四年级下册人教版第五单元_第3课时_三角形三条边的关系(学习任务单)

资源下载
  1. 二一教育资源

四年级下册人教版第五单元_第3课时_三角形三条边的关系(学习任务单)

资源简介

四年级下册人教版第四单元_第3课时_三角形三条边的关系(学习任务单)
第五单元第3课时三角形三条边的关系学习任务单
【课前任务单】
1.围成一个三角形最少需要几根小棒?
2.那谁能说一说什么叫做三角形?
3.引入课题:是不是只要有三条线段就一定可以围成三角形呢?
【课中任务单】
任务一:探究两点间的距离。
1.课件出示教科书P60例3。
(1)看一看:从小明家到学校有几条路可以走?
(2)说一说:那你们觉得小明走哪条路最近呢?
(3)议一议:通过上面的观察、测量、比较,发现,你能得出什么结论?
【趁热打铁1】
2.明明从家去学校走第( )条路最近,因为两点之间,( )最短。
任务二:探索发现三角形任意两边的和大于第三边。
学习教科书例题4
什么样的3条线段能围成三角形呢?我们来做个实验。
剪出下面4组纸条(单位:cm)。
(1)6、7、8
(2)4、5、9
(3)3、6、10
(4)8、11、11
每组纸条围三角形。
1.摆一摆:试着用这三根小棒摆三角形.
2.填一填:把小棒的长度与摆三角形的情况填入活动记录表中。
3.想一想:什么时候能围成三角形?什么时候不能围成三角形?
【趁热打铁2】
3.在能摆成三角形的各组小棒后面画“√”。
①( )
②( )
③( )
我发现:
(1)三角形任意两边之和( )。
(2)最快的方法判断:只要看( )两根的长度和是否大于第三边的长度。
任务三:对比总结
1.说一说:要你判断三根小棒是否可以围成三角形,你会怎么判断?
2.想一想:在认识三角形三边关系过程中,有哪些注意事项?
【趁热打铁3】
4.有两根长度分别为2厘米和5厘米的木棒。
(1)用长度为3厘米的木棒与它们能摆成三角形吗?为什么?
(2)用长度为1厘米的木棒与它们能摆成三角形吗?为什么?
(3)摆成三角形,第三边能用的木棒的长度范围是( )。
(4)摆成三角形,第三边用的木棒(取整厘米数)的长度可能是( )。
我发现:第三条边的长度必须( )两边之差,而( )两边之和。
试卷第1页,共3页
试卷第1页,共3页
参考答案:
1.(1)3条;(2)小明家直接到学校;(3)见详解
【分析】(1)小明家经邮局到学校、小明家经商店到学校和小明家直接到学校共有3条路。
(2)观察上图,我觉得从小明家直接到学校哪条最近。
(3)用直尺测量一下三条路线,然后进行比较,最后得出结论。
【详解】(1)根据分析可知,从小明家到学校有3条路可以走。
(2)我觉得从小明家直接到学校哪条最近。
(3)小明家经邮局到学校:41+49=90(毫米);
小明家直接到学校:85毫米;
小明家经商店到学校:36+55=91(毫米);
91>90>85,小明家直接到学校最近。
我发现两点间所有的连线中线段最短。
【点睛】本题主要考查学生对线段特性的掌握和灵活运用。
2. ② 线段
【分析】直线上任意两点之间的一段叫做线段。连接两点的线段的长度叫做两点间的距离。两点之间,线段最短;据此即可解答。
【详解】根据分析可知,明明从家去学校走第②条路最近,因为两点之间,线段最短。
【点睛】本题主要考查学生对线段特点的掌握和灵活运用。
3.①√;②√;③
(1)大于第三边
(2)较短
【分析】三角形任意两边之和大于第三边,任意两边之差小于第三边;较短的两根小棒长度和大于最长的小棒,这三根小棒就能摆成三角形;据此即可解答。
【详解】①5+6>13,可以摆成三角形。
( √ )
②5+5>5,可以摆成三角形。
( √ )
③4+4<10,不能摆成三角形。
( )
(1)三角形任意两边之和大于第三边。
(2)最快的方法判断:只要看较短两根的长度和是否大于第三边的长度。
【点睛】熟练掌握三角形三边之间的关系是解答本题的关键。
4.(1)见详解;(2)见详解;(3)大于3厘米,小于7厘米;(4)4厘米;大于;小于
【分析】三角形任意两边之和大于第三边,任意两边之差小于第三边,据此即可解答。
【详解】(1)5-2=3,两边之差等于第三边,用长度为3厘米的木棒与它们不能摆成三角形。
(2)5-2>1,两边之差大于第三边,用长度为1厘米的木棒与它们不能摆成三角形。
(3)5-2=3(厘米)
5+2=7(厘米)
摆成三角形,第三边能用的木棒的长度范围是大于3厘米,小于7厘米。
(4)5-2=3(厘米)
5+2=7(厘米)
摆成三角形,第三边用的木棒(取整厘米数)的长度可能是4厘米。(答案不唯一)
我发现:第三条边的长度必须大于两边之差,而小于两边之和。
【点睛】熟练掌握三角形三边间的关系是解答本题的关键。
答案第1页,共2页
答案第1页,共2页

展开更多......

收起↑

资源预览