资源简介 (共18张PPT)微专题:C3、C4、CAM植物及光呼吸自然界中的绿色植物根据光合作用暗反应过程中CO2的固定途径不同可以分为C3、C4和CAM三种类型。一、C3、C4和CAM植物也称卡尔文循环[固定CO2的初产物是三碳化合物(C3)],整个循环由RuBP(C5)与CO2的羧化开始到RuBP(C5)再生结束,在叶绿体基质中进行,可合成蔗糖、淀粉等多种有机物。常见C3植物有大麦、小麦、大豆、水稻、马铃薯等。1.C3途径[固定CO2的初产物是四碳化合物(C4)]研究玉米的叶片结构发现,玉米的维管束鞘细胞和叶肉细胞紧密排列(如图1)。2.C4途径叶肉细胞中的叶绿体有类囊体能进行光反应,同时,CO2被整合到C4化合物中,随后C4化合物进入维管束鞘细胞,在维管束鞘细胞中,C4化合物释放出的CO2参与卡尔文循环,进而生成有机物(如图2)。PEP羧化酶被形象地称为“CO2泵”,它对CO2的亲和力约是Rubisco的60倍,所以C4植物能利用叶肉细胞间隙含量很低的CO2进行光合作用,反应的空间分离导致维管束鞘细胞中CO2浓度比叶肉细胞增加10倍,从而确保在CO2受限的条件下进行高效地碳固定。C4植物通常生长在强光环境中,光合作用速率在所有植物中最高,如玉米、甘蔗、高粱等。在CAM植物中,碳捕获和固定的反应在时间上是分离的。首先,在晚上(此时蒸腾速率低)捕获CO2,然后转变成苹果酸存储在液泡中。到了白天,气孔关闭,苹果酸脱羧,使得叶绿体中Rubisco周围CO2浓度升高。大量的苹果酸存储需要更大的液泡和细胞,因此CAM植物一般具有肉质的茎叶。常见的CAM植物有仙人掌、芦荟、龙舌兰、长药景天、菠萝等。3.CAM途径特征 C3植物 C4植物 CAM植物植物类型 典型温带植物 典型热带或亚热带植物 典型干旱地区植物主要CO2固定酶 Rubisco PEP羧化酶、Rubisco PEP羧化酶、 RubiscoCO2 固定的时间 白天和夜晚发生CO2固定的细胞 叶肉细胞和维管束鞘细胞 叶肉细胞归纳总结C3植物、C4植物和CAM植物的比较白天白天叶肉细胞卡尔文循环的场所 叶肉细胞的叶绿体基质 维管束鞘细胞的叶绿体基质 叶肉细胞的叶绿体基质最初CO2接受体 PEP 光下:RuBP(C5);暗中: PEPCO2固定的最初产物 C3 C4 光下:C3;暗中:草酰乙酸C3 途径是碳同化的基本途径,C4途径和CAM 途径都只起固定CO2的作用,最终还是通过C3 途径合成有机物。RuBP(C5)例1 下列有关C3植物和C4植物代谢和结构特点的叙述,正确的是A.C3植物多为阴生植物,C4植物多为阳生植物B.在进行光合作用时,C3植物和C4植物将CO2中的C分别首先转移到C3和C4中C.C3植物的叶肉细胞具有正常叶绿体,C4植物的叶肉细胞具有无基粒的叶绿体D.C4植物的维管束鞘外有“花环型”的两圈细胞B例2 原本生活在干旱地区的多肉植物,经研究发现其CO2固定过程非常特殊,被称为景天酸代谢途径。其光合作用产生的中间产物苹果酸在CO2的固定和利用过程中起到重要作用,过程如图所示。据图分析,下列说法错误的是A.进行景天酸代谢的植物白天进行光反应,积累ATP和NADPH,晚上进行暗反应合成有机物B.图示的代谢方式可以有效地避免植物蒸腾过度导致脱水,从而使该类植物适应干旱环境C.与常见的C3代谢途径植物相比,夜间更适于放置在室内的是景天酸代谢途径植物D.多肉植物在其原生地环境中,其液泡中的pH会呈现白天升高晚上降低的周期性变化A光呼吸是所有进行光合作用的细胞(该处“细胞”包括原核生物和真核生物,但并非所有这些细胞都能进行完整的光呼吸)在光照和高氧低二氧化碳情况下发生的一个生化过程。该过程以光合作用的中间产物为底物,吸收氧、释放二氧化碳。二、光呼吸(1)植物体为什么会发生光呼吸呢?主要原因是在生物体的进化过程中产生了一种具有双功能的酶,该酶叫作RuBP羧化/加氧酶,可以缩写为Rubisco。1.光呼吸的起因(2)二氧化碳和氧气竞争性地与Rubisco结合,当二氧化碳浓度高时,Rubisco催化RuBP与二氧化碳形成两分子C3进行卡尔文循环;当氧气浓度高时,Rubisco催化RuBP与氧气形成1分子C3和1分子磷酸乙醇酸(C2),其中C3进入卡尔文循环,而磷酸乙醇酸脱去磷酸基团形成乙醇酸,乙醇酸就离开叶绿体,走上了光呼吸的征途,这条路艰难而曲折,有害也有利。基本过程如图所示。(3)由图可见,光呼吸和光合作用的关系密切,它们之间的关系可以作一形象的理解:糖工厂内(进行光合作用的细胞,特别是植物)的葡萄糖生产线(光合作用)因一部机器(Rubisco)构造不完善,一部分原材料(C5)不断被错误加工,产出次品(磷酸乙醇酸),虽然有一补救措施,可将次品重加工并再次投入生产线,但是整个过程却是非常费时费力的。这个错误加工和补救的过程就是光呼吸。如果在较强光照下,光呼吸加强,使得C5氧化分解加强,一部分碳以CO2的形式散失,从而减少了光合产物的形成和积累。其次,光呼吸过程中消耗了ATP和NADPH,即造成了能量的损耗。2.光呼吸的危害其实光呼吸和卡尔文循环是一种动态平衡,适当的光呼吸对植物体有一定积极意义,这也许是进化过程中形成光呼吸的原因。光呼吸的主要生理意义如下:3.光呼吸的意义(1)回收碳元素。2分子的C2形成1分子的C3和1分子的CO2,那1分子C3通过光呼吸过程又返回到卡尔文循环中,不至于全部流失掉。即通过光呼吸回收了3/4的碳元素。(2)防止强光对叶绿体的破坏。在干旱天气和过强光照下,由于光反应速率大于暗反应速率,因此,叶肉细胞中会积累ATP和NADPH,这些物质积累会产生自由基,尤其是超氧阴离子,这些自由基能损伤叶绿体,而强光下,光呼吸加强,会消耗光反应过程中积累的ATP和NADPH,从而减轻对叶绿体的伤害。当然植物体还有很多避免强光下损伤叶绿体的机制,光呼吸算是其中之一。(3)消除乙醇酸对细胞的毒害。比较项目 光呼吸 暗呼吸(有氧呼吸)底物 乙醇酸发生部位 叶绿体、过氧化物酶体、线粒体反应条件 光照 光或暗都可以能量 消耗能量(消耗ATP和NADPH)共同点 消耗氧气,放出二氧化碳 光呼吸与暗呼吸的比较归纳总结糖、脂肪、蛋白质等细胞质基质、线粒体产生能量例3 如图为植物体内发生的光合作用和光呼吸的示意图,下列相关叙述正确的是A.光合作用过程中CO2在叶绿体类 囊体薄膜上被利用B.农业上,控制好大棚中O2和CO2 含量有利于农作物增产C.在高O2含量的环境中,植物不能进行光合作用D.将植物突然置于黑暗环境中,叶绿体中C5与C3间的转化不受影响B例4 Rubisco是绿色植物光合作用过程中的关键酶,当CO2浓度较高时,该酶催化CO2与C5反应进行光合作用。当O2浓度较高时,该酶催化C5与O2反应,最后在线粒体内生成CO2,植物这种在光下吸收O2产生CO2的现象称为光呼吸。下列叙述错误的是A.绿色植物进行光呼吸的场所有叶绿体基质和线粒体B.植物光呼吸的进行导致光合作用产生的有机物减少C.光合作用过程中,CO2和C5反应需要消耗光反应产生的能量D.植物细胞呼吸产生CO2的场所为细胞质基质或线粒体基质C 展开更多...... 收起↑ 资源预览