行程问题

资源下载
  1. 二一教育资源

行程问题

资源简介

例17 小玲和小华姐弟俩正要从公园门口沿马路向东去某地,而他们的家要从公园门口沿马路往西.小华问姐姐:“是先向西回家取了自行车,再骑车向东去,还是直接从公园门口步行向东去快”?姐姐算了一下说:“如果骑车与步行的速度比是4∶1,那么从公园门口到目的地的距离超过2千米时,回家取车才合算.”请推算一下,从公园到他们家的距离是多少米?
解:
  设A是离公园2千米处,设置一个B点,公园离B与公园离家一样远.如果从公园往西走到家,那么用同样多的时间,就能往东走到B点.现在问题就转变成:
  骑车从家开始,步行从B点开始,骑车追步行,能在A点或更远处追上步行.
  具体计算如下:
  不妨设B到A的距离为1个单位,因为骑车速度是步行速度的4倍,所以从家到A的距离是4个单位,从家到B的距离是3个单位.公园到B是1.5个单位.从公园到A是
  1+1.5=2.5(单位).
  每个单位是 2000÷2.5=800(米).
  因此,从公园到家的距离是
  800×1.5=1200(米).
  答:从公园门口到他们家的距离是1200米.
这一例子中,取计算单位给计算带来方便,是值得读者仿照采用的.请再看一例.
例16 小王的步行速度是4.8千米/小时,小张的步行速度是5.4千米/小时,他们两人从甲地到乙地去.小李骑自行车的速度是10.8千米/小时,从乙地到甲地去.他们3人同时出发,在小张与小李相遇后5分钟,小王又与小李相遇.问:小李骑车从乙地到甲地需要多少时间?
  解:画一张示意图:
  图中A点是小张与小李相遇的地点,图中再设置一个B点,它是张、李两人相遇时小王到达的地点.5分钟后小王与小李相遇,也就是5分钟的时间,小王和小李共同走了B与A之间这段距离,它等于
  这段距离也是出发后小张比小王多走的距离,小王与小张的速度差是(5.4-4.8)千米/小时.小张比小王多走这段距离,需要的时间是
  1.3÷(5.4-4.8)×60=130(分钟).
  这也是从出发到张、李相遇时已花费的时间.小李的速度10.8千米/小时是小张速度5.4千米/小时的2倍.因此小李从A到甲地需要
  130÷2=65(分钟).
  从乙地到甲地需要的时间是
  130+65=195(分钟)=3小时15分.
  答:小李从乙地到甲地需要3小时15分.
  上面的问题有3个人,既有“相遇”,又有“追及”,思考时要分几个层次,弄清相互间的关系,问题也就迎刃而解了.在图中设置一个B点,使我们的思考直观简明些.
例18 快车和慢车分别从A,B两地同时开出,相向而行.经过5小时两车相遇.已知慢车从B到A用了12.5小时,慢车到A停留半小时后返回.快车到B停留1小时后返回.问:两车从第一次相遇到再相遇共需多少时间?
  解:画一张示意图:
  设C点是第一次相遇处.慢车从B到C用了5小时,从C到A用了12.5-5=7.5(小时).我们把慢车半小时行程作为1个单位.B到C10个单位,C到A15个单位.慢车每小时走2个单位,快车每小时走3个单位.
  有了上面“取单位”准备后,下面很易计算了.
  慢车从C到A,再加停留半小时,共8小时.此时快车在何处呢?去掉它在B停留1小时.快车行驶7小时,共行驶3×7=21(单位).从B到C再往前一个单位到D点.离A点15-1=14(单位).
  现在慢车从A,快车从D,同时出发共同行走14单位,相遇所需时间是
  14÷(2+3)=2.8(小时).
  慢车从C到A返回行驶至与快车相遇共用了
  7.5+0.5+2.8=10.8(小时).
答:从第一相遇到再相遇共需10小时48分.
例19 一只小船从A地到B地往返一次共用2小时.回来时顺水,比去时的速度每小时多行驶8千米,因此第二小时比第一小时多行驶6千米.求A至B两地距离.
  解:1小时是行驶全程的一半时间,因为去时逆水,小船到达不了B地.我们在B之前设置一个C点,是小船逆水行驶1小时到达处.如下图
  第二小时比第一小时多行驶的行程,恰好是C至B距离的2倍,它等于6千米,就知C至B是3千米.
  为了示意小船顺水速度比逆水速度每小时多行驶8千米,在图中再设置D点,D至C是8千米.也就是D至A顺水行驶时间是1小时.现在就一目了然了.D至B是5千米顺水行驶,与C至B逆水行驶3千米时间一样多.因此
  顺水速度∶逆水速度=5∶3.
  由于两者速度差是8千米.立即可得出
  A至B距离是 12+3=15(千米).
  答:A至B两地距离是15千米.
例20 从甲市到乙市有一条公路,它分成三段.在第一段上,汽车速度是每小时40千米,在第二段上,汽车速度是每小时90千米,在第三段上,汽车速度是每小时50千米.已知第一段公路的长恰好是第三段的2倍.现有两辆汽车分别从甲、乙两市同时出发,相向而行.1小时20分后,在第二段的
  解一:画出如下示意图:
  当从乙城出发的汽车走完第三段到C时,从甲城出发的汽车走完第一段的
  到达D处,这样,D把第一段分成两部分
 
  时20分相当于
 
  
  因此就知道,汽车在第一段需要
  第二段需要 30×3=90(分钟);
  
  甲、乙两市距离是
  答:甲、乙两市相距185千米.
  把每辆车从出发到相遇所走的行程都分成三段,而两车逐段所用时间都相应地一样.这样通过“所用时间”使各段之间建立了换算关系.这是一种典型的方法.例8、例13也是类似思路,仅仅是问题简单些.
  还可以用“比例分配”方法求出各段所用时间.
例21 一辆车从甲地开往乙地.如果车速提高20%,可以比原定时间提前一小时到达;如果以原速行驶120千米后,再将速度提高25%,则可提前40分钟到达.那么甲、乙两地相距多少千米?
  解:设原速度是1.
  
  %后,所用时间缩短到原时间的
  这是具体地反映:距离固定,时间与速度成反比.
  用原速行驶需要
  同样道理,车速提高25%,所用时间缩短到原来的
 
  
  如果一开始就加速25%,可少时间
  现在只少了40分钟, 72-40=32(分钟).
  说明有一段路程未加速而没有少这个32分钟,它应是这段路程所用时间
 
  真巧,320-160=160(分钟),原速的行程与加速的行程所用时间一样.因此全程长
  答:甲、乙两地相距270千米.
  十分有意思,按原速行驶120千米,这一条件只在最后用上.事实上,其他条件已完全确定了“原速”与“加速”两段行程的时间的比例关系,当然也确定了距离的比例关系.
  全程长还可以用下面比例式求出,设全程长为x,就有
  x∶120=72∶32.
例15 图上正方形ABCD是一条环形公路.已知汽车在AB上的速度是90千米/小时,在BC上的速度是120千米/小时,在CD上的速度是60千米/小时,在DA上的速度是80千米/小时.从CD上一点P,同时反向各发出一辆汽车,它们将在AB中点相遇.如果从PC中点M,同时反向各发出一辆汽车,它们将在AB上一点N处相遇.求
 
  解:两车同时出发至相遇,两车行驶的时间一样多.题中有两个“相遇”,解题过程就是时间的计算.要计算方便,取什么作计算单位是很重要的.
  设汽车行驶CD所需时间是1.
  根据“走同样距离,时间与速度成反比”,可得出
  
  分数计算总不太方便,把这些所需时间都乘以24.这样,汽车行驶CD,BC,AB,AD所需时间分别是24,12,16,18.
  从P点同时反向各发一辆车,它们在AB中点相遇.P→D→A与 P→C→B所用时间相等.
  PC上所需时间-PD上所需时间
  =DA所需时间-CB所需时间
  =18-12
  =6.
  而(PC上所需时间+PD上所需时间)是CD上所需时间24.根据“和差”计算得
  PC上所需时间是(24+6)÷2=15,
  PD上所需时间是24-15=9.
  现在两辆汽车从M点同时出发反向而行,M→P→D→A→N与M→C→B→N所用时间相等.M是PC中点.P→D→A→N与C→B→N时间相等,就有
  BN上所需时间-AN上所需时间
  =P→D→A所需时间-CB所需时间
  =(9+18)-12
  = 15.
  BN上所需时间+AN上所需时间=AB上所需时间
  =16.
  立即可求BN上所需时间是15.5,AN所需时间是0.5.
  
  从这一例子可以看出,对要计算的数作一些准备性处理,会使问题变得简单些
例14 一个圆周长90厘米,3个点把这个圆周分成三等分,3只爬虫A,B,C分别在这3个点上.它们同时出发,按顺时针方向沿着圆周爬行.A的速度是10厘米/秒,B的速度是5厘米/秒,C的速度是3厘米/秒,3只
  爬虫出发后多少时间第一次到达同一位置?
  解:先考虑B与C这两只爬虫,什么时候能到达同一位置.开始时,它们相差30厘米,每秒钟B能追上C(5-3)厘米0.
  30÷(5-3)=15(秒).
  因此15秒后B与C到达同一位置.以后再要到达同一位置,B要追上C一圈,也就是追上90厘米,需要
  90÷(5-3)=45(秒).
  B与C到达同一位置,出发后的秒数是
  15,,105,150,195,……
  再看看A与B什么时候到达同一位置.
  第一次是出发后
  30÷(10-5)=6(秒),
  以后再要到达同一位置是A追上B一圈.需要
  90÷(10-5)=18(秒),
  A与B到达同一位置,出发后的秒数是
  6,24,42,,78,96,…
  对照两行列出的秒数,就知道出发后60秒3只爬虫到达同一位置.
  答:3只爬虫出发后60秒第一次爬到同一位置.
  请思考, 3只爬虫第二次到达同一位置是出发后多少秒?

展开更多......

收起↑

资源预览