资源简介 第三章 相互作用——力1 重力与弹力一、重力1.定义:由于地球的吸引而使物体受到的力.2.方向:竖直向下.与水平面垂直向下,但是并不等同于垂直于支持面向下,也不等同于指向地心.3.大小:G=mg,g是自由落体加速度,只与质量m和重力加速度g有关,与物体的运动状态无关.重力加速度g与物体所处的纬度和高度有关,在赤道处,g最小,在两极处,g最大(同一高度);海拔越高,g越小,海拔越低,g越大.4.作用点——重心(1)重心:一个物体的各部分都受到重力的作用,从效果上看,可以认为各部分受到的重力作用集中于一点,这一点叫作物体的重心.(2)决定因素:①物体的形状;②物体的质量分布.(3)对形状不规则的物体,可以应用二力平衡的知识通过实验来确定其重心位置.如薄板状物体的重心位置可以通过悬挂法来确定.(4)重心是物体各部分所受重力的等效作用点,并不是只有物体的重心才受到重力作用.质量分布均匀、形状规则的物体的重心在其几何中心.重心的位置可以在物体上,也可以在物体外.重心位置可变化.二、力的图示和示意图1.力的图示:用有向线段来表示力.(1)有向线段的长短(严格按标度画)表示力的大小;(2)箭头表示力的方向.(3)箭尾(或箭头)表示力的作用点.2.力的示意图:只用带箭头的有向线段来表示力的方向和作用点,不需要准确标度力的大小.3.力的图示与力的示意图的画法作图步骤 力的图示 力的示意图选标度 选定标度(用某一长度的线段表示一定大小的力)画线段 从作用点开始沿力的方向画一线段,根据选定的标度和力的大小按比例确定线段长度 从作用点开始沿力的方向画一适当长度线段标方向 在线段的末端标出箭头,表示方向 在线段的末端标出箭头,表示方向三、弹力1.形变:物体在力的作用下形状或体积发生的变化.2.弹力:发生形变的物体,要恢复原状,对与它接触的物体产生的力.3.弹力的方向(1)支持力和压力的方向:总是垂直于接触面,并指向被支持或被压的物体上.(2)绳子的拉力的方向:沿着绳子而指向绳子收缩的方向.4.弹力的产生必须同时具备两个条件(1)两物体直接接触;(2)两物体接触处发生弹性形变.5.弹力有无的判断(1)条件法:根据物体是否直接接触并发生弹性形变来判断是否存在弹力.多用来判断形变较明显的情况.(2)假设法:对形变不明显的情况,可假设两个物体间不存在弹力,看物体能否保持原有的状态,若运动状态不变,则此处不存在弹力;若运动状态改变,则此处一定存在弹力.①假设无弹力:假设撤去接触面,看物体还能否在原位置保持原来的状态,若能保持原来的状态,则说明物体间无弹力作用;否则,有弹力作用.②假设有弹力:假设接触物体间有弹力,画出假设状态下的受力分析图,判断受力情况与所处状态是否矛盾,若矛盾,则不存在弹力;若不矛盾,则存在弹力.如图,接触面光滑,若A处有弹力,则无法使球处于静止状态,故A处无弹力.(3)状态法:根据物体的运动状态,利用牛顿第二定律或共点力平衡条件判断是否存在弹力.6.弹力方向的确定四、胡克定律1.弹性形变:物体在发生形变后,如果撤去作用力能够恢复原状的形变.2.弹性限度:如果形变过大,超过一定的限度,撤去作用力后物体不能(填“能”或“不能”)完全恢复原来的形状,这个限度叫作弹性限度.3.内容:弹簧发生弹性形变时,弹力F的大小跟弹簧伸长(或缩短)的长度x成正比,即F=kx.4.劲度系数:式中k叫作弹簧的劲度系数,单位是牛顿每米,符号是N/m.是表示弹簧“软”“硬”程度的物理量.5.胡克定律F=kx的理解(1)x是弹簧的形变量,而不是弹簧形变后的长度.(2)k为弹簧的劲度系数,反映弹簧本身的属性,由弹簧自身的长度、粗细、材料等因素决定,与弹力F的大小和伸长量x无关.2.F-x图像是一条过原点的倾斜直线(如图所示),直线的斜率表示弹簧的劲度系数k.3.胡克定律的推论:ΔF=kΔx.弹簧弹力的变化量ΔF跟弹簧形变量的变化量Δx成正比.4.胡克定律的适用条件:弹簧在弹性限度内发生形变.5.弹力常见模型分析轻绳 弹性绳 轻弹簧 轻杆质量大小 0 0 0 0受外力作用时形变的种类 拉伸形变 拉伸形变 拉伸形变、压缩形变 拉伸形变、压缩形变、弯曲形变受外力作用时形变量大小 微小,可忽略 较大,不可忽略 较大,不可忽略 微小,可忽略弹力方向 沿着绳,指向绳收缩的方向 沿着绳,指向绳收缩的方向 沿着弹簧,指向弹簧恢复原长的方向 既可沿着杆,也可跟杆成任意角度弹力大小变化情况 可以突变 不能突变 不能突变 可以突变2 摩擦力一、滑动摩擦力1.定义:两个相互接触的物体,当它们相对滑动时,在接触面上会产生一种阻碍相对运动的力,这种力叫作滑动摩擦力.2.方向:滑动摩擦力的方向沿接触面,与物体相对运动的方向相反.滑动摩擦力的作用效果是阻碍物体间的相对运动,而不是阻碍物体的运动,所以滑动摩擦力的方向可能与物体运动方向相同,也可能相反,还可能成任意夹角.3.大小(1)滑动摩擦力的大小跟接触面上压力的大小成正比,还跟接触面的粗糙程度、材质等有关.(2)公式:Ff=μFN.(也可以由二力平衡来求解)(3)动摩擦因数μ:它的值跟两接触面的材料和粗糙程度有关与FN和Ff无关.动摩擦因数μ=,Ff在接触面内且与相对运动方向相反,FN与接触面垂直.(4)FN是两个相接触的物体间的压力,它不一定等于重力.滑动摩擦力的大小与接触面的面积无关,与物体间相对运动速度的大小无关.4.滑动摩擦力的产生条件(1)两物体直接接触且相互挤压(即有弹力).(2)接触面粗糙.(3)两物体间有相对运动.二、静摩擦力1.定义:相互接触的两个物体之间只有相对运动的趋势,而没有相对运动时,这时的摩擦力叫作静摩擦力.2.静摩擦力的方向(1)在接触面上与接触面相切,且与物体相对运动趋势的方向相反.(2)当物体处于平衡状态(静止或匀速直线运动)时,与使物体产生运动趋势的外力方向相反.3.最大静摩擦力:静摩擦力有一个最大值Fmax,在数值上等于物体即将开始运动时的拉力.4.静摩擦力的大小:,即0(1)两物体之间实际产生的静摩擦力F在0与最大静摩擦力Fmax之间:0<F≤Fmax.(2)计算:物体做匀速直线运动或静止时,根据二力平衡条件求解.(3)静摩擦力大小与正压力无关.Fmax与正压力有关。(4)反映物体运动起来的难易.5.静摩擦力的产生条件(1)两物体直接接触且相互挤压(即有弹力).(2)接触面粗糙.(3)两物体间有相对运动的趋势.6.说明(1)静摩擦力的方向与相对运动趋势的方向相反,与运动方向可能相同,也可能相反.(2)静摩擦力发生在相对静止的两物体之间,受静摩擦力作用的物体不一定是静止的,运动的物体也可能受静摩擦力作用.7.当物体的受力情况发生变化时,摩擦力的大小和方向往往会发生变化,有可能导致静摩擦力和滑动摩擦力之间的相互转化。常见的摩擦力突变模型如下:分类 “静—静”突变 “静—动”突变 “动—静”突变 “动—动”突变案例 图示 在水平力F作用下物体静止于斜面上,F突然增大时物体仍静止,则物体所受静摩擦力的大小或方向将“突变” 物体放在粗糙水平面上,作用在物体上的水平力F从零逐渐增大,当物体开始滑动时,物体受水平面的摩擦力由静摩擦力“突变”为滑动摩擦力 滑块以v0冲上斜面做减速运动,当到达某位置时速度减为零而后静止在斜面上,滑动摩擦力“突变”为静摩擦力 水平传送带的速度v1大于滑块的速度v2,滑块受滑动摩擦力方向水平向右,当传送带突然被卡住时,滑块受到的滑动摩擦力方向“突变”为向左3 牛顿第三定律一、作用力和反作用力1.力是物体对物体的作用.只要谈到力,就一定存在着受力物体和施力物体.2.两个物体之间的作用总是相互的,物体间相互作用的这一对力,通常叫作作用力和反作用力.3.作用力和反作用力总是互相依赖、同时存在的.我们可以把其中任何一个力叫作作用力,另一个力叫作反作用力.4.作用力和反作用力的四个特征等值 作用力和反作用力大小总是相等的反向 作用力和反作用力方向总是相反的共线 作用力和反作用力总是作用在同一条直线上同性质 作用力和反作用力的性质总是相同的正确理解牛顿第三定律中“总是”的含义“总是”是强调对于任何物体,在任何情况下,作用力和反作用力的关系都成立.(1)不管物体的大小、形状如何,任意两物体间作用力和反作用力总是大小相等、方向相反.(2)不管物体的运动状态如何,例如,静止的物体之间,运动的物体之间,静止与运动的物体之间,其作用力和反作用力总是大小相等、方向相反.(3)作用力和反作用力的产生和消失总是同时的.二、“一对相互平衡的力”和“一对作用力和反作用力”的区别1.一对相互平衡的力作用在一个物体上,一对作用力和反作用力作用在两个物体上.2.一对作用力和反作用力一定是同一种类的力,而一对相互平衡的力不一定是同一种类的力.3.一对作用力和反作用力与一对平衡力的比较一对作用力和反作用力 一对平衡力不同点 作用对象 作用在两个相互作用的物体上 作用在同一物体上依赖关系 相互依存,不可单独存在,同时产生,同时变化,同时消失 无依赖关系,撤除一个,另一个依然可存在叠加性 两力作用效果不可叠加,不可求合力 两力作用效果可相互抵消,可叠加,可求合力,且合力为零力的性质 一定是同种性质的力 可以是同种性质的力,也可以是不同种性质的力相同点 大小相等、方向相反、作用在同一条直线上三、牛顿第三定律1.实验探究:如图所示,把A、B两个弹簧测力计连接在一起,B的一端固定,用手拉测力计A,结果发现两个弹簧测力计的示数是相等的.改变拉力,弹簧测力计的示数也随着改变,但两个弹簧测力计的示数总是相等的,方向相反.2.牛顿第三定律:两个物体之间的作用力和反作用力总是大小相等,方向相反,作用在同一条直线上.四、物体受力的初步分析1.首先明确研究对象,即分析哪个物体所受的力.2.通常按重力、弹力、摩擦力的顺序来分析:(1)重力:任何物体都受重力,其方向竖直向下.(2)弹力:两个相互接触的物体相互挤压时就会产生弹力,其方向与接触面垂直.(3)摩擦力:当两个粗糙且相互挤压的接触面发生相对运动或具有相对运动趋势时,接触面处就会产生滑动摩擦力或静摩擦力,其方向与接触面平行.3.整体法与隔离法整体法 隔离法概念 将加速度相同的几个物体作为一个整体来分析的方法 将研究对象与周围物体分隔开的方法选用 原则 研究系统外的物体对系统整体的作用力或系统整体的加速度 研究系统内物体之间的相互作用力4 力的合成和分解一、合力和分力1.共点力几个力如果都作用在物体的同一点,或者它们的作用线相交于一点,这几个力叫作共点力.2.合力与分力假设一个力单独作用的效果跟某几个力共同作用的效果相同,这个力就叫作那几个力的合力,这几个力叫作那个力的分力.3.合力与分力的关系合力与分力之间是一种等效替代的关系,合力作用的效果与分力共同作用的效果相同.4.两分力大小不变时,合力F随两分力夹角θ的增大而减小,随θ的减小而增大.(0°≤θ≤180°)(1)两分力同向(θ=0°)时,合力最大,F=F1+F2,合力与分力同向.(2)两分力反向(θ=180°)时,合力最小,F=|F1-F2|,合力的方向与较大的一个分力的方向相同.(3)合力的大小取值范围:|F1-F2|≤F≤F1+F2.合力大小可能大于某一分力,可能小于某一分力,也可能等于某一分力.二、力的合成和分解1.力的合成:求几个力的合力的过程.2.力的分解:求一个力的分力的过程.3.平行四边形定则:在两个力合成时,以表示这两个力的有向线段为邻边作平行四边形,这两个邻边之间的对角线就代表合力的大小和方向,如图所示,F表示F1与F2的合力.4.如果没有限制,同一个力F可以分解为无数对大小、方向不同的分力.5.两个以上共点力的合力的求法:先求出任意两个力的合力,再求出这个合力与第三个力的合力,直到把所有的力都合成进去,最后得到的结果就是这些力的合力.6.力的合成和分解都遵循平行四边形定则.7.合力或分力的求解.(1)作图法(如图所示)(2)计算法①两分力共线时:a.若F1、F2两力同向,则合力F=F1+F2,方向与两力同向.b.若F1、F2两力反向,则合力F=|F1-F2|,方向与两力中较大的同向.②两分力不共线时:可以根据平行四边形定则作出力的示意图,然后由几何关系求解对角线,其长度即为合力大小.以下为两种特殊情况:(2)计算法:几种特殊情况的共点力的合成。类 型 作 图 合力的计算互相垂直(即α=90°) F=, F与F1的夹角的正切值tan θ=两力等大,夹角为α F合=2Fcos F合与F1夹角为两力等大且α=120° 合力与分力等大注意:平行四边形定则只适用于共点力.8.力的分解有解或无解,简单地说就是代表合力的对角线与给定的代表分力的有向线段是否能构成平行四边形(或三角形).若可以构成平行四边形(或三角形),说明合力可以分解成给定的分力,即有解;若不能,则无解.常见的有几种情况.已知条件 分解示意图 解的情况已知两个分力的方向 唯一解已知一个分力的大小和方向 唯一解已知一个分力(F2)的大小和另一个分力(F1)的方向 ①F2<Fsin θ 无解②F2=Fsin θ 唯一解③Fsin θ<F2<F 两解④F2≥F 唯一解三、矢量和标量1.矢量:既有大小又有方向,相加时遵从平行四边形定则的物理量.2.标量:只有大小,没有方向,相加时遵从算术法则的物理量.5 共点力的平衡一、共点力如果一个物体受到两个或更多个力的作用,这些力共同作用在同一点上,或者虽不作用在同一点上,但是它们的延长线交于一点,这样一组力叫作共点力.二、共点力平衡的条件1.对共点力的理解(1)共点力作用于物体的同一点(如图甲),或者力的延长线交于一点(如图乙).(2)说明:共点力的交点不一定在物体上,但在画物体的受力图时,一般把共点力的作用点平移到物体的重心.1.平衡状态:(1)物体处于静止或匀速直线运动的状态.(2)对静止的理解:“静止”要满足两个条件:v=0,a=0,缺一不可.“保持”某状态与某“瞬时”状态有区别.例如,竖直上抛的物体运动到最高点时,这一瞬时速度为零,但这一状态不可能保持,因而上抛物体在最高点不能称为静止,即速度为零不等同于静止.2.共点力的平衡条件(1)共点力的平衡条件是合力为0.(2)表示为:F合=0;或将各力分解到x轴和y轴上,满足Fx合=0,且Fy合=0.①二力平衡:若物体在两个力作用下处于平衡状态,则这两个力一定等大、反向.②三力平衡:若物体在三个共点力作用下处于平衡状态,则其中任意两个力的合力与第三个力等大、反向.③多力平衡:若物体在n个共点力作用下处于平衡状态,则其中任意(n-1)个力的合力与第n个力等大、反向.④如果物体所受合力为零,那么物体在任一方向上所受的合力都为零.3.共点力平衡条件的应用求解共点力平衡问题的一般步骤(1)根据问题的要求,恰当地选取研究对象.(2)对研究对象进行受力分析,画出受力分析图.(3)通过平衡条件,找出各个力之间的关系,或由平衡条件列方程,即Fx合=0,Fy合=0.(4)联立方程求解,必要时对解进行讨论.物体在三个力或多个力作用下的平衡问题的解法1.力的合成法——一般用于受力个数为三个时(1)确定要合成的两个力;(2)根据平行四边形定则作出这两个力的合力;(3)根据平衡条件确定两个力的合力与第三力的关系(等大反向);(4)根据三角函数或勾股定理解三角形.2.正交分解法——一般用于受力个数为三个或三个以上时(1)建立直角坐标系;(2)正交分解各力;(3)沿坐标轴方向根据平衡条件列式求解.三、力的正交分解法1.力的正交分解法:把力沿着两个选定的相互垂直的方向分解的方法.2.两种典型情况的力的正交分解(如图甲、乙所示)(1)水平面上物体斜向上的拉力的分解 (2)在斜面上物体重力的分解3.正交分解法求合力(1)建立直角坐标系:以共点力的作用点为坐标原点,直角坐标系x轴和y轴的选择应使尽量多的力在坐标轴上.(2)正交分解各力:将每一个不在坐标轴上的力分解到x轴和y轴上,并求出各分力的大小,如图所示.(3)分别求出x轴、y轴上各分力的矢量和,即:Fx=F1x+F2x+…,Fy=F1y+F2y+….(4)求共点力的合力:合力大小F=,设合力的方向与x轴的夹角为α,则tan α=.四、利用正交分解法分析多力平衡问题1.将各个力分解到x轴和y轴上,根据共点力平衡的条件列式(Fx=0,Fy=0)求解.2.x、y轴的选择原则:使尽可能多的力落在x、y轴上,需要分解的力尽可能少,被分解的力尽可能是已知力.3.此方法多用于三个或三个以上共点力作用下的物体平衡,三个以上共点力平衡一般要采用正交分解法.4.力的分解常用的方法正交分解法 效果分解法分解方法 将一个力沿着两个互相垂直的方向进行分解的方法 根据一个力产生的实际效果进行分解实例 分析 x轴方向上的分力Fx=F cos θ y轴方向上的分力Fy=F sin θ F1= F2=G tan θ5.力的分解方法选取原则(1)选用哪一种方法进行力的分解要视情况而定,一般来说,当物体受到三个或三个以下的力时,常按实际效果进行分解,若这三个力中,有两个力互相垂直,可选用正交分解法。(2)当物体受到三个以上的力时,常用正交分解法。 实验:探究弹簧弹力与形变量的关系一、实验器材弹簧、刻度尺、钩码、铁架台、铅笔、坐标纸.二、实验原理1.弹簧弹力F的确定:弹簧下端悬挂钩码,静止的钩码处于平衡状态,弹力大小与所挂钩码的重力大小相等,即F=mg.2.弹簧的伸长量x的确定:弹簧的原长l0与挂上钩码后弹簧的长度l可以用刻度尺测出,弹簧的伸长量x=l-l0.3.图像法处理实验数据:作出弹簧弹力F与形变量x的关系图像,根据图像可以分析弹簧弹力和形变量的关系.三、实验步骤1.将弹簧的上端固定在铁架台的横杆上,用刻度尺测出弹簧自然下垂时的长度l0,即原长.2.如图所示,在弹簧下端悬挂质量为m1的钩码,测出此时弹簧的长度l1,记录m1和l1.3.改变所挂钩码的质量,测出对应的弹簧长度,记录m2、m3、m4、m5…和相应的弹簧长度l2、l3、l4、l5….4.计算出每次弹簧的形变量x(x=l-l0)和弹簧受到的拉力F(F=mg),并将数据填入表格.次数 1 2 3 4 5 6 7F/N 0l/cmx/cm 0四、数据处理1.建立直角坐标系,以弹簧的弹力F为纵轴、以弹簧形变量x为横轴,根据测量数据在坐标纸上描点,作出F-x图像,如图所示.2.以弹簧的伸长量为自变量,写出图像所代表的函数.首先尝试一次函数,如果不行则考虑二次函数.3.得出弹簧弹力和形变量之间的定量关系,解释函数表达式中常数的物理意义.五、注意事项1.尽量选轻质弹簧以减小弹簧自身重力带来的影响.2.实验中弹簧下端挂的钩码不要太多,避免超出弹簧的弹性限度.3.测量长度时,应区别弹簧原长l0、实际长度l及形变量x三者之间的不同,明确三者之间的关系.为了减小弹簧自身重力带来的影响,测弹簧原长时应让弹簧在不挂钩码时保持自然下垂状态,而不是平放在水平面上处于自然伸长状态.4.记录数据时要注意弹力及形变量的对应关系及单位.5.描点作图时,应使尽量多的点落在画出的线上,可允许少数点分布于线两侧,描出的线不应是折线,而应是平滑的曲线或直线.6.常用单位:N/m 或 N/cm常见图像:图像曲线:超出了弹簧的弹性限度F-x图像不过原点:弹簧本身重力影响实验:探究两个互成角度的力的合成规律一、实验仪器方木板、白纸、弹簧测力计(两个)、橡皮条、细绳、轻质小圆环、三角板、刻度尺、图钉(若干)、铅笔.二、实验原理1.合力F′的确定:一个力F′的作用效果与两个共点力F1与F2共同作用的效果都是把橡皮条拉伸到某点,则F′为F1和F2的合力.2.合力理论值F的确定:根据平行四边形定则作出F1和F2的合力F的图示,求出合力的理论值F.3.在实验误差允许的范围内,比较F′和F是否大小相等、方向相同.三、实验步骤1.在方木板上用图钉固定一张白纸,如图甲所示,用图钉把橡皮条的一端固定在木板上A点,在橡皮条的另一端挂上轻质小圆环.2.用两个弹簧测力计分别钩住小圆环,互成角度地拉橡皮条,将结点拉到某位置O,用铅笔描下结点O的位置和拉线的方向,并记录两弹簧测力计的读数.3.用一个弹簧测力计拉橡皮条,将结点拉到同一位置O,记下弹簧测力计的读数和拉线的方向.4.如图乙所示,利用刻度尺和三角板,按适当的比例作出用两个弹簧测力计拉时的拉力F1和F2的图示以及用一个弹簧测力计拉时的拉力F′的图示,以F1、F2为邻边画出平行四边形,并画出对角线F.5.比较F与F′的大小和方向,看它们在实验误差允许范围内是否相同,从而验证平行四边形定则.四、注意事项(1)位置不变在同一次实验中,使橡皮条拉长时结点的位置一定要相同.(2)角度合适用两个弹簧测力计钩住细绳套互成角度地拉橡皮条时,其夹角不宜太小,也不宜太大,以60°~100°之间为宜.(3)尽量减小误差①在合力不超出量程及在橡皮条弹性限度内,形变应尽量大一些.②细绳套应适当长一些,便于确定力的方向.(4)统一标度在同一次实验中,画力的图示选定的标度要相同,并且要恰当选定标度,使力的图示稍大一些.(5)F′方向与橡皮条共线五、误差分析1.弹簧测力计使用前没调零会造成误差.2.实验时弹簧测力计的弹簧和外壳之间、指针和外壳之间或弹簧测力计的外壳和纸面之间有摩擦力存在会造成误差.3.两次测量拉力时,橡皮条的结点没有拉到同一点会造成偶然误差.4.两个分力的夹角太小或太大以及F1、F2数值太小,应用平行四边形定则作图时,都会造成偶然误差.操作不忘“三”“二”“一”用两个弹簧测力计拉橡皮条时的“三记录”(记录两弹簧测力计示数、两细绳方向和结点O的位置),用一个弹簧测力计拉橡皮条时的“二记录”(记录弹簧测力计示数和细绳方向)及“一注意”(结点O的位置必须在同一位置).专题强化 共点力平衡问题综合分析一、整体法和隔离法在平衡问题中的应用当系统处于平衡状态时,组成系统的每个物体都处于平衡状态,选取研究对象时要注意整体法和隔离法的结合.一般地,当求系统内部间的相互作用时,用隔离法;求系统受到的外力时,用整体法,具体应用中,应将这两种方法结合起来灵活运用.二、共点力作用下物体的静态平衡求解共点力平衡问题的常用方法合成法 三个共点力平衡时,将某两个力进行合成,三力变二力,组成一对平衡力分解法 三个共点力平衡时,将其中一个力沿另外两个力的反方向分解,将三力变四力.构成两对平衡力正交分解法 这一方法体现了力的独立作用效果的思想——在正交的两个方向分解力,各自产生作用效果,互相独立,互不影响,可列方程组:Fx=0;Fy=0三角形法 三个共点力平衡时,三个力必构成首尾相接的闭合三角形,因此可将三个力平移,组成一个三角形,解三角形即可相似三角形法 如果在对力利用平行四边形定则(或三角形定则)运算的过程中,力三角形与几何三角形相似,则可根据相似三角形对应边成比例等性质求解三、共点力作用下物体的动态平衡1.动态平衡:是指平衡问题中的一部分力是变力,是动态力,力的大小和方向均要发生变化,所以叫动态平衡.2.基本思路:化“动”为“静”,“静”中求“动”.3.分析动态平衡问题的方法题型特点 1.三个力中,有一个力为恒力(大小方向均不变) 2.另一个力方向不变,大小可变 3.第三个力大小方向均可变 1.三个力中,有一个力为恒力(大小方向均不变) 2.其余两个力方向、大小均在变 3.有明显长度变化关系 1.三个力中,有一个力为恒力(大小方向均不变) 2.其余两个力方向、大小均在变 3.有一个角恒定不变解题方法 矢量三角形 相似三角形 单位圆或正弦定理补充:晾衣架模型:杆间距d和绳长L确定,上下移动绳结点,绳子张力和绳与杆夹角不变。专题强化 三种性质的力及物体的受力分析一、弹力的判断和计算1.弹力的判断(1)弹力有无的判断“三法”:①条件法:根据物体是否直接接触并发生弹性形变来判断是否存在弹力.此方法多用来判断形变较明显的情况.②假设法:对形变不明显的情况,可假设两个物体间弹力不存在,看物体能否保持原有的状态.③状态法:根据物体的运动状态,利用牛顿第二定律(第四章学习)或共点力平衡条件(第5节学习)判断弹力是否存在.(2)弹力方向的确定.2.弹力的计算(1)对有明显形变的弹簧、橡皮条等物体,弹力的大小可以由胡克定律F=kx计算.(2)对于难以观察的微小形变,可以根据物体的受力情况和运动情况,运用物体平衡条件或牛顿第二定律来确定弹力大小.二、摩擦力的分析与计算1.摩擦力有无的判断方法(1)条件法:根据摩擦力产生的条件判断.(2)假设法:假设接触面光滑,若物体原先的运动状态改变,说明存在摩擦力;否则不存在摩擦力.(3)状态法:由物体所处的状态分析,若物体静止或做匀速直线运动,根据初中学过的二力平衡的知识可判断是否存在摩擦力.(4)力的相互作用法:当一物体所受摩擦力方向不易判断时,可先确定与之相互作用的另一物体所受摩擦力情况,然后根据牛顿第三定律作出判断.2.摩擦力大小的计算(1)静摩擦力的大小①静摩擦力的大小通常要通过受力情况和平衡条件进行计算,随着产生运动趋势的外力的变化而变化.②最大静摩擦力Fmax的大小随物体对接触面的压力的增大而增大,其值略大于滑动摩擦力,高中阶段为了计算方便,往往认为最大静摩擦力大小等于滑动摩擦力.(2)滑动摩擦力的大小计算公式Ff=μFN公式中FN为接触面受到的正压力,与物体的重力G是两种性质的力,大小和方向不一定与重力相同,Ff与物体的运动状态、运动速度的大小、接触面积的大小均无关.三、物体的受力分析受力分析的一般步骤1.明确研究对象.研究对象可以是单个物体(质点、结点),也可以是两个(或多个)物体组成的整体.2.隔离分析:将研究对象从周围物体中隔离出来.3.按重力、弹力、摩擦力、其他力的顺序,依据各力的方向,画出各力的示意图.本章知识网络构建 展开更多...... 收起↑ 资源预览