资源简介 (共25张PPT)DIERZHANG第2章章末素养提升一、再现素养知识物理 观念 描述简谐运动的物理量 (1)位移x:相对平衡位置的位移。(2)振幅A:离开平衡位置的最大距离。(3)周期T:完成一次全振动需要的时间。周期由振动系统本身决定,与振幅无关。(4)频率f:单位时间内完成全振动的次数。(5)相位:某时刻处于一个运动周期中的状态。三类振动 的特征 简谐运动:(1)受力特点:F=-kx。(2)运动特点:做变加速运动,具有周期性和对称性。(3)位移—时间关系:正弦函数规律x=Asin(ωt+φ)。(4)能量特点:动能和势能之和保持不变。物理 观念 三类振动 的特征 阻尼振动:(1)振幅逐渐减小。(2)能量衰减,机械能逐渐转化为内能或向四周辐射出去。受迫振动:(1)驱动力作用下的振动。(2)受迫振动的频率等于驱动力的频率。(3)共振:f驱=f固时,受迫振动的振幅最大。科学 思维 理想 模型 水平弹簧振子:由弹簧和小球组成,忽略阻力,由弹力提供回复力。单摆:(1)相对来说,阻力可忽略,细线质量可忽略,球的直径也可忽略。(2)做简谐运动的条件:摆角小于5°。(3)周期公式:T=________。图像法 简谐运动的图像:(1)正弦(或余弦)曲线。(2)图像信息:振幅A、周期T、各时刻的位移x等。科学 探究 能完成“用单摆测量重力加速度的大小”等实验。能分析相关事实,提出并准确表述在实验中可能出现的物理问题;能在他人帮助下制订实验方案,能选用实验器材进行实验,获得实验数据,能注意减小实验误差;能分析数据,测得重力加速度的大小;能撰写规范的实验报告,在报告中能呈现设计的实验表格、数据分析过程及实验结论,能反思评估关于重力加速度的不同测量方法。科学态度与责任 通过比较重力加速度的不同测量方法,能认识到物理实验方法是多元的,需要创新;在合作中能尊重他人,也能坚持原则;能关注我国古代在机械振动方面的一些技术应用。二、提能综合训练1.下列说法完全正确的一组是①做简谐运动的物体的运动方向指向平衡位置时,速度方向与位移方向相反;背离平衡位置时,速度方向与位移方向相同②做简谐运动的物体振动的轨迹是正弦或余弦曲线③做简谐运动的物体每次通过同一位置时,其速度不一定相同,但加速度一定相同④做简谐运动的物体经过平衡位置时所受合外力一定为零⑤秒摆是指周期为1 s,摆长约为1 m的单摆⑥单摆的摆球做匀速圆周运动⑦在外力作用下的振动是受迫振动,受迫振动稳定后的频率与自身物理条件无关⑧简谐振动的1个周期内回复力的瞬时功率有4次为零⑨部队经过桥梁时,规定不许齐步走,登山运动员登雪山时,不许高声叫喊,主要原因是使桥受到的压力更不均匀及减少登山运动员消耗能量⑩做简谐运动的物体从平衡位置向最大位移处运动过程中,它的势能增大A.②⑤⑥⑨ B.①③⑧⑩C.②④⑤⑦ D.①③⑨⑩√做简谐运动的物体的位移是由平衡位置指向所在位置,因此物体的运动方向指向平衡位置时,速度方向与位移方向相反;背离平衡位置时,速度方向与位移方向相同,①正确;弹簧振子仅在某一坐标轴上振动,其轨迹范围是一个线段,而非曲线,②错误;做简谐运动的物体每次通过同一位置时,速度可能不同,但加速度一定相同,③正确;单摆经过平衡位置时所受合外力不为零,④错误;秒摆周期为2 s,摆长为1 m,⑤错误;单摆的摆球做曲线运动且非匀速,⑥错误;在周期性外力作用下的振动才是受迫振动,⑦错误;简谐振动的1个周期内在两个振幅处以及两次通过平衡位置时,回复力的瞬时功率均为0,⑧正确;部队经过桥梁时,规定不许齐步走,登山运动员登雪山时,不许高声叫喊,主要原因是防止发生共振导致灾害,⑨错误;做简谐运动的物体从平衡位置向最大位移处运动过程中,动能逐渐减小,势能逐渐增大,⑩正确,故选B。2.(多选)很多高层建筑都会安装减震耗能阻尼器,用来控制强风或地震导致的振动。台北101大楼使用的阻尼器是重达660吨的调谐质量阻尼器,阻尼器相当于一个巨型质量块。简单说就是将阻尼器悬挂在大楼上方,它的摆动会产生一个反作用力,在建筑物摇晃时往反方向摆动,会使大楼摆动的幅度减小。关于调谐质量阻尼器下列说法正确的是A.阻尼器做受迫振动,振动频率与大楼的振动频率相同B.阻尼器与大楼摆动幅度相同C.阻尼器摆动后,摆动方向始终与大楼的振动方向相反D.阻尼器摆动幅度不受风力大小影响√√由题意可知阻尼器做受迫振动,振动频率与大楼的振动频率相同,故A正确;阻尼器与大楼摆动幅度不相同,故B错误;由题意可知,大楼对阻尼器的力与阻尼器对大楼的力为一对相互作用力,根据回复力F=-kx可知,阻尼器摆动后,摆动方向始终与大楼的振动方向相反,故C正确;阻尼器的摆动幅度会受到风力的影响,故D错误。3.一个弹簧振子一端固定在墙上,在振动过程中,弹簧的最短和最长位置如图所示。弹性势能Ep= kx2(x为弹簧形变量),以下四个随弹簧长度变化的图像分别是 a b c dA 物块加速度 回复力 物块动能 系统弹性势能B 系统弹性势能 回复力 物块动能 系统机械能C 弹簧的形变量 物块的速度 系统弹性势能 物块加速度D 回复力大小 物块的速度 物块加速度 系统机械能√图像横坐标为弹簧的长度,选项中涉及到的物理量有弹性势能、机械能、回复力、加速度以及物块动能。简谐运动过程机械能守恒,因此图像d纵坐标应为系统的机械能;回复力F=-k(x-x0),图像b符合回复力随弹簧长度变化关系,故选B。4.两个弹簧振子甲、乙沿水平方向放置,取向右为正方向,其振动图像如图所示,以下说法正确的是 A.两弹簧振子具有相同的相位B.甲的振幅比乙大,所以甲的能量比乙大C.t=2 s时甲具有负向最大速度,乙具有正向最大位移D.甲、乙两弹簧振子加速度最大值之比一定为2∶1√由题图知两弹簧振子的周期不相等,只是初相位相同,所以它们的相位不相同,选项A错误;两振动系统为水平弹簧振子,能量只有动能和弹性势能,当位移最大时振动能量即弹性势能,甲的振幅大,但两弹簧的劲度系数大小不知,所以最大位移时弹性势能无法判断,即能量大小无法判断,选项B错误;t=2 s时甲处于平衡位置向负向运动,具有负向最大速度,乙在正向最大位移处,具有正向最大位移,选项C正确;不知道两个弹簧劲度系数和振子质量的大小关系,所以无法判断回复力大小和加速度大小的比例关系,选项D错误。5.(多选)(2022·山东师范大学附中高二期中)有两位同学利用假期分别去参观位于天津市的“南开大学”和上海市的“复旦大学”,他们各自利用那里的实验室中DIS系统探究了单摆周期T和摆长L的关系。然后通过互联网交流实验数据,并用计算机绘制了如图甲所示的T2-L图像。另外,去“复旦大学”做研究的同学还利用计算机绘制了他实验用的a、b两个摆球的振动图像,如图乙所示。下列说法正确的是A.甲图中“南开大学”的同学所测得的实验结果对应的图线是AB.甲图中图线的斜率表示对应所在位置的重力加速度的倒数C.由乙图可知,a、b两摆球振动周期之比为2∶3D.由乙图可知,t=1 s时b球振动方向沿y轴负方向√√由题图乙可知,t=1 s时b球处于平衡位置向y轴负方向振动,D正确。其位移随时间变化的图像(x-t)如图乙所示,其中t=0.2 s时物块刚接触薄板。弹簧始终在弹性限度内,空气阻力不计,则 A.t=0.2 s后物块做简谐运动B.t=0.4 s时物块的加速度大于重力加速度C.若增大物块自由下落的高度,则物块与薄板粘连后振动的周期增大6.(多选)(2023·福建厦门市高二上期末)如图甲所示,轻质弹簧下端固定在水平地面上,上端连接一轻质薄板。t=0时刻,一物块从其正上方某处由静止下落,落至薄板上后和薄板始终粘连,√√√t=0.2 s时物块刚接触薄板,落至薄板上后和薄板始终粘连,构成竖直方向的弹簧振子,0.2 s以后的图像为正弦函数曲线,物块做简谐运动,故A正确;薄板为轻质薄板,质量可忽略不计。由图像可知,B点是图像的最高点,C点是图像的最低点,根据简谐运动的对称性可知,最高点的加速度和最低点的加速度大小相等,即aB=aC,由简谐运动的加速度满足a= ,可知,a与x成正比,设A点处偏离平衡位置位移大小为xA,C点处偏离平衡位置的位移大小为xC,有xAg,故B正确;弹簧振子的周期只与振动系统本身有关,与物块起始下落的高度无关,故物块与薄板粘连后振动周期不变,故C错误; 展开更多...... 收起↑ 资源预览