河南省顶级中学2023-2024学年高一上学期期中考试数学(含答案)

资源下载
  1. 二一教育资源

河南省顶级中学2023-2024学年高一上学期期中考试数学(含答案)

资源简介

河南省实验中学2023--2024学年上期期中试卷答案(高一)
一、单选题(共8小题)
1-4 BCCA 5-8 AABD
二、多选题(共4小题)
9.ABC 10.ABC 11.AC 12.ABD
三、填空题(共4小题)
13. 3 14. ﹣ex+2x+1 15. [,3] 16. ①④
四.解答题(共6小题)
17.解:(1)原式
3+27﹣21=9.··········································(5分)
(2)原式=lg52+lg2 lg50+(lg2)2﹣eln8=2lg5+lg2(1+lg5)+(lg2)2﹣8
=2lg5+lg2+lg2 lg5+(lg2)2﹣8=2lg5+lg2+lg2(lg5+lg2)﹣8
=2(lg5+lg2)﹣8=﹣6.················································(10分)
18.解:(1)当m=﹣1时,A={x|﹣3≤x≤1},集合B={x|﹣1<x≤2},
所以 UB={x|x>2或x≤﹣1},···········································(2分)
所以①A∪B={x|﹣3≤x≤2};············································(4分)
②A∩( UB)={x|﹣3≤x≤﹣1};········································(6分)
(2)若A∩B= ,
当A= 时,2m﹣1>m+2,即m>3,······································(8分)
当A≠ 时,
解得m≤﹣3或,·············································(10分)
综上,m的范围为{m|m≤﹣3或m}.··································(12分)
19. 解:(1)∵为幂函数,则3m2﹣2m=1,
解得m=1或,·················································(2分)
又∵幂函数在(0,+∞)上单调递增,
∴,得m=1.··················································(4分)
(2)由第一问得,在[1,4]上递增,
所以f(x)的值域为[1,2],即集合A={x|1≤x≤2},·······················(6分)
而g(x)=﹣3x+t在[1,4]上递减,所以g(x)的值域为[t﹣81,t﹣3],
即B={x|t﹣81≤x≤t﹣3},··············································(8分)
由命题q是命题p的必要不充分条件可得A B,···························(10分)
所以,解得5≤t≤82,
即t的取值范围为[5,82].··············································(12分)
20.解:(1)由f(x+y)=f(x)+f(y),
令x=y=0得f(0)=f(0)+f(0),
∴f(0)=0.·························································(2分)
(2)f(x)是奇函数,
证明:f(x)定义为R,关于原点对称·································(3分)
由f(x+y)=f(x)+f(y),
令y=﹣x,得f(x﹣x)=f(x)+f(﹣x),
即f(x)+f(﹣x)=f(0)=0,
f(﹣x)=﹣f(x),所以 f(x)是奇函数.······························(6分)
(3)任取x1,x2∈R,x1<x2,x2﹣x1>0,·······························(7分)
由f(x+y)=f(x)+f(y)知f(x+y)﹣f(x)=f(y)
f(x1)﹣f(x2)=f(x1﹣x2)=﹣f(x2﹣x1),···························(8分)
由于x2﹣x1>0,所以f(x2﹣x1)<0,
所以f(x1)﹣f(x2)=﹣f(x2﹣x1)>0,即f(x1)>f(x2),
所以f(x)是减函数,·················································(9分)
f(6)=f(3+3)=f(3)+f(3)=﹣8,································(10分)
所以不等式f(t﹣1)+f(t)<﹣8即f(t﹣1+t)<f(6),
所以2t﹣1>6,t,
所以不等式f(t﹣1)+f(t)<﹣8的解集为(,+∞).····················(12分)
21.解:(1)由题意得W(x)=800x﹣R(x)﹣250,
∵R(x),
∴当0<x<40时,R(x)=10x2+200x+1000,
则W(x)=800x﹣(10x2+200x+1000)﹣250=﹣10x2+600x﹣1250,·········(2分)
当x≥40时,R(x)=701x8450,
则W(x)=800x﹣(801x8450)﹣250=﹣x8200,·········(4分)
综上所述,W(x);···················(6分)
(2)由(1)得W(x),
则当0<x<40时,W(x)=﹣10x2+600x﹣1250=﹣10(x﹣30)2+7750,
二次函数W(x)的图象开口向下,且对称轴为直线x=30,
∴W(x)max=W(30)=7750,·········································(8分)
当x≥40时,W(x)=﹣x8200,
又x2200,当且仅当x,即x=100时等号成立,
∴W(x)=﹣x8200≤﹣200+8200=8000,·······················(10分)
∵8000>7750,
∴2023年产量为100(千部)时,企业所获利润最大,最大利润是8000万元.··(12分)
22.解:(1)∵f(x)为R上的奇函数,
∴f(0)=0,可得b=1················································(1分)
又∵f(﹣1)=﹣f(1)
∴,解之得a=1··········································(2分)
经检验当a=1且b=1时,f(x),
满足f(﹣x)=﹣f(x)是奇函数.·······································(3分)
故a=1,b=1·························································(4分)
(2)由(1)得f(x)1,
任取实数x1、x2,且x1<x2················································(5分)
则f(x1)﹣f(x2)······················(6分)
∵x1<x2,可得,且
∴f(x1)﹣f(x2)>0,即f(x1)>f(x2),······························(7分)
∴函数f(x)在(﹣∞,+∞)上为减函数;·······························(8分)
(3)根据(1)(2)知,函数f(x)是奇函数且在(﹣∞,+∞)上为减函数.
∴不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,即f(t2﹣2t)<﹣f(2t2﹣k)=f(﹣2t2+k)
即t2﹣2t>﹣2t2+k对任意的t∈R都成立.
即k<3t2﹣2t对任意的t∈R都成立,·····································(10分)
∵3t2﹣2t=3(t)2,当t时有最小值为························(11分)
∴k,即k的范围是(﹣∞,).··································(12分)
第1页(共1页)河南省实验中学2023--2024学年上期期中试卷
年级:高一 科目:数学 (时间:120分钟,满分:150分)
一、单选题(本大题共8小题,每小题5分,共40分.)
1.设集合,则集合的真子集个数是(  )
A.6 B.7 C.8 D.15
2.下列命题为真命题的是(  )
A.若,则 B.若,则
C.若,c0,则 D.若,则
3.设,则(  )
A. B. C. D.
4.在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足,其中星等为的星的亮度为.已知太阳的星等是,天狼星的星等是,则太阳与天狼星的亮度的比值为(  )
A. B. C. D.
5.已知函数,无论取何值,图象恒过定点.若点在幂函数的图象上,则幂函数的图象大致是(  )
A. B. C. D.
6.已知且1,若有解,则实数的取值范围是(  )
A. B.
C. D.
7.已知函数在上是单调的函数,则实数的取值范围是(  )
A. B. C. D.
8.设函数的定义域为,为奇函数,为偶函数,当时,,则
A. B. C.为奇函数 D.
二、多选题(本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.)
9.下列说法中正确的有(  )
A.全体奇数构成的集合可以表示为
B.“”是“”的充分不必要条件
C.集合与集合的交集是空集
D.命题“”的否定是“ ,”
10.给出以下四个判断,其中正确的是(  )
A.函数的值域为
B.若函数的定义域为,则函数的定义域为
C.函数定义域,值域,则满足条件的有3个
D.若函数,且,则实数的值为
11.下列命题中的真命题有(  )
A.当时,的最小值是
B.的最小值是
C.当时,的最大值是
D.若为正实数,且,则的最大值为
12.已知函数,以下结论正确的是(  )
A.在区间上先增后减
B.
C.若方程在上有个不等实根i,则
D.若方程恰有个实根,则
三、填空题(本大题共4小题,每小题5分,共20分.)
13.已知集合,且,则实数的值为 .
14.已知是定义在上的奇函数,且当时,,当时, .
15.已知,,则的取值范围为 .
16.已知点在函数且图象上,对于函数定义域中的任意,,有如下结论:
①; ②;
③0; ④
上述结论中正确结论的序号是 .
四、解答题(本大题共6小题,17题10分,其余各题12分,共70分.)
17.计算:(1);
(2).
18.已知集合,集合,.
(1)当时,求:①;②;
(2)若,求实数的取值范围.
19.已知幂函数在上单调递增,.
(1)求实数的值;
(2)当时,记、的值域分别为集合、,设命题:,命题:,若命题是命题的必要不充分条件,求实数的取值范围.
20.定义在上的函数,满足对任意的,都有.当时,,且.
(1)求的值;
(2)判断并证明函数在R上的奇偶性;
(3)解不等式.
21.我国某企业为了进一步增加市场竞争力,计划在2023年利用新技术生产某款新手机.通过市场分析,生产此款手机全年需投入固定成本250万,每生产x(千部)手机,需另投入可变成本万元,且,由市场调研知,每部手机售价0.8万元,且全年内生产的手机当年能全部销售完.(利润销售额固定成本可变成本).
(1)求2023年的利润(万元)关于年产量x(千部)的函数关系式;
(2)2023年产量为多少(千部)时,企业所获利润最大?最大利润是多少?
22.已知定义域为的函数是奇函数.
(1)求的值;
(2)用定义证明在上为减函数;
(3)若对于任意,不等式恒成立,求的范围.
高一 数学 第2页 (共4页)

展开更多......

收起↑

资源列表