资源简介 第四章 运动和力的关系1 牛顿第一定律一、理想实验的魅力1.亚里士多德认为:必须有力作用在物体上,物体才能运动;没有力的作用,物体就要静止在某个地方.2.伽利略的理想实验(1)斜面实验:如图所示,让一个小球沿斜面从静止状态开始运动,小球将“冲”上另一个斜面.如果没有摩擦,小球将到达原来的高度.减小第二个斜面的倾角,小球运动的距离更长,但所达到的高度相同.当第二个斜面最终变为水平面时,小球将永远运动下去.(2)推理1:如果斜面光滑,小球将上升到原来释放时的高度.推理2:减小右侧斜面的倾角(如BD、BE),小球在这个斜面上仍将达到同一高度,但这时它要运动得远些.推理3:继续减小右侧斜面的倾角,最后变成水平面(如BF),小球无法达到释放时的高度,将以恒定的速度永远运动下去.(3)推理结论:一切运动着的物体在没有受到外力的时候,它的速度将保持不变,并且一直运动下去.力不是维持物体运动的原因.3.理想实验的意义:伽利略理想实验是以可靠的实验事实为基础,经过抽象思维,抓住主要因素,忽略次要因素,从而更深刻地揭示了自然规律.伽利略的研究方法的核心是把实验和逻辑推理相结合.4.笛卡儿的观点:如果运动中的物体没有受到力的作用,它将继续以同一速度沿同一直线运动,既不会停下来,也不会偏离原来的方向.二、牛顿第一定律1.牛顿第一定律的内容:一切物体总保持匀速直线运动状态或静止状态,除非作用在它上面的力迫使它改变这种状态.2.惯性(1)物体保持原来匀速直线运动状态或静止状态的性质叫作惯性.牛顿第一定律也被叫作惯性定律.(2)惯性是物体的固有属性,一切物体都具有惯性.3.运动状态改变即速度发生变化,有三种情况:(1)速度的方向不变,大小改变.(2)速度的大小不变,方向改变.(3)速度的大小和方向同时改变.4.对牛顿第一定律的理解(1)定性揭示了力和运动的关系:①力是改变物体运动状态的原因,而不是维持物体运动的原因.②物体不受外力时的运动状态:匀速直线运动状态或静止状态.(2)揭示了一切物体都具有的一种固有属性——惯性.因此牛顿第一定律也叫惯性定律.(3)牛顿第一定律是牛顿在总结前人工作的基础上得出的,是在理想实验的基础上加以科学推理和抽象得到的,但其得到的一切结论经过实践证明都是正确的.(4)牛顿第一定律无法用实验直接验证.它所描述的是一种理想状态,即不受外力的状态.三、惯性与质量1.不同物体维持其原有运动状态的“能力”不同,质量大的物体惯性大.描述物体惯性的物理量是它的质量.2.对质量概念的认识(1)质量是物体所含物质的多少.(2)从物体惯性的角度认识质量:质量是物体惯性大小的唯一量度,与物体的运动状态无关,与是否受力无关,与物体的速度大小无关.(3)质量是标量,在国际单位制中的单位是千克,符号为kg.3.惯性的表现(1)在不受力的条件下,惯性表现出维持其原来运动状态的“能力”,有“惰性”的意思.(2)在受力的条件下,惯性表现为运动状态改变的难易程度.质量越大,惯性越大,运动状态越难改变.2 实验:探究加速度与力、质量的关系一、实验基本技能1.实验目的(1)学会用控制变量法研究物理规律.(2)验证牛顿第二定律.(3)掌握利用图像处理数据的方法.2.实验原理(1)保持质量不变,探究加速度跟合外力的关系.(2)保持合外力不变,探究加速度与质量的关系.(3)作出a F图像和a 图像,确定其关系.3.实验器材小车、砝码、小盘、细绳、一端附有定滑轮的长木板、垫木、打点计时器、低压交流电源、导线两根、纸带、天平、米尺.4.实验步骤(1)测量:用天平测量小盘和砝码的质量m′和小车的质量m.(2)安装:按照如图所示装置把实验器材安装好,只是不把悬挂小盘的细绳系在小车上(即不给小车牵引力).(3)补偿阻力:在长木板的不带定滑轮的一端下面垫上一块薄木块,使小车能匀速下滑.(4)操作:①小盘通过细绳绕过定滑轮系于小车上,先接通电源后放开小车,断开电源,取下纸带编上号码.②保持小车的质量m不变,改变小盘和砝码的质量m′,重复步骤①.③在每条纸带上选取一段比较理想的部分,测加速度a.④描点作图,作a F的图像.⑤保持小盘和砝码的质量m′不变,改变小车质量m,重复步骤①和③,作a 图像.二、规律方法总结1.数据处理(1)利用Δx=aT2及逐差法求a.(2)以a为纵坐标,F为横坐标,根据各组数据描点,如果这些点在一条过原点的直线上,说明a与F成正比.(3)以a为纵坐标,为横坐标,描点、连线,如果该线为过原点的直线,就能判定a与m成反比.2.注意事项(1)补偿阻力:适当垫高木板的右端,使小车的重力沿斜面方向的分力正好补偿小车和纸带受到的阻力.在补偿阻力时,不要把悬挂小盘的细绳系在小车上,让小车拉着穿过打点计时器的纸带匀速运动.(2)不重复补偿阻力.(3)实验条件:研究对象为小车时:m m′【整体:m′g=(m+m′)a;小车:T=ma】.盘和砝码的重力近似等于小车受到的合外力.研究对象为小车和砝码整体时,不需要满足m m′.(4)一先一后一按:改变拉力或小车质量后,每次开始时小车应尽量靠近打点计时器,并应先接通电源,后释放小车,且应在小车到达滑轮前按住小车.3.误差分析(1)实验原理不完善:本实验用小盘和砝码的总重力m′g代替小车的拉力,而实际上小车所受的拉力要小于小盘和砝码的总重力.(2)阻力补偿不准确、质量测量不准确、计数点间距测量不准确、纸带和细绳不严格与木板平行都会引起误差.(3)图像:图2不满足m m′;图三没有平衡或者平衡不足;图四平衡过度。3 牛顿第二定律一、牛顿第二定律的表达式1.内容:物体加速度的大小跟它受到的作用力成正比、跟它的质量成反比,加速度的方向跟作用力的方向相同.2.表达式F=kma,其中力F指的是物体所受的合力.3.对牛顿第二定律的理解(1)公式F=ma中,若F是合力,加速度a为物体的实际加速度;若F是某一个力,加速度a为该力产生的加速度.(2)a=是加速度的决定式,它揭示了物体产生加速度的原因及影响物体加速度的因素.(3)F、m、a三个物理量的单位都为国际单位制单位时,才有公式F=kma中k=1,即F=ma.4.牛顿第二定律的性质(1)因果性:力是产生加速度的原因,只要物体所受的合力不为0,物体就具有加速度.(2)矢量性:F=ma是一个矢量式.物体的加速度方向由它受的合力方向决定,且总与合力的方向相同.(3)瞬时性:加速度与合外力是瞬时对应关系,同时产生,同时变化,同时消失.(4)独立性:作用在物体上的每一个力都产生加速度,物体的实际加速度是这些加速度的矢量和.(5)统一性:F、m、a对应同一物体,统一使用国际单位制单位.合外力、加速度、速度的关系1.力与加速度为因果关系:力是因,加速度是果.只要物体所受的合外力不为零,就会产生加速度.加速度与合外力方向是相同的,大小与合外力成正比(物体质量一定时).2.力与速度无因果关系:合外力方向与速度方向可以相同,可以相反,还可以有夹角.合外力方向与速度方向相同时,物体做加速运动,相反时物体做减速运动.3.两个加速度公式的区别a=是加速度的定义式,是比值定义法定义的物理量,a与v、Δv、Δt均无关;a=是加速度的决定式,加速度由物体受到的合外力及其质量决定.二、牛顿第二定律的简单应用1.应用牛顿第二定律解题的一般步骤(1)确定研究对象.(2)进行受力分析和运动状态分析,画出受力分析图,明确运动性质和运动过程.(3)求出合力或加速度.(4)根据牛顿第二定律列方程求解.2.应用牛顿第二定律解题的方法(1)矢量合成法:若物体只受两个力作用,应用平行四边形定则求这两个力的合力,物体所受合力的方向即加速度的方向.(2)正交分解法:当物体受多个力作用时,常用正交分解法求物体所受的合外力.①建立直角坐标系时,通常选取加速度的方向作为某一坐标轴的正方向(也就是不分解加速度),将物体所受的力正交分解后,列出方程Fx=ma,Fy=0(或Fx=0,Fy=ma).②特殊情况下,若物体的受力都在两个互相垂直的方向上,也可将坐标轴建立在力的方向上,正交分解加速度a.根据牛顿第二定律列方程求解.三、力的单位1.力的国际单位:牛顿,简称牛,符号为N.2.“牛顿”的定义:使质量为1 kg的物体产生1 m/s2的加速度的力叫作1 N,即1 N=1 kg·m/s2.3.公式F=kma中k的取值(1)k的数值取决于F、m、a的单位的选取.(2)在质量的单位取kg,加速度的单位取m/s2,力的单位取N时,F=kma中的k=1,此时牛顿第二定律可表示为F=ma.四、牛顿第二定律的瞬时性问题 力学中的几个模型轻绳 弹性绳 轻弹簧 轻杆质量大小 0 0 0 0受外力作用时形变的种类 拉伸形变 拉伸形变 拉伸形变、压缩形变 拉伸形变、压缩形变、弯曲形变受外力作用时形变量大小 微小,可忽略 较大,不可忽略 较大,不可忽略 微小,可忽略弹力方向 沿着绳,指向 绳收缩的方向 沿着绳,指向 绳收缩的方向 沿着弹簧,指向弹簧恢复原长的方向 既可沿着杆,也可跟杆成任意角度弹力大小变化情况 可以突变 不能突变 不能突变 可以突变 2.求解瞬时加速度的一般思路分析瞬时变化前后物体的受力情况 利用牛顿第二定律列方程 求瞬时加速度4 力学单位制一、基本单位1.单位制:基本单位和导出单位一起组成了单位制.2.基本量:被选定的能够利用物理量之间的关系推导出其他物理量的单位的一些物理量,如力学中有长度、质量、时间.3.基本单位:所选定的基本量的单位.4.导出单位:由基本量根据物理关系推导出来的其他物理量的单位,例如速度的单位“米每秒”(m/s)、加速度的单位“米每二次方秒”(m/s2)、力的单位“牛顿”(kg·m/s2).5.单位制:基本单位和导出单位一起就组成了一个单位制.二、国际单位制:不同的单位制在换算中容易出差错,对国际科学技术交流及商业往来极不方便,因此有必要在国际上实行统一的单位标准.1960年第11届国际计量大会制订了一种国际通用的、包括一切计量领域的单位制,叫作国际单位制,简称SI.国际单位制中的基本量物理量名称 物理量符号 单位名称 单位符号长度 l 米 m质量 m 千克(公斤) kg时间 t 秒 s电流 I 安[培] A热力学温度 T 开[尔文] K物质的量 n,(ν) 摩[尔] mol发光强度 I,(Iv) 坎[德拉] cd说明 厘米(cm)、千米(km)、小时(h)、分钟(min)是基本量的单位,但不是国际单位制中的单位.2.在力学中,选定长度、质量和时间这三个物理量的单位为基本单位.长度的单位有厘米(cm)、米(m)、千米(km)等.质量的单位有克(g)、千克(kg)等.时间的单位有秒(s)、分钟(min)、小时(h)等.三、单位制的应用主要有以下几个方面:1.简化计算过程的单位表达:在解题计算时,已知量均采用国际单位制,计算过程中不用写出各个量的单位,只要在式子末尾写出所求量的单位即可.2.推导物理量的单位:物理公式确定了各物理量的数量关系的同时,也确定了各物理量的单位关系,所以我们可以根据物理公式中物理量间的关系推导出物理量的单位.3.判断比例系数的单位:根据公式中物理量的单位关系,可判断公式中比例系数有无单位,如公式F=kx中k的单位为N/m,Ff=μFN中μ无单位,F=kma中k无单位.4.单位制可检查物理量关系式的正误:根据物理量的单位,如果发现某公式在单位上有问题,或者所求结果的单位与采用的单位制中该量的单位不一致,那么该公式或计算结果肯定是错误的.5 牛顿运动定律的应用一、牛顿第二定律的作用牛顿第二定律确定了运动和力的关系:加速度的大小与物体所受合力的大小成正比,与物体的质量成反比;加速度的方向与物体受到的合力的方向相同.二、两类基本问题1.从受力确定运动情况如果已知物体的受力情况,可以由牛顿第二定律求出物体的加速度,再通过运动学的规律确定物体的运动情况.(1)从受力确定运动情况的基本思路分析物体的受力情况,求出物体所受的合外力,由牛顿第二定律求出物体的加速度;再由运动学公式及物体运动的初始条件确定物体的运动情况.流程图如下:(2)从受力确定运动情况的解题步骤a确定研究对象,对研究对象进行受力分析,并画出物体的受力分析图.b根据力的合成与分解,求合力的大小和方向.c根据牛顿第二定律列方程,求加速度.d结合物体运动的初始条件,选择运动学公式,求运动学量——任意时刻的位移和速度,以及运动时间等.2.从运动情况确定受力如果已知物体的运动情况,根据运动学规律求出物体的加速度,结合受力分析,再根据牛顿第二定律求出力.(1)从运动情况确定受力的基本思路分析物体的运动情况,由运动学公式求出物体的加速度,再由牛顿第二定律求出物体所受的合外力;再分析物体的受力,求出物体受到的作用力.流程图如下:(2)从运动情况确定受力的解题步骤a确定研究对象,对物体进行受力分析和运动分析,并画出物体的受力示意图.b选择合适的运动学公式,求出物体的加速度.c根据牛顿第二定律列方程,求出物体所受的合力.d选择合适的力的合成与分解的方法,由合力和已知力求出待求的力.三、多过程问题分析1.当题目给出的物理过程较复杂,由多个过程组成时,要明确整个过程由几个子过程组成,将过程合理分段,找到相邻过程的联系点并逐一分析每个过程.联系点:前一过程的末速度是后一过程的初速度,另外还有位移关系、时间关系等.注意:由于不同过程中力发生了变化,所以加速度也会发生变化,所以对每一过程都要分别进行受力分析,分别求加速度.四、物体在五类光滑斜面上运动时间的比较第一类:等高斜面(如图1所示).由L=at2,a=gsin θ,L= 可得:t= ,可知倾角越小,时间越长,图1中t1>t2>t3.第二类:同底斜面(如图2所示).由L=at2,a=gsin θ,L= 可得:t= ,可见θ=45°时时间最短,图2中t1=t3>t2.第三类:圆周内同顶端的斜面(如图3所示).即在竖直面内的同一个圆周上,各斜面的顶端都在竖直圆周的最高点,底端都落在该圆周上.由2R·sin θ=·gsin θ·t2,可推得:t1=t2=t3.第四类:圆周内同底端的斜面(如图4所示).即在竖直面内的同一个圆周上,各斜面的底端都在竖直圆周的最低点,顶端都源自该圆周上的不同点.同理可推得:t1=t2=t3.第五类:双圆周内斜面(如图5所示).即在竖直面内两个圆,两圆心在同一竖直线上且两圆相切.各斜面过两圆的公共切点且顶端源自上方圆周上某点,底端落在下方圆周上的相应位置.可推得t1=t2=t3.6 超重和失重一、重力的测量1.方法一:利用牛顿第二定律先测量物体做自由落体运动的加速度g,再用天平测量物体的质量m,利用牛顿第二定律可得G=mg.2.方法二:利用力的平衡条件将待测物体悬挂或放置在测力计上,使它处于静止状态.这时物体受到的重力的大小等于测力计对物体的拉力或支持力的大小.二、超重和失重1.视重:当物体挂在弹簧测力计下或放在水平台秤上相对静止时,弹簧测力计或台秤的示数称为“视重”,大小等于弹簧测力计所受的拉力或台秤所受的压力.反映了人对体重计的压力.2.失重(1)定义:物体对支持物的压力(或对悬挂物的拉力)小于物体所受重力的现象.(2)产生条件:物体具有竖直向下(选填“竖直向上”或“竖直向下”)的加速度.3.超重(1)定义:物体对支持物的压力(或对悬挂物的拉力)大于物体所受重力的现象.(2)产生条件:物体具有竖直向上(选填“竖直向上”或“竖直向下”)的加速度.4.完全失重(1)定义:物体对支持物的压力(或对悬挂物的拉力)等于零的状态.(2)产生条件:a=g,方向竖直向下.(3)完全失重状态的说明:在完全失重状态下,平时一切由重力产生的物理现象都将完全消失,比如物体对支持物无压力、摆钟停止摆动、液柱不再产生向下的压强等,靠重力才能使用的仪器将失效,不能再使用(如天平、液体压强计等).(4)完全失重时重力本身并没有变化.5.判断物体超重与失重的方法从受力的 角度判断 超重:物体所受向上的拉力(或支持力)大于重力,即视重大于重力. 失重:物体所受向上的拉力(或支持力)小于重力,即视重小于重力. 完全失重:物体所受向上的拉力(或支持力)为零,即视重为零.从加速度的 角度判断 ①当物体的加速度方向向上(或竖直分量向上)时,处于超重状态 ②当物体的加速度方向向下(或竖直分量向下)时,处于失重状态 ③当物体的加速度为g时,处于完全失重状态从速度变化 的角度判断 ①物体向上加速或向下减速时,超重 ②物体向下加速或向上减速时,失重6.①物体处于超重或失重状态时,物体的重力并未变化,只是视重变了.②发生超重或失重现象只取决于加速度的方向,与物体的速度方向、大小均无关.专题强化 动力学连接体问题和临界问题一、动力学的连接体问题1.连接体:多个相互关联的物体连接(叠放、并排或由绳子、细杆联系)在一起构成的物体系统称为连接体.连接体一般具有相同的运动情况(速度、加速度).2.常见连接体的类型(1)同速连接体(如图) 物体之间的力只与两物体质量有关,与接触面性质无关。特点:两物体通过弹力、摩擦力作用,具有相同速度和相同加速度.处理方法:用整体法求出a与F合的关系,用隔离法求出F内力与a的关系.(2)关联速度连接体(如图)特点:两连接物体的速度、加速度大小相等,方向不同,但有所关联.处理方法:分别对两物体隔离分析,应用牛顿第二定律进行求解.3.处理连接体问题的方法整体法的 选取原则 若连接体内各物体具有相同的加速度,且不需要求物体之间的作用力,可以把它们看成一个整体,分析整体受到的外力,应用牛顿第二定律求出加速度或其他未知量隔离法的 选取原则 若连接体内各物体的加速度不相同,或者要求出系统内两物体之间的作用力时,就需要把物体从系统中隔离出来,应用牛顿第二定律列方程求解整体法、隔离法的交替运用 若连接体内各物体具有相同的加速度,且要求物体之间的作用力时,可以先用整体法求出加速度,然后再用隔离法选取合适的研究对象,应用牛顿第二定律求作用力.即“先整体求加速度,后隔离求内力”4.连接体的动力分配原理:两个物体系统的两部分在外力总动力的作用下以共同的加速度运动时,单个物体分得的动力与自身的质量成正比,与系统的总质量成反比.相关性:两物体间的内力与接触面是否光滑无关,与物体所在接触面倾角无关.二、动力学的临界问题1.临界问题:某种物理现象(或物理状态)刚好要发生或刚好不发生的转折状态.2.关键词语:在动力学问题中出现的“最大”“最小”“刚好”“恰能”等词语,一般都暗示了临界状态的出现,隐含了相应的临界条件.3.临界问题的常见类型及临界条件(1)接触与脱离的临界条件:两物体间的弹力恰好为零.(2)相对静止或相对滑动的临界条件:静摩擦力达到最大静摩擦力.(3)绳子断裂与松弛的临界条件:绳子所能承受的张力是有限的,绳子断裂的临界条件是实际张力等于它所能承受的最大张力,绳子松弛的临界条件是张力为零.(4)加速度最大与速度最大的临界条件:当所受合力最大时,具有最大加速度;当所受合力最小时,具有最小加速度.当运动方向上加速度为零时,物体处于临界状态,对应的速度达到最大值或最小值.(5)距离最近或最远的临界:两物体运动速度相等(6)碰撞后两物体静止的临界:碰前两物体动量大小相等,方向相反(7)物体在曲面上不脱离的临界:最高点时重力提供向心力;C点时速度刚好为零。4.解答临界问题的三种方法(1)极限法:把问题推向极端,分析在极端情况下可能出现的状态,从而找出临界条件.(2)假设法:有些物理过程没有出现明显的临界线索,一般用假设法,即假设出现某种临界状态,分析物体的受力情况与题设是否相同,然后再根据实际情况处理.(3)数学法:将物理方程转化为数学表达式,如二次函数、不等式、三角函数等,然后根据数学中求极值的方法,求出临界条件.专题强化 滑块—木板模型和传送带模型一、滑块—木板模型1.模型概述:一个物体在另一个物体上,两者之间有相对运动.问题涉及两个物体、多个过程,两物体的运动时间、速度、位移间有一定的关系.2.常见的两种位移关系滑块从木板的一端运动到另一端的过程中,若滑块和木板向同一方向运动,则滑离木板的过程中滑块的位移和木板的位移之差等于木板的长度;若滑块和木板向相反方向运动,滑离木板时滑块的位移和木板的位移大小之和等于木板的长度.3.解题方法(1)明确各物体初始状态(对地的运动和物体间的相对运动),确定物体间的摩擦力方向.(2)分别隔离两物体进行受力分析,准确求出各物体在各个运动过程中的加速度(注意两过程的连接处加速度可能突变).(3)找出物体之间的位移(路程)关系或速度关系是解题的突破口.求解中应注意联系两个过程的纽带,即每一个过程的末速度是下一个过程的初速度.二、传送带模型1.传送带的基本类型一个物体以初速度 v0(v0≥0)在另一个匀速运动的物体上运动的力学系统可看成传送带模型.传送带模型按放置方向分为水平传送带和倾斜传送带两种,如图所示.2.水平传送带(1)当传送带水平转动时,应特别注意摩擦力的突变和物体运动状态的变化.(2)求解的关键在于对物体所受的摩擦力进行正确的分析判断.静摩擦力达到最大值,是物体恰好保持相对静止的临界状态;滑动摩擦力只存在于发生相对运动的物体之间,因此两物体的速度相同时,滑动摩擦力要发生突变(滑动摩擦力变为零或变为静摩擦力).(1)情景特点分析项目 图示 滑块可能的运动情况情景1 (1)可能一直加速 (2)可能先加速后匀速情景2 (1) v 0>v时,可能一直减速,也可能先减速再匀速 (2) v 0<v时,可能一直加速,也可能先加速再匀速情景3 (1)传送带较短时,滑块一直减速达到左端 (2)传送带较长时,滑块还要被传送带传回右端.其中v 0>v返回时速度为v,当v 0<v返回时速度为v 0(2)思路方法水平传送带问题:求解关键在于对物体所受摩擦力进行正确的分析判断.物体的速度与传送带速度相等的时刻摩擦力发生突变.3.倾斜传送带(1)对于倾斜传送带,除了要注意摩擦力的突变和物体运动状态的变化外,还要注意物体与传送带之间的动摩擦因数与传送带倾角的关系.①若μ≥tan θ,且物体能与传送带共速,则共速后物体做匀速运动;②若μ(2)求解的关键在于根据物体和传送带之间的相对运动情况,确定摩擦力的大小和方向.当物体的速度与传送带的速度相等时,物体所受的摩擦力有可能发生突变.(3)情景特点分析项目 图示 滑块可能的运动情况情景1 (1)可能一直加速 (2)可能先加速后匀速情景2 (1)可能一直加速 (2)可能先加速后匀速 (3)可能先以a1加速后以a2加速情景3 (1)可能一直加速 (2)可能先加速后匀速 (3)可能一直减速 (4)可能先以a1加速后以a2加速情景4 (1)可能一直加速 (2)可能一直匀速 (3)可能先减速后反向加速 (4)可能一直减速3.传送带划痕和产热问题产热:Q=f专题强化 瞬时加速度问题和动力学图像问题一、瞬时加速度问题物体的加速度与合力存在瞬时对应关系,所以分析物体在某一时刻的瞬时加速度,关键是分析该时刻物体的受力情况及运动状态,再由牛顿第二定律求出瞬时加速度,解决此类问题时,要注意两类模型的特点:(1)刚性绳(或接触面)模型:这种不发生明显形变就能产生弹力的物体,剪断(或脱离)后,恢复形变几乎不需要时间,故认为弹力立即改变或消失.(2)弹簧(或橡皮绳)模型:此种物体的特点是形变量大,恢复形变需要较长时间,在瞬时问题中,其弹力往往可以看成是不变的.二、动力学图像问题1.常见的图像形式在动力学与运动学问题中,常见、常用的图像是位移-时间图像(x-t图像)、速度-时间图像(v-t图像)和力-时间图像(F-t图像)等,这些图像反映的是物体的运动规律、受力规律,而不是代表物体的运动轨迹.2.图像问题的分析方法(1)把图像与具体的题意、情景结合起来,明确图像的物理意义,明确图像所反映的物理过程.(2)特别注意图像中的一些特殊点,如图线与横、纵坐标轴的交点,图线的转折点,两图线的交点等所表示的物理意义.注意图线的斜率、图线与坐标轴所围图形面积的物理意义.本章知识网络构建 展开更多...... 收起↑ 资源预览