资源简介 全等三角形的性质教学目标:掌握全等的相关概念概念,知道对应边、对应角的概念能够利用全等三角形的性质求未知的边或角一、知识要点1.能够完全 的两个图形叫做全等形2.能够完全 的两个三角形叫做全等三角形全等三角形的 相等、对应角3.经过平移、翻折、旋转后的图形与原图形【课程小测】一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列四组图形中,是全等图形的一组是A. B.C. D.2.如下图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE3.下列说法正确的是A.所有正方形都是全等图形 B.面积相等的两个三角形是全等图形C.所有半径相等的圆都是全等图形 D.所有长方形都是全等图形4.如图,已知△ABE≌△ACD,下列选项中不能被证明的等式是A.AD=AE B.DB=AEC.DF=EF D.DB=EC5.在△ABC中,∠B=∠C,与△ABC全等的三角形有一个角是100°,那么△ABC中与这个角对应的角是A.∠A B.∠B C.∠C D.∠D6.如图,△ABC≌△AEF,AB=AE,∠B=∠E,则对于结论:①AC=AF,②∠FAB=∠EAB,③EF=BC,④∠EAB=∠FAC,其中正确结论的有A.1个 B.2个 C.3个 D.4个二、填空题:请将答案填在题中横线上.7.如图,将△ABC沿BC所在的直线平移到△A'B'C'的位置,则△ABC__________△A'B'C',图中∠A与__________,∠B与__________,∠ACB与__________是对应角.8.如图,△ABD≌△EBC,AB=3 cm,BC=5 cm,则DE长是__________cm.9.如图,两个三角形全等,其中已知某些边的长度和某些角的度数,则x=__________.10.如图,△EFG≌△NMH,△EFG的周长为15 cm,HN=6 cm,EF=4 cm,FH=1 cm,则HG=__________.11.≌,,,若的周长为偶数,则__________.三、解答题:解答应写出文字说明、证明过程或演算步骤.12.如图,已知△ABC≌△EDC,指出其对应边和对应角.【课堂精炼】1.下列各图形中,不是全等形的是( )2.如图所示,将△ABC沿AC对折,点B与点E重合,则全等的三角形有( )A.1对 B.2对 C. 3对 D.4对3.如图,△AOC和△BOD全等,且C与D为对应顶点∠AOC和∠BOD为对应角(1)把这两个全等三角形表示出来 (2)OC的对应边是(3)∠D的对应角是4.如图,△ABE≌△ACD,∠1=∠2,∠B=∠C,指出对应边和另外一组对应角5.如图,将△ABC绕点C顺时针方向旋转40°得到△A'B'C'·若AC⊥A'B',则∠BAC等于( )A.50° B.60 C.70° D.80°6.如图,将△ABC沿BC所在的直线平移到△A'B'C',若BC=3cm,∠A=75°,则B'C'=3cm ∠A'= ,AB与AB的位置关系是7如图,若△ABC△DEF,则∠E等于( )A.30° B.50° C.60° D.100°如图,△ABC≌△DEF,BE=4,AE=1,则DE的长是( )A.5 B.4 C.3 D.29.如图所示,△ABD≌△EBC,AB=3cm,BC=5cm,求DE的长10.边长都为整数的△ABC和△DEF全等,AB与DE是对应边,AB=2,BC=4,若△DEF的周长为奇数,则DF的取值可能为( )A.3 B.4 C.3或5 D.3或4或511.如图,已知△ABC≌△DEF,DF∥BC,且∠B=60°,∠F=40°,点A在DE上,则∠BAD的度数为( )A.15° B.20° C.25° D.30°12.如图,△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A'处,折痕为CD,则∠A'DB=( )A.40° B.30° C.20° D.1O°13.如图所示,Rt△ABE≌Rt△ECD点B、E、C在同一直线上,则结论①AE=ED;②AE⊥ED;③BC=AB+CD:④AB∥DC其中成立的( )A.仅① B.仅①③ C.仅①③④ D.①②③④14.如图,△ABC≌△DEF,根据图中提供的信息,得出x=15.如图,△ABD≌△ACE,写出对应边和对应角,并证明:∠1=∠2三、综合训练16.如图所示,△ADF≌△CBE,且点E、B、D、F在一条直线上,判断AD与BC的位置关系,并说明理由17.如图,△ABC≌△ADE,∠DAC=60°,∠BAE=100°,BC,DE相交于点F,求∠DFB的度数18.如图,点M,N,B,G都在坐标轴上,△MOG≌△BON,连接BM,延长MG交BN于点P(1)求证:BG=OM-ON;(2)若MN=10,OM=6,求点G的坐标;(3)求证:MG⊥BN 展开更多...... 收起↑ 资源预览