资源简介 中小学教育资源及组卷应用平台北师大版数学九年级综合复习学案——图形的相似考点1 相似的概念及性质1. 有下列四种说法,其中说法正确的有( D )①两个菱形相似;②两个矩形相似;③两个平行四边形相似;④两个正方形相似.A. 4个 B. 3个 C. 2个 D. 1个2. 如图,在 中, , , 分别是边 , , 上的点, , ,且 ,那么 的值为( A )第2题图A. B. C. D.考点2 相似形的周长与面积3. 如图,已知 ,且 ,则 ( D )第3题图A. B. C. D.考点3 相似三角形的应用4. 如图,路灯 距离地面 ,身高 的小明站在距离灯的底部(点 ) 的 处,则小明的影长 为5 .考点4 平行线分线段成比例定理5. ,则( C )A. B. C. D.6. 如图, .若 , ,则 10.第6题图考点5 位似7. 如图, 和 是以点 为位似中心的位似三角形,若 为 的中点, ,则 的长为( B )第7题图A. 1 B. 2 C. 4 D. 88. 已知 与 是关于点 的位似图形,它们的对应点到点 的距离分别为 和 ,则 与 的面积比为( C )A. B. C. D.考点6 相似的判定9. 在 和 中,若 , , , ,则当 3时, .10. 如图,已知 是 内一点, , , 分别是 , , 的中点.求证: .证明: , , 分别是 , , 的中点, , , ,即 , .考点7 黄金分割的应用11. 主持人主持节目时,站在舞台的黄金分割点处最自然得体.如图所示,如果舞台 的长为 ,一名主持人现在站在 处,则她要到达最理想的位置至少走( A )A. B.C. D. 或12. 如图,已知 , .求证: .证明: ,,.,,.13. 如图,点 在矩形 的边 上,将 沿 翻折,点 恰好落在 边上的点 处,若 , ,求 的长.解: 四边形 是矩形, , . 将矩形 沿直线 折叠, , , , , ,. , ,设 ,则 , , 在 中, , ,解得 (舍去0根), .14. 在如图所示的平面直角坐标系中, 的三个顶点坐标分别为 , , ,请以坐标原点 为位似中心,在 轴下方,画出 的位似图形 ,使它与 的位似比为 .解:如图, 为所作.15. 如图,已知 , .求证:(1) ;证明: ,,即 ,.(2)[答案] ,,即 ., , .16. 如图,在平行四边形 中,连接对角线 ,延长 至点 ,使 ,连接 ,分别交 , 于点 , .(1) 求证: ;解:证明: 四边形 是平行四边形,, ,,,,.(2) 若 , ,求 的长.解: 四边形 是平行四边形,,,,即 ,解得, .17. 如图,在 中,点 , , 分别在 , , 边上, , .(1) 求证: .解:证明: , ., , .(2) 设 ,① 若 ,求线段 的长;解: , . , ,解得: .② 若 的面积是20,求 的面积.[答案] , , , , , .18. 如图,在平面直角坐标系中,点 ,点 , 分别在 轴, 轴的正半轴上,且满足 .(1) 求点 ,点 的坐标.解: , , , 点 ,点 分别在 轴, 轴的正半轴上, 点 ,点 .(2) 若点 从点 出发,以每秒1个单位长度的速度沿线段 由 向 运动,连接 ,是否存在点 ,使以点 , , 为顶点的三角形与 相似 若存在,请求出点 的坐标;若不存在,请说明理由.[答案]存在.理由如下:由勾股定理得, , .由勾股定理的逆定理,得 , , 是直角三角形, 是直角.存在点 ,使以点 , , 为顶点的三角形与 相似,当 时, ,即 ,解得 ,则 ;当 时, ,即 ,解得 ,过 作 于点 ,则 ,,, , , , .综上所述,点 的坐标为 或 , .19. 如图,已知 , , ,以 为边作矩形 ,使 ,过点 作 垂直 的延长线于点 .(1) 证明: .解:证明:如图所示, , .又 四边形 是矩形, , , , , , .(2) 当 为何值时, 与 全等 请说明理由,并求出此时点 到 的距离.解:在 中, .由(1)可知 , , 当 时, 与 全等.当 时,可知矩形 为正方形, ,如图,过点 作 交 于点 ,则 就是点 到 的距离,过点 作 交 于点 ,则 与 互余, 与 互余, .又 , , , , 四边形 为正方形, , 点 到 的距离 .21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)HYPERLINK "http://21世纪教育网(www.21cnjy.com)" 21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台北师大版数学九年级综合复习学案——图形的相似考点1 相似的概念及性质1. 有下列四种说法,其中说法正确的有( )①两个菱形相似;②两个矩形相似;③两个平行四边形相似;④两个正方形相似.A. 4个 B. 3个 C. 2个 D. 1个2. 如图,在 中, , , 分别是边 , , 上的点, , ,且 ,那么 的值为( )第2题图A. B. C. D.考点2 相似形的周长与面积3. 如图,已知 ,且 ,则 ( )第3题图A. B. C. D.考点3 相似三角形的应用4. 如图,路灯 距离地面 ,身高 的小明站在距离灯的底部(点 ) 的 处,则小明的影长 为 .考点4 平行线分线段成比例定理5. ,则( )A. B. C. D.6. 如图, .若 , ,则 .第6题图考点5 位似7. 如图, 和 是以点 为位似中心的位似三角形,若 为 的中点, ,则 的长为( )第7题图A. 1 B. 2 C. 4 D. 88. 已知 与 是关于点 的位似图形,它们的对应点到点 的距离分别为 和 ,则 与 的面积比为( )A. B. C. D.考点6 相似的判定9. 在 和 中,若 , , , ,则当 时, .10. 如图,已知 是 内一点, , , 分别是 , , 的中点.求证: .考点7 黄金分割的应用11. 主持人主持节目时,站在舞台的黄金分割点处最自然得体.如图所示,如果舞台 的长为 ,一名主持人现在站在 处,则她要到达最理想的位置至少走( )A. B.C. D. 或12. 如图,已知 , .求证: .13. 如图,点 在矩形 的边 上,将 沿 翻折,点 恰好落在 边上的点 处,若 , ,求 的长.14. 在如图所示的平面直角坐标系中, 的三个顶点坐标分别为 , , ,请以坐标原点 为位似中心,在 轴下方,画出 的位似图形 ,使它与 的位似比为 .15. 如图,已知 , .求证:(1) ;(2)16. 如图,在平行四边形 中,连接对角线 ,延长 至点 ,使 ,连接 ,分别交 , 于点 , .(1) 求证: ;(2) 若 , ,求 的长.17. 如图,在 中,点 , , 分别在 , , 边上, , .(1) 求证: .(2) 设 ,① 若 ,求线段 的长;② 若 的面积是20,求 的面积.18. 如图,在平面直角坐标系中,点 ,点 , 分别在 轴, 轴的正半轴上,且满足 .(1) 求点 ,点 的坐标.(2) 若点 从点 出发,以每秒1个单位长度的速度沿线段 由 向 运动,连接 ,是否存在点 ,使以点 , , 为顶点的三角形与 相似 若存在,请求出点 的坐标;若不存在,请说明理由.19. 如图,已知 , , ,以 为边作矩形 ,使 ,过点 作 垂直 的延长线于点 .(1) 证明: .(2) 当 为何值时, 与 全等 请说明理由,并求出此时点 到 的距离.21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)HYPERLINK "http://21世纪教育网(www.21cnjy.com)" 21世纪教育网(www.21cnjy.com) 展开更多...... 收起↑ 资源列表 北师大版数学九年级综合复习学案——图形的相似 - 答案版.doc 北师大版数学九年级综合复习学案——图形的相似.doc