据表格,将所有的数字相加,利用同号及异号两数相加的法则计算,得到结果,即为节余;
(2)由(1)求出的结果,除以7求出每天的节余,乘以30即可得到一个月的节余;
(3)根据表格将所有的开支相加,求出维持正常开支的费用,除以7求出一天开支的费用,乘以30即可求出所求维持正常开支的收入.
【解答】解:(1)根据题意列得:
(+15)+(﹣8)+(+10)+(﹣12)+0+(﹣19)+(+20)+(﹣10)+(+15)+(﹣9)+(+10)+(﹣11)+(+14)+(﹣8)=7,
则李强有7元的节余;
(2)30×(7÷7)=30,
则李强一个月能有30元的节余;
(3)根据题意列得:(﹣8)+(﹣12)+(﹣19)+(﹣10)+(﹣9)+(﹣11)+(﹣8)=﹣77,
∴至少支出77元,即每天至少支出11元,
则一个月至少有330元的收入才能维持正常开支.
【点评】此题考查了有理数混合运算的应用,弄清题意是解本题的关键.
27.(2022秋 赣州期中)已知a、b互为相反数,c、d互为倒数,并且x的绝对值等于2.试求:x2﹣(a+b+cd)+2(a+b)的值.
【分析】由相反数及倒数的性质可求得a+b及cd,由绝对值的定义可求得x的值,代入计算即可.
【解答】解:∵a、b互为相反数,c、d互为倒数,x的绝对值等于2,
∴a+b=0,cd=1,x=±2,
∴原式=4﹣(0+1)+2×0=4﹣1+0=3.
【点评】本题主要考查有理数的混合运算以及代数式求值,掌握互为相反数的两数的和为0、互为倒数的两数积为1是解题的关键.
28.(2022秋 上杭县校级月考)已知|xy﹣2|与|y﹣1|互为相反数,试求代数式的值.
【分析】利用非负数的性质求出x与y的值,代入所求式子计算即可求出值.
【解答】解:∵|xy﹣2|+|y﹣1|=0,
∴x=2,y=1,
则原式=+++…+=1﹣+﹣+…+﹣=1﹣=.
【点评】此题考查了有理数的混合运算,有理数的混合运算首先弄清运算顺序,先乘方,再乘除,最后算加减,有括号先算括号里边的,同级运算从左到右依次计算,然后利用各种运算法则计算,有时可以利用运算律来简化运算.
29.(2022秋 椒江区校级月考)数学老师布置了一道思考题“计算:”,小明仔细思考了一番,用了一种不同的方法解决了这个问题:原式的倒数为==﹣4+10=6,所以.
(1)请你通过计算验证小明的解法的正确性;
(2)由此可以得到结论:一个数的倒数的倒数等于  本身 ;
(3)请你运用小明的解法计算:.
【分析】(1)根据有理数的混合运算顺序进行计算即可验证结论;
(2)根据除以一个数等于乘以这个数的倒数即可求解;
(3)根据小明的解法进行计算即可求解.
【解答】解:(1)计算:(﹣)÷(﹣)
=(﹣)÷(﹣)

答:小明的解法正确.
(2)一个数的倒数的倒数等于本身.
故答案为本身.
(3)原式的倒数为(﹣+)÷(﹣)
=(﹣+)×(﹣24)
=﹣8+4﹣9
=﹣13
所以(﹣)÷(﹣+)=﹣.
【点评】本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的混合运算顺序和运算法则.
30.(2022秋 兴化市校级月考)请你仔细阅读下列材料:计算:
(﹣)÷(﹣+﹣)
解法1:按常规方法计算
原式=(﹣)÷[+﹣(+)]=(﹣)÷(﹣)=(﹣)×3=﹣
解法2:简便计算,先求其倒数
原式的倒数为:(﹣+﹣)÷(﹣)=(﹣+﹣)×(﹣30)=﹣20+3﹣5+12=﹣10
故(﹣)÷(﹣+﹣)=﹣
再根据你对所提供材料的理解,模仿以上两种方法分别进行计算:(﹣)÷(﹣+﹣).
【分析】观察解法1,用常规方法计算即可求解;
观察解法2,可让除数和被除数交换位置进行计算,最后的结果取计算结果的倒数即可.
【解答】解:解法1,
(﹣)÷(﹣+﹣)
=﹣÷[+﹣(+)]
=﹣÷[﹣]
=﹣÷
=﹣;
解法2,原式的倒数为:
(﹣+﹣)÷(﹣)
=(﹣+﹣)×(﹣56)
=﹣×56+×56﹣×56+×56
=﹣21+12﹣28+16
=﹣21,
故(﹣)÷(﹣+﹣)=﹣.
【点评】此题考查了有理数的混合运算,解决本题的关键是读懂题意,理解第二种解法的思路:两个数相除,可先求这两个数相除的倒数.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
第1章 有理数(压轴必刷30题8种题型专项训练)
正数和负数
有理数
数轴
绝对值
有理数的乘法
有理数的乘方
非负数的性质:偶次方
有理数的混合运算
一.正数和负数(共1小题)
1.(2022秋 江都区期中)“十一”国庆期间,俄罗斯特技飞行队在黄山湖公园特技表演,其中一架飞机起飞后的高度变化如表:
高度变化 记作
上升4.4km 4.4km
下降3.2km ﹣3.2km
上升1.1km +1.1km
下降1.5km ﹣1.5km
(1)此时这架飞机比起飞点高了多少千米?
(2)如果飞机每上升或下降1千米需消耗2升燃油,那么这架飞机在这4个动作表演过程中,一共消耗了多少升燃油?
二.有理数(共1小题)
2.(2022秋 浏阳市期中)在解决数学问题的过程中,我们常用到“分类讨论”的数学思想,下面是运用分类讨论的数学思想解决问题的过程,请仔细阅读,并解答问题.
【提出问题】三个有理数a,b,c满足abc>0,求的值.
【解决问题】
解:由题意,得a,b,c三个有理数都为正数或其中一个为正数,另两个为负数.
①a,b,c都是正数,即a>0,b>0,c>0时,则;
②当a,b,c中有一个为正数,另两个为负数时,不妨设a>0,b<0,c<0,则.
综上所述,值为3或﹣1.
【探究】请根据上面的解题思路解答下面的问题:
(1)三个有理数a,b,c满足abc<0,求的值;
(2)若a,b,c为三个不为0的有理数,且,求的值.
三.数轴(共11小题)
3.(2022秋 阳新县校级期末)已知在数轴上A,B两点对应数分别为﹣4,20.
(1)若P点为线段AB的中点,求P点对应的数.
(2)若点A、点B同时分别以2个单位长度/秒的速度相向运动,点M(M点在原点)同时以4个单位长度/秒的速度向右运动.
①几秒后点M到点A、点B的距离相等?求此时M对应的数.
②是否存在M点,使3MA=2MB?若存在,求出点M对应的数;若不存在,请说明理由.
4.(2022秋 鲤城区校级期末)如图,数轴上点A、C对应的数分别为a、c,且a、c满足|a+4|+(c﹣1)2=0.,点B对应的数为﹣3,
(1)求a、c的值;
(2)点A,B沿数轴同时出发向右匀速运动,点A速度为2个单位长度/秒,点B速度为1个单位长度/秒,若运动时间为t秒,运动过程中,当A,B两点到原点O的距离相等时,求t的值;
(3)在(2)的条件下,若点B运动到点C处后立即以原速返回,到达自己的出发点后停止运动,点A运动至点C处后又以原速返回,到达自己的出发点后又折返向点C运动,当点B停止运动时,点A随之停止运动,在此运动过程中,A,B两点同时到达的点在数轴上表示的数是   .(说明:直接在横线上写出答案,答案不唯一,不解、错解均不得分,少解、漏解酌情给分)
5.(2022秋 新城区期中)一辆货车从仓库0出发在东西街道上运送水果,规定向东为正方向,依次到达的5个销售地点分别为A,B,C,D,E,最后回到仓库0.货车行驶的记录(单位:千米)如下:+1,+3,﹣6,﹣1,﹣2,+5.请问:
(1)请以仓库0为原点,向东为正方向,选择适当的单位长度,画出数轴,并标出A,B,C,D,E的位置;
(2)试求出该货车共行驶了多少千米?
(3)如果货车运送的水果以100千克为标准重量,超过的千克数记为正数,不足的千克数记为负数,则运往A,B,C,D,E五个地点的水果重量可记为:+50,﹣15,+25,﹣10,﹣15,则该货车运送的水果总重量是多少千克?
6.(2022秋 法库县期中)如图在数轴上A点表示数a,B点表示数b,a、b满足|a+2|+|b﹣4|=0;
(1)点A表示的数为   ;点B表示的数为   ;
(2)若在原点O处放一挡板,一小球甲从点A处以1个单位/秒的速度向左运动;同时另一小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动,设运动的时间为t(秒),
①当t=1时,甲小球到原点的距离=   ;乙小球到原点的距离=   ;
当t=3时,甲小球到原点的距离=   ;乙小球到原点的距离=   ;
②试探究:甲,乙两小球到原点的距离可能相等吗?若不能,请说明理由.若能,请直接写出甲,乙两小球到原点的距离相等时经历的时间.
7.(2022秋 宜兴市期中)已知数轴上A,B两点表示的有理数分别为a,b,且(a﹣1)2+|b+2|=0.
(1)求a,b的值;
(2)点C在数轴上表示的数是c,且与A、B两点的距离和为11,求c值;
(3)小蜗牛甲以1个单位长度/s的速度从点B出发向其左边6个单位长度外的食物爬去,3s后位于点A的小蜗牛乙收到它的信号,以2个单位长度/s的速度也迅速爬向食物,小蜗牛甲到达后背着食物立即返回,与小蜗牛乙在数轴上D点相遇,则点D表示的有理数是什么?从出发至此时,小蜗牛甲共用去多少时间?
8.(2022秋 天河区校级期中)如图,数轴上有A、B、C三个点,A、B、C对应的数分别是a、b、c,且满足|a+24|+|b+10|+(c﹣10)2=0,动点P从A出发,以每秒1个单位的速度向终点C运动,设运动时间为t秒.
(1)求a、b、c的值;
(2)若点P到A点的距离是点P到B点的距离的2倍,求点P对应的数;
(3)当点P运动到B点时,点Q从点A出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回,运动到终点A.在点Q开始运动后第几秒时,P、Q两点之间的距离为4?请说明理由.
9.(2022秋 临平区月考)如图,A、B分别为数轴上的两点,A点对应的数为﹣20,B点对应的数为100.
(1)请写出与A、B两点距离相等的点M所对应的数;
(2)现有一只电子蚂蚁P从B点出发,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4个单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C点相遇,你知道C点对应的数是多少吗?
(3)若当电子蚂蚁P从B点出发时,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4个单位/秒的速度也向左运动,请问:当它们运动多少时间时,两只蚂蚁间的距离为20个单位长度?
10.(2022秋 南安市月考)点A、B、C为数轴上三点,如果点C在A、B之间且到A的距离是点C到B的距离3倍,那么我们就称点C是{A,B}的奇点.
例如,如图1,点A表示的数为﹣3,点B表示的数为1.表示0的点C到点A的距离是3,到点B的距离是1,那么点C是{A,B}的奇点;又如,表示﹣2的点D到点A的距离是1,到点B的距离是3,那么点D就不是{A,B}的奇点,但点D是{B,A}的奇点.
如图2,M、N为数轴上两点,点M所表示的数为﹣3,点N所表示的数为5.
(1)数    所表示的点是{M,N}的奇点;数    所表示的点是{N,M}的奇点;
(2)如图3,A、B为数轴上两点,点A所表示的数为﹣50,点B所表示的数为30.现有一动点P从点B出发向左运动,到达点A停止.P点运动到数轴上的什么位置时,P、A和B中恰有一个点为其余两点的奇点?
11.(2022秋 魏都区校级月考)操作探究:已知在纸面上有一数轴(如图所示),
操作一:
(1)折叠纸面,使表示的1点与﹣1表示的点重合,则﹣3表示的点与   表示的点重合;
操作二:
(2)折叠纸面,使﹣1表示的点与3表示的点重合,回答以下问题:
①5表示的点与数   表示的点重合;
②若数轴上A、B两点之间距离为11,(A在B的左侧),且A、B两点经折叠后重合,求A、B两点表示的数是多少.
12.(2022秋 槐荫区校级月考)如图,已知数轴上的点A表示的数为6,点B表示的数为﹣4,点C是AB的中点,动点P从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为x秒(x>0).
(1)当x=   秒时,点P到达点A.
(2)运动过程中点P表示的数是   (用含x的代数式表示);
(3)当P,C之间的距离为2个单位长度时,求x的值.
13.(2022秋 和平区校级期中)数轴上点A,C对应的数分别是a,c,且a,c满足:|a+6|+(c﹣1)2=0,点B对应的数是﹣2.
(1)填空:a=   ,c=   ;在数轴上描出点A,B,C;
(2)若点M在数轴上对应的数为m,且满足|m﹣1|+|m+6|=15,则m=   ;
(3)若A,B两点同时沿数轴正方向匀速运动,点A的速度为每秒2个单位长度,点B的速度为每秒1个单位长度,在运动过程中,点A到点C的距离是点B到点C距离的3倍时,点A对应的数是多少?
四.绝对值(共6小题)
14.(2022秋 包河区期末)若不等式|x﹣2|+|x+3|+|x﹣1|+|x+1|≥a对一切数x都成立,则a的取值范围是   .
15.(2022秋 深圳校级期中)已知a,b,c,d分别是一个四位数的千位,百位,十位,个位上的数字,且低位上的数字不小于高位上的数字,当|a﹣b|+|b﹣c|+|c﹣d|+|d﹣a|取得最大值时,这个四位数的最小值是    .
16.(2022秋 定远县期中)同学们都知道,|5﹣(﹣2)|表示5与﹣2之差的绝对值,实际上也可理解为5与﹣2两数在数轴上所对的两点之间的距离.试探索
(1)求|5﹣(﹣2)|=   ;
(2)同样道理|x+1008|=|x﹣1005|表示数轴上有理数x所对点到﹣1008和1005所对的两点距离相等,则x=   
(3)类似的|x+5|+|x﹣2|表示数轴上有理数x所对点到﹣5和2所对的两点距离之和,请你找出所有符合条件的整数x,使得|x+5|+|x﹣2|=7,这样的整数是   .
(4)由以上探索猜想对于任何有理数x,|x﹣3|+|x﹣6|是否有最小值?如果有,写出最小值;如果没有,说明理由.
17.(2022秋 南城县校级月考)先阅读,后探究相关的问题
【阅读】|5﹣2|表示5与2差的绝对值,也可理解为5与2两数在数轴上所对应的两点之间的距离;|5+2|可以看作|5﹣(﹣2)|,表示5与﹣2的差的绝对值,也可理解为5与﹣2两数在数轴上所对应的两点之间的距离.
(1)如图,先在数轴上画出表示点2.5的相反数的点B,再把点A向左移动1.5个单位,得到点C,则点B和点C表示的数分别为    和    ,B,C两点间的距离是    ;
(2)数轴上表示x和﹣1的两点A和B之间的距离表示为    ;如果|AB|=3,那么x为    ;
(3)若点A表示的整数为x,则当x为    时,|x+4|与|x﹣2|的值相等;
(4)要使代数式|x+5|+|x﹣2|取最小值时,相应的x的取值范围是    .
18.(2022秋 隆昌市校级月考)同学们都知道,|4﹣(﹣2)|表示4与﹣2的差的绝对值,实际上也可理解为4与﹣2两数在数轴上所对应的两点之间的距离;同理|x﹣3|也可理解为x与3两数在数轴上所对应的两点之间的距离.试探索:
(1)求|4﹣(﹣2)|=   .
(2)若|x﹣2|=5,则x=   
(3)同理|x﹣4|+|x+2|=6表示数轴上有理数x所对应的点到4和﹣2所对应的两点距离之和,请你找出所有符合条件的整数x,使得|x﹣4|+|x+2|=6,这样的整数是   .
19.(2022秋 花垣县月考)同学们都知道:|5﹣(﹣2)|表示5与﹣2之差的绝对值,实际上也可理解为5与﹣2两数在数轴上所对应的两点之间的距离.请你借助数轴进行以下探索:
(1)数轴上表示5与﹣2两点之间的距离是   ,
(2)数轴上表示x与2的两点之间的距离可以表示为   .
(3)如果|x﹣2|=5,则x=   .
(4)同理|x+3|+|x﹣1|表示数轴上有理数x所对应的点到﹣3和1所对应的点的距离之和,请你找出所有符合条件的整数x,使得|x+3|+|x﹣1|=4,这样的整数是   .
(5)由以上探索猜想对于任何有理数x,|x﹣3|+|x﹣6|是否有最小值?如果有,直接写出最小值;如果没有,说明理由.
五.有理数的乘法(共1小题)
20.(2022秋 钦南区校级月考)阅读下列材料:|x|=,即当x<0时,=﹣1.用这个结论可以解决下面问题:
(1)已知a,b是有理数,当ab≠0时,求的值;
(2)已知a,b,c是有理数,当abc≠0时,求的值;
(3)已知a,b,c是有理数,a+b+c=0,abc<0,求的值.
六.有理数的乘方(共1小题)
21.(2022秋 鲤城区校级期中)阅读以下内容,并解决所提出的问题.我们知道,23=2×2×2,25=2×2×2×2×2,所以:23×25=(2×2×2)×(2×2×2×2×2)=28.
(1)根据上述信息,试计算填空:53×56=5(),a2 a5=a(),am an=a(),
(2)已知2m=3,2n=5,试根据(1)问的结论计算:2m+n+1的值.
七.非负数的性质:偶次方(共2小题)
22.(2022秋 越城区期中)根据右边的数值转换器,当输入的x与y满足时,请列式求出输出的结果.
23.(2022秋 鼓楼区校级月考)在数轴上有三个点A、B、C,它们表示的有理数分别为a、b、c.已知a是最大的负整数,且|b+4|+(c﹣2)2=0.
(1)求A、B、C三点表示的有理数分别是多少?
(2)填空:
①如果数轴上点D到A,C两点的距离相等,则点D表示的数为   ;
②如果数轴上点E到点A的距离为2,则点E表示的数为   ;
(3)在数轴上是否存在一点F,使点F到点A的距离是点F到点B的距离的2倍?若存在,请直接写出点F表示的数;若不存在,请说明理由.
八.有理数的混合运算(共7小题)
24.(2022秋 淮滨县期中)“十 一”黄金周期间,武汉东湖风景区在7天假期中每天旅游人数变化如下表(正号表示人数比前一天多,负号表示比前天少).
日期 1日 2日 3日 4日 5日 6日 7日
人数变化 单位:万人 +1.8 ﹣0.6 +0.2 ﹣0.7 ﹣1.3 +0.5 ﹣2.4
(1)若9月30日的旅客人数为4.2万人,则10月4日的旅客人数为    万人;
(2)七天中旅客人数最多的一天比最少的一天多    万人;
(3)如果每万人带来的经济收入约为100万元,则黄金周七天的旅游总收入约为多少万元?
25.(2022秋 将乐县期中)如图所示,小明有5张写着不同数字的卡片,请你按要求抽出卡片,完成下列各题;
(1)若从中抽出2张卡片,且这2个数字的差最小,应如何抽取?最小值是多少?
(2)若从中抽出2张卡片,且这2个数字的积最大,应如何抽取?最大值是多少?
(3)若从中抽出4张卡片,运用加、减、乘、除、乘方、括号等运算符号,使得结果为24,请写出运算式.(只需写出1种)
26.(2022秋 历城区期中)李强靠勤工俭学的收入维持上大学的费用.下面是他某一周的收支情况表(收入为正,支出为负,单位为元)
周一 周二 三 四 五 六 日
+15 +10 0 +20 +15 +10 +14
﹣8 ﹣12 ﹣19 ﹣10 ﹣9 ﹣11 ﹣8
(1)到这个周末,李强有多少节余?
(2)照这样,李强一个月(按30天计算)能有多少节余?
(3)按以上的支出水平,李强一个月(按30天计算)至少有多少收入才能维持正常开支?
27.(2022秋 赣州期中)已知a、b互为相反数,c、d互为倒数,并且x的绝对值等于2.试求:x2﹣(a+b+cd)+2(a+b)的值.
28.(2022秋 上杭县校级月考)已知|xy﹣2|与|y﹣1|互为相反数,试求代数式的值.
29.(2022秋 椒江区校级月考)数学老师布置了一道思考题“计算:”,小明仔细思考了一番,用了一种不同的方法解决了这个问题:原式的倒数为==﹣4+10=6,所以.
(1)请你通过计算验证小明的解法的正确性;
(2)由此可以得到结论:一个数的倒数的倒数等于    ;
(3)请你运用小明的解法计算:.
30.(2022秋 兴化市校级月考)请你仔细阅读下列材料:计算:
(﹣)÷(﹣+﹣)
解法1:按常规方法计算
原式=(﹣)÷[+﹣(+)]=(﹣)÷(﹣)=(﹣)×3=﹣
解法2:简便计算,先求其倒数
原式的倒数为:(﹣+﹣)÷(﹣)=(﹣+﹣)×(﹣30)=﹣20+3﹣5+12=﹣10
故(﹣)÷(﹣+﹣)=﹣
再根据你对所提供材料的理解,模仿以上两种方法分别进行计算:(﹣)÷(﹣+﹣).
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网(www.21cnjy.com)

展开更多......

收起↑

资源列表