资源简介 北教传媒27世纪载自九牛级第二十七章相似矩形ABCD与矩形A'BCD相似.数8懈3△ABC与△A1BC1相似,△A1B1C学27.1图形的相似与△A2B2C2相似,∴.∠A=∠A=∠A2,∠B极速特训圳营-∠A=∠,∠c=∠0=∠0,参1D 2D考面国为是-号-号,所以根据成比例%-A=号盘-8-8C2A23C线段的定义可知选项C正确.故选C∴品-%-CA-是△M与48案△A2B2C2相似,且相似比为8:15.4B(解析已知一个五边形的最短边长和最长边长分别为2,6,设另一五边形最短边长为x9犀:A5=BC=AC3AB B'C AC-2国为这两个五边形相似,所以兰=员解得女“CC-号2=8.故选B..AB'+BC'+A'C'=(AB+BC+AC)=35C解折全等多边形不仅大小相同,而且形状2×21=14(cm).也相同,因此全等多边形是相似多边形36解:四边形ABCD与四边形A'B'CD'相27.2相似三角形似…带瓷品器,极速特训营768面白题意好温-子提-吉5,.A'B=12.6,CD'=10.8,DA'=14.4,所以,AB∴.四边形A'B'CD'的周长为12.6+9+10.8A2 B2 A1B A2 B22解Q因为△ABC∽△DEF,且△ABC三边长+14.4=46.8.的比为7:4:5,7懈 这两个矩形相似.理由如下:所以△DEF三边长的比也为7:4:5.,四边形ABCD和四边形A'B'CD是两个设△DEF其他两条边的长分别为x,y(x矩形,可得y16:x=7:4:5,∠A=∠B=∠C=∠D=∠A'=∠B=∠C解得x=20,y=28,=∠D'=90°,AB=CD,AD=BC,A'B′=所以△DEF的周长为28+16+20=64.CD',A'D'=B'C'.3D又,AD=6,CD=4,CD'=2,A'D'=3,41(解析在矩形ABCD中,AD∥BC,∠ABC=90°.·能=瓷=},BC=VAC-A=《配人教版数学九年级下1229本资料为出版资源,盗版必究!北教传媒27世纪戴自www.2Icnycorn九年级数√/52-32=4,'-器又:∠AEB=∠DBC△ABE学4=子AE=1,故答案为14Cn△DCE.参5证明3:DE∥BC,EF∥DC,124(解析由题图可得△ADE∽△ABC,.ADAE AF AE△ADE∽△AEB,△AEB∽△ABC,△BED·AB=AC·ADAC·答P△CBE.裙-品AD=AP·AB13解相似.理由:,∠A=80°,∠B=70°,∠A6C+∠B+∠C=180°,.∠C=180°-80°-70°=30°,7I证明E,DF∥BC,·△ADF∽△ABC,∠C=∠C.又:∠A=∠A',裙瓷△ABC△A'B'C.又,DF∥CE,14证明照连接AC,BD.由圆周角的性质,得∠A△GDn△GBC,-品=∠D,∠C=∠B,cE-c沿瓷,△PAC∽△PDB0路,即PA·PB=PC·PD.AD·EG=AB·DG15证明照,CD是Rt△ABC斜边上的高,8B解折由题意知AB=√/10,AC=2,BC=2.∴.∠ACB=∠ADC=90°,A中三角形的三边长分别为1,w5,2√2;B中三.∠A+∠B=∠A+∠ACD,角形的三边长分别为1,W2,W5;C中三角形的三.∠ACD=∠B,'.△ACD∽△ABC.边长分别为√2,W5,3:D中三角形的三边长分别同理可证△CBDP△ABC为25,V13.周为2-2=0∴.△ABC∽△ACDP△CBD.125=√2,所以B16证明E如图,连接中的三角形(阴影部分)和△ABC相似.BE.,AE是⊙O的9解E△ABC和△DEF相似.理由:直径,0壶路品=.∠ABE=90.BD,AD⊥BC,鼎景g能"鼎.∠ADC=∠ABE=90°,又:∠AEB=∠ACD,△ABC和△DEF相似..△ABEP△ADC,10B图面依题意,得∠A-∠C-60,铝8怎用AB·AC=AE·ADAD_1CD=Z△AED∽△CBD.17解9,S△0C:S△C=1:3,11解 相似.理由::CE·AE=BE·DE,.S△0C:S△0c=1:2.2301配人教版数学九年级下,本资料为出版资源,盗版必究!北教传媒片21世纪教息章木好时光*@ZHANGMO HAO SHIGUANG知识常青藤今天永远是起跑线两个边数相同的多边形,如果它们的角分别相等,边成比例,那么定义这两个多边形叫做相似多边形相似多性质对应角相等,对应边成比例;周长比等于相似比,面积比等于相似边形比的平方概念三个角分别相等,三条边成比例的两个三角形叫做相似三角形平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似5444444444444444444+44441111111111111111111888888三边成比例的两个三角形相似判定两边成比例且夹角相等的两个三角形相似相似三两角分别相等的两个三角形相似角形对应角相等,对应边成比例性质似对应线段(高、中线、角平分线等)的比等于相似比周长的比等于相似比,面积的比等于相似比的平方利用视线测量物高EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE应用利用影长测量物高利用其他方法构造相似三角形测距离如果两个多边形相似,而且对应顶点的连线相交于一点,那么这两个定义图形叫做位似图形作图确定位似中心,找关键点,作关键点的对应点位似图形平面直角坐标系中的位以原点为位似中心(a.b)(ka,kb)或(-ka,-kb)似变化k为变化后图形与原图形的相似比考情观察室不是尽力,是一定爱殿到专题相似三角形的性质和判定质与判定往往综合在一起考查,要注意它们之间的联系与区别」解读相似三角形是初中几何的重要内容,包括相似三角形的性例①如图所示,CD是Rt△ABC斜边质、判定及其应用,相似三角形的性上的高,点E是AC的中点,ED,CB《配人教版数学九年级下I91本资料为出版资源,盗版必究!止教传媒27世纪载自n∠HANGMO HAU SHIGUANG的延长线交于点F,求证:FB·CD=求点E的坐标.FD·DB.证明E,CD是Rt△ABC斜边上的解(1)设直线AD的解析式为y=高,点E是AC的中点,kx+b.∴.CE=ED=AE,.∠EDC=∠ECD.将点A(告,号引,D0,1)的坐标分别,∠CDB=90°,代人y=kx+b中,得∴.∠EDC+∠BDF=90°,+6=5k=∴.∠ECD+∠BDF=90°.3解得b=1,b=1.,∠ECD十∠DCF=90°,∴.∠BDF=∠DCF.“直线AD的解析式为y=2十1,又∠F=∠F,(2)设点E的坐标为(m,2m+1).∴.△FDBP△FCD,·FB_DB令y=2x+1=0,得x=-2,FD CD'.点B的坐标为(一2,0)∴.FB·CD=FD·DB令y=-x十3=0,得x=3,刷②(广东广州中考)如图所示,在.点C的坐标为(3,0),.OB=2,平面直角坐标系xOy中,直线y=OD=1,BC=5,BD√/12+22=√5.一x十3与x轴交于点C,与直线AD①当△BOD∽△BCE时,如图(1)所交于点A(侍,,点D的坐标为示,EC⊥BC,(0,1).(1)求直线AD的解析式;(2)设直线AD与x轴交于点B,若点E是直线AD上一动点(不与点B重合),当△BOD与△BCE相似时,921配人救版数学九年级下,本资料为出版资源,盗版必究! 展开更多...... 收起↑ 资源列表 【1+1轻巧夺冠】第二十七章 单元总复习 同步学案-人教版数学九年级下册(PDF版,含答案).pdf 第二十七章 参考答案 .pdf