人教版五年级下册思维训练流水行船问题学案(含答案)

资源下载
  1. 二一教育资源

人教版五年级下册思维训练流水行船问题学案(含答案)

资源简介

【知识剖析】
一、参考系速度
通常我们所接触的行程问题可以称作为“参考系速度为0”的行程问题,例如当我们研究甲乙两人在一段公路上行走相遇时,这里的参考系便是公路,而公路本身是没有速度的,所以我们只需要考虑人本身的速度即可。
二参考系速度——“水速”
但是在流水行船问题中,我们的参考系将不再是速度为0的参考系,因为水本身也是在流动的,所以这里我们必须考虑水流速度对船只速度的影响,具体为:
①顺水速度=船速+水速;②逆水速度=船速-水速。(可理解为和差问题)
由上述两个式子我们不难得出一个有用的结论:
船速=(顺水速度+逆水速度)÷2;
水速=(顺水速度-逆水速度)÷2
此外,对于河流中的漂浮物,我们还会经常用到一个常识性性质,即:漂浮物速度=流水速度。
三、流水行船问题中的相遇与追及
①两只船在河流中相遇问题,当甲、乙两船(甲在上游、乙在下游)在江河里相向开出:
甲船顺水速度+乙船逆水速度=(甲船速+水速)+(乙船速-水速)=甲船船速+乙船船速
②同样道理,如果两只船,同向运动,一只船追上另一只船所用的时间,与水速无关。
甲船顺水速度-乙船顺水速度=(甲船速+水速)-(乙船速+水速)=甲船速-乙船速
也有:甲船逆水速度-乙船逆水速度=(甲船速-水速)-(乙船速-水速)=甲船速-乙船速。
说明:两船在水中的相遇与追及问题同静水中的及两车在陆地上的相遇与追及问题一样,与水速没有关系。
【基础巩固】
1.一条小河上,A在B上游150千米处。甲、乙两船分别从A、B两地同时出发,若相向而行, 3小时后相遇;若同向而行,15小时后甲被乙追上。则甲船的静水速度是每小时多少千米?
2.甲、乙两船,甲船静水速度是水速的11倍,乙船静水速度是水速的7倍。在赣江上,甲船顺流而下从A到B需要3小时,那么乙船逆流而上从B到A需要几小时?
3.一条小渔船半夜顺流而下140千米,花了10小时;之后原路返航,花了14小时。若第二天下雨,水流速度变为前一天的2倍,则逆流而上120千米需要多少小时?
4.小明计划上午 7时 50分到 8时10分之间从码头出发划船顺流而下.已知河水流速为1.4 千米/小时,船在静水中的划行速度为 3千米/小时.规定除第一次划行可不超过 30分钟外,其余每次划行均为 30分钟,任意两次划行之间都要休息15分钟,中途不能改变方向,只能在某次休息后往回划.如果要求小明必须在11时15分准时返回码头,为了使他划行到下游尽可能远处,他应该在什么时间开始划,划到的最远处距码头多少千米?
5.某人在河里游泳,逆流而上。他在A处丢失一只水壶,但向前又游了20分钟后,才发现丢了水壶,立即返回追寻,在离A处1000米的地方追到。假定此人在静水中的游泳速度为每分钟30米,那么水流的速度为每分钟多少米?
6.一条船往返于甲、乙两港之间,由甲至乙是顺水行驶;由乙至甲是逆水行驶,已知船在静水中的速度为每小时8公里,平时逆行与顺行所用时间的比为2:1,某天恰逢暴雨,水流速度变为原来的2倍,这条船往返共用9小时,那么甲乙两港相距多少公里?
7.王小明同学骑自行车去商场买东西,家距离商场6000米.去的时候顺风用了20分钟,他估计若照这样的骑车速度,返回将需要30分钟,求他在静风中行驶的速度与风速.
8.一条小河流过A,B, C三镇.A,B两镇之间有汽船来往,汽船在静水中的速度为每小时11千米.B,C两镇之间有木船摆渡,木船在静水中的速度为每小时3.5千米.已知A,C两镇水路相距50千米,水流速度为每小时1.5千米.某人从A镇上船顺流而下到B镇,吃午饭用去1小时,接着乘木船又顺流而下到C镇,共用8小时.那么A,B两镇间的距离是多少千米
【勇攀高峰】
9.今有A、B两个港口,A在B的上游60千米处.甲、乙两船分别从A、B两港同时出发,都向上游航行.甲船出发时,有一物品掉落水中,浮在水面,随水流漂往下游.甲船出发航行一段后,调头去追落水的物品.当甲船追上落水物品时,恰好和乙船相遇.已知甲、乙两船在静水中的航行速度相同,且这个速度为水速的6倍.当甲船调头时,甲船已航行多少千米?
10.江上有甲、乙两码头,相距 15 千米,甲码头在乙码头的上游,一艘货船和一艘游船同时从甲码头和乙码头出发向下游行驶,5 小时后货船追上游船.又行驶了 1 小时,货船上有一物品落入江中(该物品可以浮在水面上),6 分钟后货船上的人发现了,便掉转船头去找,找到时恰好又和游船相遇.则游船在静水中的速度为每小时多少千米?
试卷第1页,共3页
试卷第1页,共3页
参考答案:
1.20千米/小时
【分析】甲、乙两船不管是相向而行还是同向而行,两船的速度和与速度差都和水流速度无关。由相向而行,3小时后相遇,可以求出两船的速度和,由同向而行,15小时后甲被乙追上,可以求出两船的速度差,再根据和差问题即可求出甲船的速度。
【详解】速度和:150÷3=50(千米/小时)
速度差:150÷15=10(千米/小时)
甲船的速度:(50—10)÷2
=40÷2
=20(千米/小时)
答:甲船在静水中的速度是20千米/小时。
【点睛】此题关键是理清两船的速度和与速度差都和水流速度无关。
2.6小时
【分析】把从A到B的路程看做单位“1”,因为甲船顺流而下需要3小时,所以甲船顺流速度是1÷3=,甲船静水速度是水速的11倍,因为顺流速度=船速(静水速度)+水速,所以甲船顺流速度是水速的11+1=12倍,即可求出水速÷12=,进而也可以求出乙船在静水中的速度,那么乙船逆流而上的时间也可以求出来了。
【详解】甲船顺流速度:1÷3=
水速:÷(11+1)
=÷12

乙船逆流速度:×7-
=×(7-6)
=×6

乙船逆流而上的时间:1÷=6(小时)
【点睛】此题把从A到B的路程看做单位“1”,运用顺流速度、逆流速度、船速、水速之间的倍数关系逐步解答。
3.15小时
【分析】根据小渔船顺流的时间和路程可以求出船的顺水速度,再根据船逆流的时间和路程求出船的逆水速度,再根据和差问题即可求出渔船的船速和第一天的水速。
【详解】船顺流速度:140÷10=14(千米/小时),
船逆流速度:140÷14=10(千米/小时)
船速:(14+10)÷2
=24÷2
=12(千米/小时),
第一天的水速:(14—10)÷2
=4÷2
=2(千米/小时)
第二天逆流120千米所需要的时间:120÷(12—2×2)
=120÷(12—4)
=120÷8
=15(小时)
答:逆流而上120千米需要15小时。
【点睛】关键是根据船在静水中的速度=(船的顺水速度+船的逆水速度)÷2,水流速度=(船的顺水速度-船的逆水速度)÷2求出船速和第一天的水速,此题就迎刃而解了。
4.7时分,2.15千米
【详解】由11 :15 向回推可得到,船在 8 :15 8 : 30:、 9 : 00 9 :15:、 9 : 45 10 : 00:、10 : 30 10 : 45:为小明的休息时间,每一段(15分钟)休息时间,帆船向下游漂流1.4×15/60=0.35千米,顺流划船每段时间(半小时)行驶(3 +1.4) ×0.5= 2.2千米,逆流航行每段时间(半小时)休息 (3-1.4) ×0.5= 0.8千米,因此如果 8 : 30 分以后小明还在顺行的话,那么最后三段划行时间内只能逆流而上2.4千米,不能抵消之前顺流划行和漂流的距离,所以最后四段划船时间都应该为逆流向上划船.后四次共向上划了0.8 ×4 =3.2千米.后三次休息时间向下游漂流 0.35× 3= 1.05千米.所以从8 : 30 到11 :15,最远时向上移动了3.2-1.05= 2.15千米.而第一段时间中,小明划船向下游移动了2.15-0.35 =1.8千米,共花时间1.8÷(3+1.4)=9/22小时所以,小明应该在7时分开始划,可划到的最远处距离码头2.15千米.
5.25米/分
【分析】有题意可知:水壶的速度就是水流的速度,在A处丢失一只水壶后,水壶会顺着水流的速度向下漂,人继续逆流而上,人和水壶的速度和就是人在静水中游泳的速度,所以20分钟后,人和水壶之间是距离是:20×30=600(米),此后人返回去追水壶,变成了追及问题,此时人的速度是人在静水中的速度+水流速度,水壶的速度还是水流速度,所以人和水壶的速度差还是人在静水中的速度,即可求出人追上水壶的时间600÷30=20(分钟),水壶所走的路程是1000米,所用的时间是20+20=40(分钟),进而就可求出水壶的速度即水流的速度。
【详解】20×30÷30=20(分钟)
1000÷(20+20)
=1000÷40
=25(米/分)
答:水流的速度为每分钟25米。
【点睛】此题关键是理清不管是人和水壶的速度差还是速度和都是人在静水中的速度。
6.20公里
【详解】解:设原水速为每小时x公里,甲乙两港相距y公里;因路程一定,时间与速度成反比例,
平时逆水航行与顺水航行所用的时间比为2:1,所以平时逆水航行与顺水航行的速度比为1:2;故得方程:
(8-x):(8+x)=1:2
解得,
又因暴雨时的水速为原来的2倍,再据往返两地的时间为9小时,可得方程:
解得,;
答:甲乙两港相距20公里.
【点睛】此题主要考查流水行船问题,关键是弄清楚:顺水速=静水速+水速,逆水速=静水速-水速.
7.250米;50米;
【分析】根据题中“家距离商场6000米.去的时候顺风用了20分钟,”我们用6000÷20,就可以求到他顺风每分钟行300米;再根据“他估计若照这样的骑车速度,返回将需要30分钟,”我们用6000÷30,就可以求到他逆风每分钟行200米.接着运用“静风速度=(顺风速度+逆风速度)÷2”这个关系式去求静风速度.最后运用“风速=顺风速度—静风速度”这个关系式去求风速.
【详解】顺风每分钟行的米数:6000÷20=300(米)
逆风每分钟行的米数:6000÷30=200(米)
静风速度:(300+200)÷2=250(米)
风速度:300—250=50(米)
答:他在静风中每分钟行驶250米,风速是每分钟50米.
8.25千米
【详解】如下画出示意图
有AB段顺水的速度为11+1.5=12.5千米/小时,有BC段顺水的速度为3.5+1.5=5千米/小时.而从AC全程的行驶时间为8-1=7小时.
设AB长千米,有,解得=25.所以A,B两镇间的距离是25千米.
9.25千米
【详解】首先应该知道水的速度就是物品的速度,船与物品的相对速度(单位时间的距离变化)与船的静水速度相等.而从两船出发到甲船掉头,此外,两船之间无论顺水速度差、静水速度差还是逆水速度差都相等,所以两船之间的距离总是保持60千米不变.
由于甲、乙两船同时碰到物品,所以从甲掉头到两船相遇,两船与物品的距离总是相等的,甲船掉头之时,两船距离物品都是30千米,甲船到物品30千米这段距离的产生时间,相当于船在静水中航行30千米的时间,在这段时间内,河水流动了30÷6=5千米,所以甲掉头时,已经行驶了30-5=25千米.
10.15千米
【详解】此题可以分为几个阶段来考虑.第一个阶段是一个追及问题.在货舱追上游船的过程中,两者的追及距离是 15 千米,共用了 5 小时,故两者的速度差是 15÷5="3" 千米.由于两者都是顺水航行,故在静水中两者的速度差也是 3 千米.在紧接着的 1 个小时中,货船开始领先游船,两者最后相距 3×1=3千米.这时货船上的东西落入水中,6 分钟后货船上的人才发现.此时货船离落在水中的东西的距离已经是货船的静水速度×1/10 千米,从此时算起,到货船和落入水中的物体相遇,又是一个相遇问题,两者的速度之和刚好等于货船的静水速度,所以这段时间是货船的静水速度*1/10÷货船的静水速度=1/10小时.按题意,此时也刚好遇上追上来的游船.货船开始回追物体时,货船和游船刚好相距3+3*1/10="33/10" 千米,两者到相遇共用了 1/10 小时,帮两者的速度和是每小时 33/10÷1/10="33" 千米,这与它们两在静水中的速度和相等.又已知在静水中货船比游船每小时快 3 千米,故游船的速度为每小时(33-3)÷2="15" 千米.
答案第1页,共2页
答案第1页,共2页

展开更多......

收起↑

资源预览