高中物理满分技巧——功和能专题

资源下载
  1. 二一教育资源

高中物理满分技巧——功和能专题

资源简介

第三章 功和能
一、水平方向的弹性碰撞
在光滑水平地面上有两个相同的弹性小球A、B,质量都为m,现B球静止,A球向B球运动,发生正碰。已知碰撞过程中总机械能守恒,两球压缩最紧时的弹性势能为EP,则碰前A球的速度等于( )
A. B. C. D.
解析:设碰前A球的速度为v0,两球压缩最紧时的速度为v,根据动量守恒定律得出,由能量守恒定律得,联立解得,所以正确选项为C。
在原子核物理中,研究核子与核子关联的最有效途径是“双电荷交换反应”。这类反应的前半部分过程和下述力学模型类似,两个小球A和B用轻质弹簧相连,在光滑的水平直轨道上处于静止状态,在它们左边有一垂直于轨道的固定挡板P,右边有一小球C沿轨道以速度v0射向B球,如图3.01所示,C与B发生碰撞并立即结成一个整体D,在它们继续向左运动的过程中,当弹簧长度变到最短时,长度突然被锁定,不再改变,然后,A球与挡板P发生碰撞,碰后A、D都静止不动,A与P接触而不粘连,过一段时间,突然解除锁定(锁定及解除锁定均无机械能损失),已知A、B、C三球的质量均为m。
图3.01
(1)求弹簧长度刚被锁定后A球的速度。
(2)求在A球离开挡板P之后的运动过程中,弹簧的最大弹性势能。
解析:(1)设C球与B球粘结成D时,D的速度为v1,由动量守恒得当弹簧压至最短时,D与A的速度相等,设此速度为v2,由动量守恒得,由以上两式求得A的速度。
(2)设弹簧长度被锁定后,贮存在弹簧中的势能为EP,由能量守恒,有撞击P后,A与D的动能都为零,解除锁定后,当弹簧刚恢复到自然长度时,势能全部转弯成D的动能,设D的速度为v3,则有
以后弹簧伸长,A球离开挡板P,并获得速度,当A、D的速度相等时,弹簧伸至最长,设此时的速度为v4,由动量守恒得
当弹簧伸到最长时,其势能最大,设此势能为EP',由能量守恒,有解以上各式得。
图3.02中,轻弹簧的一端固定,另一端与滑块B相连,B静止在水平直导轨上,弹簧处在原长状态。另一质量与B相同滑块A,从导轨上的P点以某一初速度向B滑行,当A滑过距离l1时,与B相碰,碰撞时间极短,碰后A、B紧贴在一起运动,但互不粘连。已知最后A恰好返回出发点P并停止,滑块A和B与导轨的滑动摩擦因数都为,运动过程中弹簧最大形变量为l2,重力加速度为g,求A从P出发的初速度v0。
图3.02
解析:令A、B质量皆为m,A刚接触B时速度为v1(碰前)
由功能关系,有
A、B碰撞过程中动量守恒,令碰后A、B共同运动的速度为v2

碰后A、B先一起向左运动,接着A、B一起被弹回,在弹簧恢复到原长时,设A、B的共同速度为v3,在这一过程中,弹簧势能始末状态都为零,利用功能关系,有
此后A、B开始分离,A单独向右滑到P点停下,由功能关系有
由以上各式,解得
用轻弹簧相连的质量均为2kg的A、B两物块都以的速度在光滑水平地面上运动,弹簧处于原长,质量为4kg的物体C静止在前方,如图3.03所示,B与C碰撞后二者粘在一起运动。求在以后的运动中,
(1)当弹簧的弹性势能最大时物体A的速度多大?
(2)弹性势能的最大值是多大?
(3)A的速度有可能向左吗?为什么? 图3.03
解析:(1)当A、B、C三者的速度相等时弹簧的弹性势能最大,由于A、B、C三者组成的系统动量守恒,有
解得:
(2)B、C碰撞时B、C组成的系统动量守恒,设碰后瞬间B、C两者速度为,则
设物块A速度为vA时弹簧的弹性势能最大为EP,根据能量守恒
(3)由系统动量守恒得
设A的速度方向向左,,则
则作用后A、B、C动能之和
实际上系统的机械能
根据能量守恒定律,是不可能的。故A不可能向左运动。
如图3.04所示,在光滑水平长直轨道上,A、B两小球之间有一处于原长的轻质弹簧,弹簧右端与B球连接,左端与A球接触但不粘连,已知,开始时A、B均静止。在A球的左边有一质量为的小球C以初速度向右运动,与A球碰撞后粘连在一起,成为一个复合球D,碰撞时间极短,接着逐渐压缩弹簧并使B球运动,经过一段时间后,D球与弹簧分离(弹簧始终处于弹性限度内)。
图3.04
(1)上述过程中,弹簧的最大弹性势能是多少?
(2)当弹簧恢复原长时B球速度是多大?
(3)若开始时在B球右侧某位置固定一块挡板(图中未画出),在D球与弹簧分离前使B球与挡板发生碰撞,并在碰后立即将挡板撤走,设B球与挡板碰撞时间极短,碰后B球速度大小不变,但方向相反,试求出此后弹簧的弹性势能最大值的范围。
答案:(1)设C与A相碰后速度为v1,三个球共同速度为v2时,弹簧的弹性势能最大,由动量守恒,能量守恒有:
(2)设弹簧恢复原长时,D球速度为,B球速度为
则有
(3)设B球与挡板相碰前瞬间D、B两球速度
与挡板碰后弹性势能最大,D、B两球速度相等,设为
当时,最大
时,最小,
所以
二、水平方向的非弹性碰撞
如图3.05所示,木块与水平弹簧相连放在光滑的水平面上,子弹沿水平方向射入木块后留在木块内(时间极短),然后将弹簧压缩到最短。关于子弹和木块组成的系统,下列说法真确的是
从子弹开始射入到弹簧压缩到最短的过程中系统动量守恒
子弹射入木块的过程中,系统动量守恒
子弹射入木块的过程中,系统动量不守恒
木块压缩弹簧的过程中,系统动量守恒
图3.05
答案:B
如图3.06所示,一个长为L、质量为M的长方形木块,静止在光滑水平面上,一个质量为m的物块(可视为质点),以水平初速度从木块的左端滑向右端,设物块与木块间的动摩擦因数为,当物块与木块达到相对静止时,物块仍在长木块上,求系统机械能转化成内能的量Q。
图3.06
解析:可先根据动量守恒定律求出m和M的共同速度,再根据动能定理或能量守恒求出转化为内能的量Q。
对物块,滑动摩擦力做负功,由动能定理得:
即对物块做负功,使物块动能减少。
对木块,滑动摩擦力对木块做正功,由动能定理得,即对木块做正功,使木块动能增加,系统减少的机械能为:
本题中,物块与木块相对静止时,,则上式可简化为:
又以物块、木块为系统,系统在水平方向不受外力,动量守恒,则:
联立式<2>、<3>得:
故系统机械能转化为内能的量为:
如图3.07所示,光滑水平面地面上放着一辆两端有挡板的静止的小车,车长L=1m,一个大小可忽略的铁块从车的正中央以速度向右沿车滑行。铁块与小车的质量均等于m,它们之间的动摩擦因数,铁块与挡板碰撞过程中机械能不损失,且碰撞时间可以忽略不计,取,求从铁快由车的正中央出发到两者相对静止需经历的时间。
图3.07
答案:
如图3.08所示,电容器固定在一个绝缘座上,绝缘座放在光滑水平面上,平行板电容器板间的距离为d,右极板上有一小孔,通过孔有一左端固定在电容器左极板上的水平绝缘光滑细杆,电容器极板以及底座、绝缘杆总质量为M,给电容器充电后,有一质量为m的带正电小环恰套在杆上以某一初速度v0对准小孔向左运动,并从小孔进入电容器,设带电环不影响电容器板间电场分布。带电环进入电容器后距左板的最小距离为0.5d,试求:
(1)带电环与左极板相距最近时的速度v;
(2)此过程中电容器移动的距离s。
(3)此过程中能量如何变化?
图3.08
答案:(1)带电环进入电容器后在电场力的作用下做初速度为v0的匀减速直线运动,而电容器则在电场力的作用下做匀加速直线运动,当它们的速度相等时,带电环与电容器的左极板相距最近,由系统动量守恒定律可得:
动量观点:
力与运动观点:
设电场力为F
(2)能量观点(在第(1)问基础上):
对m:
对M:
所以
运动学观点:
对M:,对m:
,解得:
带电环与电容器的速度图像如图5所示。由三角形面积可得:
图5
解得:
(3)在此过程,系统中,带电小环动能减少,电势能增加,同时电容器等的动能增加,系统中减少的动能全部转化为电势能。
三、人船模型
如图3.09所示,长为L、质量为M的小船停在静水中,质量为m的人从静止开始从船头走到船尾,不计水的阻力,求船和人对地面的位移各为多少?
图3.09
解析:以人和船组成的系统为研究对象,在人由船头走到船尾的过程中,系统在水平方向不受外力作用,所以整个系统在水平方向动量守恒。当人起步加速前进时,船同时向后做加速运动;人匀速运动,则船匀速运动;当人停下来时,船也停下来。设某时刻人对地的速度为v,船对地的速度为v',取人行进的方向为正方向,根据动量守恒定律有:,即
因为人由船头走到船尾的过程中,每一时刻都满足动量守恒定律,所以每一时刻人的速度与船的速度之比,都与它们的质量之比成反比。因此人由船头走到船尾的过程中,人的平均速度v与船的平均速度v也与它们的质量成反比,即,而人的位移,船的位移,所以船的位移与人的位移也与它们的质量成反比,即
<1>式是“人船模型”的位移与质量的关系,此式的适用条件:原来处于静止状态的系统,在系统发生相对运动的过程中,某一个方向的动量守恒。由图1可以看出:
由<1><2>两式解得
如图3.10所示,质量为M的小车,上面站着一个质量为m的人,车以v0的速度在光滑的水平地面上前进,现在人用相对于小车为u的速度水平向后跳出后,车速增加Δv,则计算Δv的式子正确的是:( )
A.
B.
C.
D. 图3.10
答案:CD
如图3.11所示,一排人站在沿x轴的水平轨道旁,原点O两侧的人的序号都记为n(n=1,2,3,…),每人只有一个沙袋,x>0一侧的沙袋质量为14千克,x<0一侧的沙袋质量为10千克。一质量为M=48千克的小车以某初速度从原点出发向正x方向滑行。不计轨道阻力。当车每经过一人身旁时,此人就把沙袋以水平速度u朝与车速相反的方向沿车面扔到车上,u的大小等于扔此袋之前瞬间车速大小的2n倍(n是此人的序号数)。
图3.11
空车出发后,车上堆积了几个沙袋时车就反向滑行?
车上最终会有几个沙袋?
 (1)在小车朝正x方向滑行的过程中,第(n-1)个沙袋扔到车上后的车速为vn-1,第n个沙袋扔到车上后的车速为vn,由动量守恒定律有
  
  小车反向运动的条件是vn-1>0,vn<0,即
  M-nm>0 ②
  M-(n+1)m<0 ③
  代入数字,得
  
  n应为整数,故n=3,即车上堆积3个沙袋后车就反向滑行.
  (2)车自反向滑行直到接近x<0一侧第1人所在位置时,车速保持不变,而车的质量为M+3m.若在朝负x方向滑行过程中,第(n-1)个沙袋扔到车上后车速为vn-1′,第n个沙袋扔到车上后车速为vn′,现取在图中向左的方向(负x方向)为速度vn′、vn-1′的正方向,则由动量守恒定律有
  
  车不再向左滑行的条件是
vn-1′>0,vn′≤0
  即 M+3m-nm′>0 ⑤
  M+3m-(n+1)m′≤0 ⑥
  
  n=8时,车停止滑行,即在x<0一侧第8个沙袋扔到车上后车就停住.故车上最终共有大小沙袋3+8=11个.
四、爆炸反冲模型
如图3.12所示海岸炮将炮弹水平射出,炮身质量(不含炮弹)为M,每颗炮弹质量为m,当炮身固定时,炮弹水平射程为s,那么当炮身不固定时,发射同样的炮弹,水平射程将是多少?
图3.12
解析:两次发射转化为动能的化学能E是相同的。第一次化学能全部转化为炮弹的动能;第二次化学能转化为炮弹和炮身的动能,而炮弹和炮身水平动量守恒,由动能和动量的关系式知,在动量大小相同的情况下,物体的动能和质量成反比,炮弹的动能,由于平抛的射高相等,两次射程的比等于抛出时初速度之比,即:,所以。
思考:有一辆炮车总质量为M,静止在水平光滑地面上,当把质量为m的炮弹沿着与水平面成θ角发射出去,炮弹对地速度为,求炮车后退的速度。
提示:系统在水平面上不受外力,故水平方向动量守恒,炮弹对地的水平速度大小为,设炮车后退方向为正方向,则
在光滑地面上,有一辆装有平射炮的炮车,平射炮固定在炮车上,已知炮车及炮身的质量为M,炮弹的质量为m;发射炮弹时,炸药提供给炮身和炮弹的总机械能E0是不变的。若要使刚发射后炮弹的动能等于E0,即炸药提供的能量全部变为炮弹的动能,则在发射前炮车应怎样运动?
答案:若在发射前给炮车一适当的初速度v0,就可实现题述的要求。
在这种情况下,用v表示发射后炮弹的速度,V表示发射后炮车的速度,由动量守恒可知:
由能量关系可知:
按题述的要求应有
由以上各式得:

展开更多......

收起↑

资源预览