资源简介 中小学教育资源及组卷应用平台全等三角形压轴题考点训练1.已知:如图,∠GBC,∠BAC的平分线相交于点F,BE⊥CF于H,若∠AFB=40°,∠BCF的度数为( )A.40° B.50° C.55° D.60°2.如图,AD是△ABC 的角平分线,DF⊥AB,垂足为F,且DE=DG,则∠AED+∠AGD和是( )A.180° B.200° C.210° D.240°3.如图,已知∠BAD=∠DAC=9°,AD⊥AE,且AB+AC=BE,则∠B的大小是( )A.42° B.44° C.46 ° D.48°4.如图,在中,,,平分,于,若,则为______.5.如图,为等腰的高,其中分别为线段上的动点,且,当取最小值时,的度数为_____.6.如图,把两块大小相同的含45°的三角板ACF和三角板CFB如图所示摆放,点D在边AC上,点E在边BC上,且∠CFE=13°,∠CFD=32°,则∠DEC的度数为_______.7.如图,在中,,BD平分,E是AB上一点,且,连接DE,过E作,垂足为F,延长EF交BC于点G.现给出以下结论:①;②;③;④.其中正确的是______.(写出所有正确结论的序号)8.如图,三角形ABC中,BD平分,若,则_______.9.如图,在和中,,,,,以点为顶点作,两边分别交,于点,,连接,则的周长为______.10.(1)如图1,△ABC中,AD为中线,求证:AB+AC>2AD;(2)如图2,△ABC中,D为BC的中点,DE⊥DF交AB、AC于E、F.求证:BE+CF>EF.11.问题背景:课外兴趣小组活动时,老师提出了如下问题:如图1,△ABC中,若AB=4,AC=3,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD到点E,使DE=AD,则得到△ADC≌△EDB,小明证明△BED≌△CAD用到的判定定理是: (用字母表示);问题解决:小明发现:解题时,条件中若出现“中点”“中线”字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.请写出小明解决问题的完整过程;拓展应用:以△ABC的边AB,AC为边向外作△ABE和△ACD,AB=AE,AC=AD,∠BAE=∠CAD=90°,M是BC中点,连接AM,DE.当AM=3时,求DE的长.12.如图,在△ABC中,∠ABC、∠ACB的平分线交于点D,延长BD交AC于E,G、F分别在BD、BC上,连接DF、GF,其中∠A=2∠BDF,GD=DE.(1)当∠A=80°时,求∠EDC的度数;(2)求证:CF=FG+CE.13.如图,ABC 中,AD 平分∠BAC ,DG ⊥BC 且平分 BC ,DE⊥ AB 于 E ,DF ⊥ AC于 F .(1)说明 BE CF 的理由;(2)如果 AB 5 , AC 3 ,求 AE 、 BE 的长.14.数学课上,张老师出示了问题:如图1,四边形ABCD是正方形,,,∥,∥点E是边BC的中点.,且EF交正方形外角的角平分线CF于点F,求证:AE=EF.经过思考,小明展示了一种正确的解题思路:取AB的中点M,连接ME,则AM=EC,易证,所以.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E是边BC的中点”改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由; (2)小华提出:如图3,点E是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.15.如图,在△ABC中,∠ABC的平分线BD交∠ACB的平分线CE于点O.(1)求证:.(2)如图1,若∠A=60°,请直接写出BE,CD,BC的数量关系.(3)如图2,∠A=90°,F是ED的中点,连接FO.①求证:BC BE CD=2OF.②延长FO交BC于点G,若OF=2,△DEO的面积为10,直接写出OG的长.全等三角形压轴题考点训练1.已知:如图,∠GBC,∠BAC的平分线相交于点F,BE⊥CF于H,若∠AFB=40°,∠BCF的度数为( )A.40° B.50° C.55° D.60°【答案】B【详解】解:作FZ⊥AE于Z,FY⊥CB于Y,FW⊥AB于W,∵AF平分∠BAC,FZ⊥AE,FW⊥AB,∴FZ=FW,同理FW=FY,∴FZ=FY.∵FZ⊥AE,FY⊥CB,∴∠FCZ=∠FCY,∵∠AFB=40°,∴∠ACB=80°,∴∠ZCY=100°,∴∠BCF=50°.故选B.2.如图,AD是△ABC 的角平分线,DF⊥AB,垂足为F,且DE=DG,则∠AED+∠AGD和是( )A.180° B.200° C.210° D.240°【答案】A【详解】解:过点作于,如图,是的角平分线,,,,在和中,,,,,.故选:A.3.如图,已知∠BAD=∠DAC=9°,AD⊥AE,且AB+AC=BE,则∠B的大小是( )A.42° B.44° C.46 ° D.48°【答案】D【详解】如图,延长BA到F,使AF=AC,连接EF,∵AB+AC=BE,∴AB+AF=BE,即BF=BE,∴∠F=∠BEF=,∵AD⊥AE,∴∠DAE=90°,∵∠BAD=∠DAC=9°,∴∠FAE=180°-(∠BAD+∠DAE)=180°-(9°+90°)=81°,∠CAE=∠DAE-∠DAC=90°-9°=81°,∴∠FAE=∠CAE,在△AFE和△ACE中,,∴△AFE≌△ACE(SAS),∴∠F=∠ACE,又∵∠ACE为△ABC的外角,∴∠ACE=∠B+∠BAC=∠B+18°,∴∠F=∠B+18°,∴∠B+18°=,解得∠B=48°.故选D.4.如图,在中,,,平分,于,若,则为______.【答案】4【详解】解:延长BA,CE交于点F,∵∠BAC=90°,,∴∠BAC=∠BEC=∠FAC,∵∠ABD+∠ADB=90°,∠CDE+∠ACF=90°,∵∠ADB=∠CDE,∴∠ABD=∠ACF,在△ABD和△ACF中∴△ABD≌△ACF,∴BD=CF=8,∵BD平分∠ABC,∴∠ABE=∠CBE,∵CE⊥BD,∴∠BEF=∠BEC=90°在△BEF和△BEC中∴△BEF≌△BEC,∴EF=EC,∴ECCF=4.故答案为:45.如图,为等腰的高,其中分别为线段上的动点,且,当取最小值时,的度数为_____.【答案】【详解】解:如图1,作,且,连接交于M,连接,是等腰三角形,,,,,,,,在与中,,,∴当F为与的交点时,如图2,的值最小,此时,,故答案为:.6.如图,把两块大小相同的含45°的三角板ACF和三角板CFB如图所示摆放,点D在边AC上,点E在边BC上,且∠CFE=13°,∠CFD=32°,则∠DEC的度数为_______.【答案】【详解】作FH垂直于FE,交AC于点H,∵又∵,∴∵,FA=CF∴∴FH=FE∵∵∴又∵DF=DF∴∴∵∴∵∴∴,故答案为:.7.如图,在中,,BD平分,E是AB上一点,且,连接DE,过E作,垂足为F,延长EF交BC于点G.现给出以下结论:①;②;③;④.其中正确的是______.(写出所有正确结论的序号)【答案】①③④【详解】∵BD平分,∴,∵,∴又∵,∴,∴,故①正确;过D作DM⊥AB,∵,∴,又∵BD平分,∴,在中:,∴,故②说法错误;∵,∴,在四边形CDFG中,,∴,∵,∴,∴,即,故③正确;设,则,∵,∴,在中,,∴,∵,∴,故④正确.故答案为:①③④.8.如图,三角形ABC中,BD平分,若,则_______.【答案】8【详解】解:如图,延长AD交BC与点E,∵BD平分∴∵BD=BD∴∴AB=BE∴∵∴∴∵AD=DE,∴∴故答案为:8.9.如图,在和中,,,,,以点为顶点作,两边分别交,于点,,连接,则的周长为______.【答案】4【详解】延长AC至E,使CE=BM,连接DE.∵BD=CD,且∠BDC=140°,∴∠DBC=∠DCB=20°,∵∠A=40°,AB=AC=2,∴∠ABC=∠ACB=70°,∴∠MBD=∠ABC+∠DBC=90°,同理可得∠NCD=90°,∴∠ECD=∠NCD=∠MBD=90°,在△BDM和△CDE中,,∴△BDM≌△CDE(SAS),∴MD=ED,∠MDB=∠EDC,∴∠MDE=∠BDC=140°,∵∠MDN=70°,∴∠EDN=70°=∠MDN,在△MDN和△EDN中,,∴△MDN≌△EDN(SAS),∴MN=EN=CN+CE,∴△AMN的周长=AM+MN+AN=AM+CN+CE+AN=AM+AN+CN+BM=AB+AC=4;故答案为:4.10.(1)如图1,△ABC中,AD为中线,求证:AB+AC>2AD;(2)如图2,△ABC中,D为BC的中点,DE⊥DF交AB、AC于E、F.求证:BE+CF>EF.【答案】(1)证明见解析;(2)证明见解析.【详解】(1)如图,延长至点E,使.∵AD为中线,∴.∴在和中, ,∴,∴.∵在中,,∴.(2)如图,延长至点G,使,连接CG,EG.∵AD为中线,∴.∴在和中, ,∴,∴.∵,∴,∴在和中,,∴,∴.∵在中,,∴.11.问题背景:课外兴趣小组活动时,老师提出了如下问题:如图1,△ABC中,若AB=4,AC=3,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD到点E,使DE=AD,则得到△ADC≌△EDB,小明证明△BED≌△CAD用到的判定定理是: (用字母表示);问题解决:小明发现:解题时,条件中若出现“中点”“中线”字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.请写出小明解决问题的完整过程;拓展应用:以△ABC的边AB,AC为边向外作△ABE和△ACD,AB=AE,AC=AD,∠BAE=∠CAD=90°,M是BC中点,连接AM,DE.当AM=3时,求DE的长.【答案】问题背景: SAS;问题解决:完整过程见解析;拓展应用: DE=6.【详解】问题背景:如图1,延长AD到点E,使DE=AD,连接BE,∵AD是△ABC的中线,∴BD=CD,在△ADC和△EDB中,,∴△ADC≌△EDB(SAS),故答案为:SAS;问题解决:如图1,延长AD到点E,使DE=AD,连接BE,∵AD是△ABC的中线,∴BD=CD,在△ADC≌△EDB中,,∴△ADC≌△EDB(SAS),∴BE=AC,在△ABE中,AB﹣BE<AE<AB+BE,∵AB=4,AC=3,∴4﹣3<AE<4+3,即1<AE<7,∵DE=AD,∴AD=AE,∴<AD<;拓展应用:如图2,延长AM到N,使得MN=AM,连接BN,由问题背景知,△BMN≌△CMA(SAS),∴BN=AC,∠CAM=∠BNM,∴AC//BN,∵AC=AD,∴BN=AD,∵AC//BN,∴∠BAC+∠ABN=180°,∵∠BAE=∠CAD=90°,∴∠BAC+∠EAD=180°,∴∠ABN=∠EAD,在△ABN和△EAD中,,∴△ABN≌△EAD(SAS),∴AN=DE,∵MN=AM,∴DE=AN=2AM,∵AM=3,∴DE=6.12.如图,在△ABC中,∠ABC、∠ACB的平分线交于点D,延长BD交AC于E,G、F分别在BD、BC上,连接DF、GF,其中∠A=2∠BDF,GD=DE.(1)当∠A=80°时,求∠EDC的度数;(2)求证:CF=FG+CE.【答案】(1);(2)证明见解析【解析】(1)解:在△ABC中,∵∠A=80°,∴,∠ABC、∠ACB的平分线交于点D,,,∠EDC=∠DBC+∠DCB;(2)解:在线段上取一点,使,连接,如图所示:平分,,在和中,,,,,,为的一个外角,,为的一个外角,,平分,,,∠A=2∠BDF,在和中,,,,,.13.如图,ABC 中,AD 平分∠BAC ,DG ⊥BC 且平分 BC ,DE⊥ AB 于 E ,DF ⊥ AC于 F .(1)说明 BE CF 的理由;(2)如果 AB 5 , AC 3 ,求 AE 、 BE 的长.【答案】(1)见解析;(2) BE 1 , AE 4 .【详解】(1)证明:连接BD,CD,AD平分BAC,DEAB,DFAC,DEDF,BEDCFD90,DGBC且平分BC,BDCD,在RtBED与RtCFD中,RtBED≌RtCFD(HL),BECF;(2)解:在AED和AFD中,AED≌AFD(AAS),AEAF,设BEx,则CFx,AB5,AC3,AEABBE,AFACCF,5x3x,解得:x1,BE1,AEABBE514.14.数学课上,张老师出示了问题:如图1,四边形ABCD是正方形,,,∥,∥点E是边BC的中点.,且EF交正方形外角的角平分线CF于点F,求证:AE=EF.经过思考,小明展示了一种正确的解题思路:取AB的中点M,连接ME,则AM=EC,易证,所以.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E是边BC的中点”改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由; (2)小华提出:如图3,点E是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.【答案】(1)正确.证明见解析;②正确.证明见解析.【详解】试题分析:(1)在AB上取一点M,使AM=EC,连接ME,根据已知条件利用ASA判定△AME≌△ECF,因为全等三角形的对应边相等,所以AE=EF.(2)在BA的延长线上取一点N,使AN=CE,连接NE,根据已知利用ASA判定△ANE≌△ECF,因为全等三角形的对应边相等,所以AE=EF.试题解析:(1)正确.证明:在AB上取一点M,使AM=EC,连接ME.∴BM=BE,∴∠BME=45°,∴∠AME=135°,∵CF是外角平分线,∴∠DCF=45°,∴∠ECF=135°,∴∠AME=∠ECF,∵∠AEB+∠BAE=90°,∠AEB+∠CEF=90°,∴∠BAE=∠CEF,∴△AME≌△ECF(ASA),∴AE=EF.(2)正确.证明:在BA的延长线上取一点N.使AN=CE,连接NE.∴BN=BE,∴∠N=∠NEC=45°,∵CF平分∠DCG,∴∠FCE=45°,∴∠N=∠ECF,∵四边形ABCD是正方形,∴AD∥BE,∴∠DAE=∠BEA,即∠DAE+90°=∠BEA+90°,∴∠NAE=∠CEF,∴△ANE≌△ECF(ASA),∴AE=EF.15.如图,在△ABC中,∠ABC的平分线BD交∠ACB的平分线CE于点O.(1)求证:.(2)如图1,若∠A=60°,请直接写出BE,CD,BC的数量关系.(3)如图2,∠A=90°,F是ED的中点,连接FO.①求证:BC BE CD=2OF.②延长FO交BC于点G,若OF=2,△DEO的面积为10,直接写出OG的长.【答案】(1)见解析;(2)BE+CD=BC,;(3)①见解析;②【解析】(1)证明:∵BD平分∠ABC,CE平分∠ACB,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠BOC=180° (∠OBC+∠OCB)=180° (∠ABC+∠ACB)=180° (180° ∠A)=∠A+90°;(2)解:BE+CD=BC.在BC上截取BM=BE,连接OM,如图:∵∠BOC=∠A+90°=120°,∴∠BOE=60°,∵BD平分∠ABC,∴∠EBO=∠MBO,∴△BOE≌△BOM,∴∠BOE=∠BOM=60°,∴∠MOC=∠DOC=60°,∵OC为∠DCM的角平分线,∴∠DCO=∠MCO,在△DCO与△MCO中,,∴△DCO≌△MCO (ASA),∴CM=CD,∴BC=BM+CM=BE+CD;(3)①证明:如图,延长OF到点M,使MF=OF,连接EM,∴OM=2OF.∵F是ED的中点,∴EF=DF,∵∠DFO=∠EFM,∴△ODF≌△MEF(SAS),∴OD=EM.过点O作CE,BD的垂线,分别交BC于点K,H,∴∠OCK+∠OKC=90°.∵∠A=90°,∴∠ACE+∠AEC=90°∵∠ACE=∠OCK,∴∠AEO=∠OKC,∴∠BEO=∠BKO,∴△OBE≌△OBK(AAS),同理可得△ODC≌△OHC,∴EO=OK,OD=OH=EM,BE=BK,CD=CH.由(1)可知∠DOE=∠BOC=×90°+90°=135°,∴∠BOE=∠COD=45°,∴∠OEM=∠KOH=45°,∴△OME≌△KHO,∴KH=OM,∴KH=2OF.∵BC BK CH=KH=2OE,∴BC BE CD=KH=2OF;②解:∵△OME≌△KHO,∴∠EOM=∠OKH,∴FG⊥BC.由①可知KH=2OF=4,△ODF≌△MEF,∴S△DEO=S△OME=S△KHO=10,∴KH×OG×=10,∴OG=5.21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)HYPERLINK "http://21世纪教育网(www.21cnjy.com)" 21世纪教育网(www.21cnjy.com) 展开更多...... 收起↑ 资源预览