浙教版七上数学【压轴题】九大攻略(含解析)

资源下载
  1. 二一教育资源

浙教版七上数学【压轴题】九大攻略(含解析)

资源简介

中小学教育资源及组卷应用平台
七年级(上册)数学压轴题九大攻略
攻略01 绝对值的三种化简方法
绝对值版块的内容在我们这学期比重较大,尤其是绝对值的化简。并且,在压轴题中,常见的题型是利用数轴化简绝对值和利用其几何意义化简绝对值,本攻略就这两块难点详细做出分析。
【知识点梳理】
1.绝对值的定义
一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|
2.绝对值的意义
①代数意义:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0;
②几何意义:一个数的绝对值就是表示这个数的点到原点的距离,离原点的距离越远,绝对值越大;离原点的距离越近,绝对值越小。
3.绝对值的化简:
类型一、利用数轴化简绝对值
例1.有理数a、b、c在数轴上位置如图,则的值为( ).
A. B. C.0 D.
例2.有理数,在数轴上对应的位置如图所示,那么代数式的值是( )
A.-1 B.1 C.3 D.-3
【变式训练1】已知,数、、的大小关系如图所示:化简____.
【变式训练2】有理数a、b、c在数轴上的位置如图.
(1)判断正负,用“>”或“<”填空: , , .
(2)化简:
【变式训练3】有理数,在数轴上的对应点如图所示:
(1)填空:______0;______0;______0;(填“<”、“>”或“=”)
(2)化简:
【变式训练4】有理数a、b、c在数轴上的位置如图:
(1)用“>”或“<”填空a_____0,b_____0,c﹣b______0,ab_____0.
(2)化简:|a|+|b+c|﹣|c﹣a|.
类型二、利用几何意义化简绝对值
例1.同学们都知道,|5-(-2)|表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对的两点之间的距离.试探索
(1)求|5-(-2)|=________;
(2)同样道理|x+1008|=|x-1005|表示数轴上有理数x所对点到-1008和1005所对的两点距离相等,则x=________;
(3)类似的|x+5|+|x-2|表示数轴上有理数x所对点到-5和2所对的两点距离之和,请你找出所有符合条件的整数x,使得|x+5|+|x-2|=7,这样的整数是__________.
(4)由以上探索猜想对于任何有理数x,|x-3|+|x-6|是否有最小值?如果有,写出最小值;如果没有,说明理由.
【变式训练1】阅读下面的材料:
点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为∣AB∣,当A、B两点中有一点在原点时,不妨设点A在原点,如图1,∣AB∣=∣OB∣=∣b∣=∣a-b∣;当A、B两点都不在原点时:
①如图2,点A、B都在原点的右边:
∣AB∣=∣OB∣-∣OA∣=∣b∣-∣a∣=b-a=∣a-b∣;
②如图3,点A、B都在原点的左边:
∣AB∣=∣OB∣-∣OA∣=∣b∣-∣a∣=-b-(-a)=∣a-b∣;
③如图4,点A、B在原点的两边:
∣AB∣=∣OA∣+∣OB∣=∣a∣+∣b∣=a+(-b)=∣a-b∣,
综上,数轴上A、B两点之间的距离∣AB∣=∣a-b∣. 
回答下列问题:
(1)数轴上表示2和5的两点之间的距离是_________,数轴上表示-2和-5的两点之间的距离是________,数轴上表示1和-3的两点之间的距离是___________;
(2)数轴上表示x和-1的两点A和B之间的距离是________,如果∣AB∣=2, 那么x为__________.
(3)当代数式∣x+1∣+∣x-2∣取最小值时,相应的x的取值范围是__________.
【变式训练2】结合数轴与绝对值的知识回答下列问题:
(1)数轴上表示4和1的两点之间的距离是   ;数轴上表示﹣3和2两点之间的距离是   ;一般地,数轴上表示数m和数n的两点之间的距离可以表示为|m﹣n|.那么,数轴上表示数x与5两点之间的距离可以表示为   ,表示数y与﹣1两点之间的距离可以表示为   .
(2)如果表示数a和﹣2的两点之间的距离是3,那么a=   ;若数轴上表示数a的点位于﹣4与2之间,求|a+4|+|a﹣2|的值;
(3)当a=   时,|a+5|+|a﹣1|+|a﹣4|的值最小,最小值是   .
【变式训练3】(问题提出)的最小值是多少?
(阅读理解)为了解决这个问题,我们先从最简单的情况入手.的几何意义是这个数在数轴上对应的点到原点的距离,那么可以看作这个数在数轴上对应的点到1的距离;就可以看作这个数在数轴上对应的点到1和2两个点的距离之和.下面我们结合数轴研究的最小值.
我们先看表示的点可能的3种情况,如图所示:
(1)如图①,在1的左边,从图中很明显可以看出到1和2的距离之和大于1.
(2)如图②,在1,2之间(包括在1,2上),看出到1和2的距离之和等于1.
(3)如图③,在2的右边,从图中很明显可以看出到1和2的距离之和大于1.因此,我们可以得出结论:当在1,2之间(包括在1,2上)时,有最小值1.
(问题解决)
(1)的几何意义是 ,请你结合数轴探究:的最小值是 .
(2)请你结合图④探究的最小值是 ,由此可以得出为 .
(3)的最小值为 .
(4)的最小值为 .
(拓展应用)如图,已知使到-1,2的距离之和小于4,请直接写出的取值范围是 .
类型三、分类讨论法化简绝对值
例1.化简:.
【变式训练1】若,则的值为_________.
【变式训练2】(1)数学小组遇到这样一个问题:若a,b均不为零,求的值.
请补充以下解答过程(直接填空)
①当两个字母a,b中有2个正,0个负时,x= ;②当两个字母a,b中有1个正,1个负时,x= ;③当两个字母a,b中有0个正,2个负时,x= ;综上,当a,b均不为零,求x的值为 .
(2)请仿照解答过程完成下列问题:
①若a,b,c均不为零,求的值.
②若a,b,c均不为零,且a+b+c=0,直接写出代数式的值.
攻略02 数轴上的三种动点问题
数轴的动点问题,无论在平时练习,还是月考,期中期末考试中属于压轴题的版块,其过程复杂,情况多变。那么,本攻略对其中常考的三种题型(求时间、求距离或者对应点、定值问题)做出详细分析与梳理。
【知识点梳理】
1.数轴上两点间的距离
数轴上A、B两点表示的数为分别为a、b,则A与B间的距离AB=|a-b|;
2.数轴上点移动规律
数轴上点向右移动则数变大(增加),向左移动数变小(减小);
当数a表示的点向右移动b个单位长度后到达点表示的数为a+b;向左移动b个单位长度后到达点表示的数为a-b.
类型一、求值(速度、时间、距离)
例1.如图在数轴上A点表示数a,B点表示数b,a,b满足+=0;
(1)点A表示的数为 ;点B表示的数为 ;
(2)若点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC,请在数轴上找一点C,使AC=2BC,则C点表示的数 ;
(3)若在原点O处放一挡板,一小球甲从点A处以1个单位/秒的速度向左运动;同时另一小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后 (忽略球的大小,可看作一点) 以原来的速度向相反的方向运动,设运动的时间为t(秒),请分别表示出甲,乙两小球到原点的距离 (用t表示).
例2.如图,数轴上两个动点A,B起始位置所表示的数分别为,4,A,B两点各自以一定的速度在数轴上运动,已知A点的运动速度为2个单位/秒.
(1)若A,B两点同时出发相向而行,正好在原点处相遇,请直接写出B点的运动速度.
(2)若A,B两点于起始位置按上述速度同时出发,向数轴正方向运动,几秒时两点相距8个单位长度?
(3)若A,B两点于起始位置按上述速度同时出发,向数轴负方向运动,与此同时,C点从原点出发作同方向的运动,如果在运动过程中,始终有,求C点的运动速度.
【变式训练1】如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”.图中点A表示-10,点B表示10,点C表示18,我们称点A和点C在数轴上相距28个长度单位.动点P、Q同时出发,点P从点A出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速;动点Q从点C出发,以1单位/秒的速度沿着数轴的负方向运动,从点B运动到点O期间速度变为原来的两倍,之后也立刻恢复原速.设运动的时间为t秒.问:
(1)动点P从点A运动至点C需要多少时间?
(2)求P、Q两点相遇时,t的值和相遇点M所对应的数.
【变式训练2】如图,已知、、是数轴上三点,点表示的数为4,,.
(1)点表示的数是______,点表示的数是______.
(2)动点、分别从、同时出发,点以每秒2个单位长度的速度沿数轴向右匀速运动,点以每秒1个单位长度的速度沿数轴向左匀速运动,设点的运动时间为()秒.
①用含的代数式表示:点表示的数为______,点表示是数为______;
②当时,点、之间的距离为______;
③当点在上运动时,用含的代数式表示点、之间的距离;
④当点、到点的距离相等时,直接写出的值.
【变式训练3】如图,点A、B为数轴上的点(点A在数轴的正半轴),,N为AB的中点,且点N表示的数为2.
(1)点A表示的数为______,点B表示的数为______;
(2)点M为数轴上一动点,点C是AM的中点,若,求点M表示的数,并画出点M的位置;
(3)点P从点N出发,以每秒2个单位长度的速度沿数轴向左匀速运动,点Q从点B出发,以每秒1个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,设运动时间为秒.在运动过程中,点P、Q之间的距离为3时,求运动时间t的值.
类型二、定值问题
例1.已知:a是单项式-xy2的系数,b是最小的正整数,c是多项式2m2n-m3n2-m-2的次数.请回答下列问题:
(1)请直接写出a、b、c的值.a= ,b= ,c= .
(2)数轴上,a、b、c三个数所对应的点分别为A、B、C,点A、B、C同时开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒1个单位长度和3个单位长度的速度向右运动,假设t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC.
①t秒钟过后,AC的长度为 (用含t的关系式表示);
②请问:BC-AB的值是否会随着时间t的变化而改变?若变化,请说明理由;若不变,请求出其值.
【变式训练1】如图,已知数轴上点A表示的数为12,B是数轴上一点.且.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为秒.
(1)写出数轴上点B表示的数___,点P表示的数___(用含t的代数式表示);
(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P,Q同时出发,问点P运动多少秒时追上点Q;
(3)若M为AP的中点,N为PB的中点,点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长.
【变式训练2】如图,已知数轴上点A表示的数为9,B是数轴负方向上一点,且.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,运动时间为秒.
(1)数轴上点B表示的数为_____,点P表示的数为________;(用含t的代数式表示)
(2)动点Q从点B出发,以每秒2个单位长度的速度沿数轴向左匀速运动,若点P,Q同时出发,问t为何值时,点P追上点Q?此时P点表示的数是多少?
(3)若点M是线段的中点,点N是线段的中点.点P在运动的过程中,线段的长度是否发生变化?若变化,请说明理由;若不变化,请求出的长度;
【变式训练3】点A、B在数轴上对应的数分别为a、b,且a、b满足.
(1)如图1,求线段AB的长;
(2)若点C在数轴上对应的数为x,且x是方程的根,在数轴上是否存在点P使,若存在,求出点P对应的数,若不存在,说明理由;
(3)如图2,点P在B点右侧,PA的中点为M,N为PB靠近于B点的四等分点,当P在B的右侧运动时,有两个结论:①的值不变;②的值不变,其中只有一个结论正确,请判断正确的结论,并直接写出该值.
类型三、点之间的位置关系问题
例1.如图,已知在数轴上有A,B两点,点A表示的数为8,点B在A点的左边,且.若有一动点P从数轴上点A出发,以每秒3个单位长度的速度沿数轴向左匀速运动,动点Q从点B出发,以每秒2个单位长度的速度沿着数轴向右匀速运动.设点P的运动时间为t秒.
(1)解决问题:
①当时,写出数轴上点B,P所表示的数;
②若点P,Q分别从A,B两点同时出发,问点P运动多少秒与点Q相距3个单位长度?
(2)探索问题:若M为AQ的中点,N为BP的中点.当点P在A,B两点之间运动时,探索线段MN与线段PQ的数量关系(写出过程).
例2.如图,在数轴上A点表示的数为a,B点表示的数为b,C点表示的数为c,b是最大的负整数,且a,c满足|a+3|+(c﹣9)2=0.点P从点B出发以每秒3个单位长度的速度向左运动,到达点A后立刻返回到点C,到达点C后再返回到点A并停止.
(1)a=   ,b=   ;
(2)点P从点B离开后,在点P第二次到达点B的过程中,经过x秒钟,PA+PB+PC=13,求x的值.
(3)点P从点B出发的同时,数轴上的动点M,N分别从点A和点C同时出发,相向而行,速度分别为每秒4个单位长度和每秒5个单位长度,假设t秒钟时,P、M、N三点中恰好有一个点是另外两个点的中点,请直接写出所有满足条件的t的值.
【变式训练1】如图,已知A、B、C是数轴上三点,点O为原点,点C表示的数为6,BC=4, AB=12.
(1)写出数轴上点A、B表示的数;
(2)动点P、Q分别从A、C同时出发,沿数轴向右匀速运动.点P的速度是每秒6个单位长度,点Q的速度是每秒3个单位长度,点M为AP的中点,点N在线段CQ上,且CN=CQ,设运动时间为t(t>0)秒.
①求数轴上点M、N表示的数(用含t的式子表示);
②当M、B、N三个点中的其中一个点是另两点构成的线段的中点的时候,求t的值.
【变式训练2】已知,如图1:数轴上有A、B、C三点,点A表示的数为-5, 点B表示的数为13, 点C表示的数为-2,将一条长为9个单位长度的线段MN放在该数轴上(点M在点N的左边).
(1)求线段AB中点表示的数;
(2)如图2:若从点M与点A重合开始,将线段MN以0.3个单位长度/秒的速度沿数轴向右移动,经过x秒后,点N恰为线段BC的中点,求x的值;
(3)如图3:在(2)的基础上,若线段MN向右移动的同时,动点P从点C开始以0.6个单位长度/秒的速度也沿数轴向右移动,设移动的时间为t秒,当P、N、B三个点中恰有一个点为另两个点所组成线段的中点时,求t的值.
【变式训练3】已知A、B、C为数轴上三点,若点C到A的距离是点C到B的距离的2倍,我们就称点C是的优点.
例如:如图1,A,B为数轴上两点,点A表示的数为-1,点B表示的数为2,表示数1的点C到点A的距离是2,到点B的距离是1,那么点C是的优点;表示数0的点D到点C的距离是1,到点B的距离是2,那么点D是的优点.
(1)在图1中,点C是的优点,也是(A,_____________)的优点;点D是的优点,也是(B,_____________)的优点;
(2)如图2,A,B为数轴上两点,点A所表示的数为-2,点B所表示的数为4.设数所表示的点是的优点,求的值;
(3)如图3,A,B为数轴两点,点A所表的数为-20,点B所表示的数为40.现有一只电子蚂蚁Р从点B出发,以5个单位每秒的速度向左运动,到达点A停止,设点Р的运动时间为t秒,在点Р运动过程中,是否存在P、A和B中恰有一个点为其余两点的优点﹖如果存在请求出t的值;如果不存在,说明理由.
攻略03 代数式化简求值的四种考法
类型一、整体代入求值
例1.若,那么_________.
例2.已知,则_________.
例3.当时,多项式的值为5,则当时,该多项式的值为( )
A. B.5 C. D.3
【变式训练1】已知,则的值为_______.
【变式训练2】若,,则___.
【变式训练3】若,则的值为(   )
A. B. C. D.
【变式训练4】已知a+b=2ab,那么=(  )
A.6 B.7 C.9 D.10
类型二、特殊值法代入求值
例1.设,则的值为( )
A.2 B.8 C. D.
【变式训练1】已知(x﹣1)6=a6x6+a5x5+a4x4+a3x3+a2x2+a1x+a0,将x=0代入这个等式中可以求出a0=1.用这种方法可以求得a6+a5+a4+a3+a2+a1的值为(  )
A.﹣16 B.16 C.﹣1 D.1
【变式训练2】若,则______.
【变式训练3】特殊值法,又叫特值法,是数学中通过设题中某个未知量为特殊值,从而通过简单的运算,得出最终答案的一种方法.例如:已知:,则
(1)取时,直接可以得到;
(2)取时,可以得到;
(3)取时,可以得到;
(4)把(2),(3)的结论相加,就可以得到,结合(1)的结论,从而得出.
请类比上例,解决下面的问题:已知.求:
(1)的值;
(2) 的值;
(3) 的值.
类型三、降幂思想求值
例.若,则_____;
【变式训练1】若实数x满足x2﹣2x﹣1=0,则2x3﹣7x2+4x﹣2016=_____.
【变式训练2】如果的值为5,则的值为______.
【变式训练3】已知x2﹣3x=2,那么多项式x3﹣x2﹣8x+9的值是 _____.
【变式训练4】已知,则的值是______.
类型四、含绝对值的代数式求值
例1.若,且,则的值是________
例2.已知=5,=4,且,则,则的值为( )
A.6 B.±6 C.14 D.6或14
【变式训练1】已知,且,则的值为( )
A.或 B.或 C.或 D.或
【变式训练2】已知,a与b互为倒数,c与d互为相反数,求的值.
【变式训练3】已知,,且,则______.
攻略04 整式中加减无关型的三种考法
类型一、不含某一项
例.已知关于x的整式A、B,其中A=4x2+(m﹣1)x+1,B=nx2+2x+1.若当A+2B中不含x的二次项和一次项时,求m+n的值.
【变式训练1】若多项式不含和x项,则的值为_______.
【变式训练2】若多项式与多项式相减后不含二次项,则的值为______ .
【变式训练3】.先化简再求值:
(1),其中.
(2)已知整式与整式的差不含x和项,试求出的值.
【变式训练4】若要使多项式化简后不含x的二次项,则m等于( )
A.1 B. C.5 D.
类型二、与某一项的取值无关
例1.已知,,且多项式的值与字母取值无关,求的值.
【变式训练1】已知代数式的值与x的取值无关,则________.
【变式训练2】定义:若,则称x与y是关于m的相关数.
(1)若5与a是关于2的相关数,则_____.
(2)若A与B是关于m的相关数,,B的值与m无关,求B的值.
【变式训练3】(1)化简求值,其中.
(2)已知,若多项式的值与字母的取值无关,求的值.
【变式训练4】定义:若,则称与是关于的关联数.例如:若,则称与是关于2的关联数;
(1)若3与是关于的关联数,则__________.
(2)若与是关于-2的关联数,求的值.
(3)若与是关于的关联数,,的值与无关,求的值.
类型三、问题探究
例1.有这样一道题:计算的值,其中,小明把抄成.但他的计算结果却是正确的,你能说出其中的原因吗?请你求出正确结果.
【变式训练1】李老师写出了一个整式ax2+bx-2-(5x2+3x),其中a,b为常数,且表示为系数,然后让同学赋予a,b不同的数值进行计算.
(1)甲同学给出了a=6,b=-2,请按照甲同学给出的数值化简整式;
(2)乙同学给出了一组数据,计算的最后结果与x的取值无关,请求出乙同学给出的a,b的值.
【变式训练2】有这样一道题:“当,时,求多项式值.”小明认为:本题中,是多余的条件.小强反对说:“这不可能,多项式中含有和,不给出、的值,就不能求出多项式的值.”你同意谁的观点?请说明理由.
【变式训练3】有这样一道题“当时,求多项
的值”,小马虎做题时把错抄成, 但他做出的结果却是正确的,你知道这是怎么回事吗?请说明理由,
并求出结果.
【变式训练4】已知,小红错将“”看成了“”,算得结果为.
(1)求;(2)小军跟小红说:“的大小与取值无关”,小军的说法对吗?为什么?
攻略05 整式中的两种规律探索问题
类型一、数字类规律探索
例.观察:(x﹣1)(x+1)=x2﹣1,(x﹣1)(x2+x+1)=x3﹣1,(x﹣1)(x3+x2+x+1)=x4﹣1,据此规律,当(x﹣1)(x5+x4+x3+x2+x+1)=0时,代数式x2019﹣1的值为 _____.
【变式训练1】a是不为1的有理数,我们把称为a的差倒数,如2的差倒数为,-1的差倒数为,已知,是差倒数,是差倒数,是差倒数,以此类推……,的值是( )
A.5 B. C. D.
【变式训练2】有2021个数排成一行,对于任意相邻的三个数,都有中间数等于前后两数的和,如果第一个数是0,第二个数是1, 那么前6个数的和是______, 这2021个数的和是______.
【变式训练3】有一列数,…,那么第n个数为______.
【变式训练4】杨辉三角又称贾宪三角,是二项式系数在三角形中的一种几何排列,如图,观察下面的杨辉三角:按照前面的规律,则的展开式中从左起第三项为______.
类型二、图形类规律探索
例.如图,两条直线相交,有1个交点,三条直线相交最多有3个交点,四条直线相交最多有______个交点,n条直线相交最多有______个交点.
【变式训练1】如图都是由同样大小的小球按一定规律排列的,依照此规律排列下去,第_____个图形共有45个小球.
【变式训练2】为庆祝“六·一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示:
按照上面的规律,摆第n个“金鱼”和第(n+1)个“金鱼”需用火柴棒的根数为130根,则n的值为______.
【变式训练3】如图是某广场用地板铺设的部分图案,中央是一块正六边形的地板砖,周围是正三角形和正方形的地板砖.从里向外的第1层包括6个正方形和6个正三角形,第2层包括6个正方形和18个正三角形,依此递推,第10层中含有正三角形个数为___个,第层含有正三角形个数为___个.
【变式训练4】观察下列图形:
它们是按一定规律排列的,依照此规律,用6064个五角星摆出的图案应该是第_______个图形.
攻略06 一元一次方程特殊解的四种考法
类型一、整数解问题
例.已知关于x的方程有负整数解,则所有满足条件的整数a的值之和为( )
A. B. C. D.
【变式训练1】关于x的一元一次方程(k﹣1)x=4的解是整数,则符合条件的所有整数k的值的和是(  )
A.0 B.4 C.6 D.10
【变式训练2】从,,,1,2,4中选一个数作为的值,使得关于的方程的解为整数,则所有满足条件的的值的积为( )
A. B. C.32 D.64
【变式训练3】若整数使关于的一元一次方程有非正整数解,则符合条件的所有整数之和为( )
A. B. C.0 D.3
【变式训练4】已知关于x的方程的解是非正整数,则符合条件的所有整数m的和是( )
A. B. C.2 D.4
类型二、含绝对值型
例.有些含绝对值的方程,可以通过讨论去掉绝对值,转化成一元一次方程求解.例如:解方程,
解:当时,方程可化为:,解得,符合题意;
当时,方程可化为:,解得,符合题意.
所以,原方程的解为或.
请根据上述解法,完成以下两个问题:
(1)解方程:;
(2)试说明关于的方程解的情况.
【变式训练1】若,则____.
【变式训练2】已知关于的方程的解满足,则符合条件的所有的值的和为______.
【变式训练3】已知方程的解是负数,则值是( )
A. B. C. D.
【变式训练4】有些含绝对值的方程,可以通过分类讨论去掉绝对值,转化成一元一次方程求解.
例如:解方程
解:当时,方程可化为:
,符合题意
当<0时,方程可化为:
=-3,符合题意
所以原方程的解为:或 =-3
仿照上面解法,解方程:
类型三、相同解的问题
例.若关于的方程的解与方程的解相同,求的值.
【变式训练1】若关于x的方程的解与方程的解相同,则a的值为______.
【变式训练2】若关于的方程的解与方程的解相同,则的值为______.
【变式训练3】如果关于x的方程与的解相同,那么m的值是(  )
A.1 B.±1 C.2 D.±2
类型四、解的情况
例.已知关于x的方程为一元一次方程,且该方程的解与关于x的方程的解相同.
(1)求m,n的值;
(2)在(1)的条件下,若关于y的方程|a|y+a=m+1﹣2ny无解,求a的值.
【变式训练1】若关于x的方程无解,则a=______.
【变式训练2】解关于x的方程:
【变式训练3】如果关于x的方程无解,那么m的取值范围( )
A.任意实数 B. C. D.
攻略07 一元一次方程实际应用的六种考法
类型一、 数字问题
例.(1)把100拆分成2个数的和,使得第一个数加3,第二个数减3,得到的结果相等.则拆分成的这两个数分别是   和   ;
(2)把100拆分成2个数的和,使得第一个数乘2.第二个数除以2,得到的结果相等.则拆分成的这两个数分别是   和   ;
(3)把100拆分成4个数的和,使得第一个数加5,第二个数减5,第三个数乘5,第4个数除以5,得到的的结果都相等,问拆分成的这四个数分别是多少.
【变式训练1】将连续的奇数1,3,5,7,9,……排成如图所示的数表.
(1)写出数表所表示的规律;(至少写出4个)
(2)若将方框上下左右移动,可框住另外的9个数.若9个数之和等于297,求方框里中间数是多少?
【变式训练2】如图所示的10×5(行×列)的数阵,是由一些连续奇数组成的.
(1)形如图框中的四个数,设第一行的第一个数为x,用含x的式子表示另外三个数;
(2)若这样框中的四个数的和是200,求出这四个数;
(3)是否存在这样的四个数,它们的和为296?为什么?
【变式训练3】将连续的偶数0,2,4,6,8,…排成如图所示的数表.
(1)十字形框内的五个数之和是中间数的______;若设十字形框内的五个数中最中间一个数是x,用代数式表示十字形框内五个数之和为______;
(2)若将十字形框上下左右移动,可框住另外五个数,这五个数还有上述规律吗?直接写出答案,不需要证明;
(3)十字形框能否框到五个数,使这五个数之和等于2400呢?若能,请写出这五个数,若不能,请说明理由.
类型二、配套问题
例.列方程解应用题
某啤酒公司的啤酒车间先将散装啤酒灌装成瓶装啤酒,再将瓶装啤酒装箱出车间.该车间有灌装、装箱生产线共21条,每条灌装生产线每小时装350瓶,每条装箱生产线每小时装450瓶.某日,生产前车间内已有未装箱的瓶装啤酒5200瓶,8:00开始,车间内的生产线全部投入生产.
(1)若当日到10:00时,该车间内未装箱的瓶装啤酒达到5500瓶.设灌装生产线有x条,当日到10:00时,灌装生产线共装多少瓶啤酒(用含x的代数式表示)?该车间内灌装生产线有多少条?
(2)若该日车间工作8小时,灌装生产线设计多少条时?该日车间内的瓶装啤酒恰好全部装箱?
【变式训练1】小林到某纸箱厂参加社会实践,该厂计划用50张白板纸制作某种型号的长方体纸箱.如图,每张白板纸可以用A,B,两种方法剪裁,其中A种裁法:一张白板纸裁成4个侧面;B种裁法:一张白板纸裁成2个侧面与4个底面.且四个侧面和两个底面恰好能做成一个纸箱.设按A种方法剪裁的有x张白板纸.
(1)按B种方法剪裁的有______张白板纸;(用含x的代数式表示)
(2)将50张白板纸裁剪完后,可以制作该种型号的长方体纸箱多少个?
【变式训练2】某服装厂要生产同一种型号的服装,已知3m长的布料可做上衣2件或裤子3条,一件上衣和一条裤子为一套.
(1)现库存有布料300m,应如何分配布料做上衣和做裤子才能恰好配套?可以生产多少套衣服?
(2)如果恰好有这种布料227m,最多可以生产多少套衣服?本着不浪费的原则,如果有剩余,余料可以做几件上衣或裤子?(本问直接写出结果)
【变式训练3】某工厂接受了15天内生产1200台GH型电子产品的总任务. 已知每台GH型产品由4个G型装置和3个H型装置配套组成. 工厂现有80名工人,每个工人每天能加工8个G型装置或4个H型装置.工厂将所有工人分成两组同时开始加工,每组分别加工一种装置,并要求每天加工的G、H型装置数量正好全部配套组成GH型产品.
(1)按照这样的生产方式,工厂每天能配套组成多少套GH型电子产品?
(2)为了在规定期限内完成总任务,工厂决定补充一些新工人,这些新工人只能独立进行G 型装置的加工,且每人每天只能加工4个G型装置. 请问至少需要补充多少名新工人?
类型三、销售利润问题
例.甲、乙两件服装的成本共500元,商店老板为获取利润,决定将甲服装按50%的利润定价,乙服装按40%的利
润率定价.在实际出售时,应顾客要求,两件服装均按9折出售,这样商店老板共获利157元.甲、乙两件服装的
成本各为多少元?
【变式训练1】“虎年大吉,岁岁平安”,为了喜迎新春,某水果店在春节期间推出水果篮和坚果礼盒,每个水果篮的成本为200元,每盒坚果礼盒的成本为150元,每个水果篮的售价比每盒坚果礼盒的售价多100元,售卖1个水果篮获得的利润和售卖2盒坚果礼盒获得的利润相同.
(1)求每个水果篮和每盒坚果礼盒的售价;
(2)在年末时,该水果店购进水果篮1250个和坚果礼盒1200盒,进行“新春特惠”促销活动.水果店规定,每人每次最多购买水果篮1个或坚果礼盒1盒,每个水果篮在售价的基础上打九折后再参与店内“每满100元减m元”的活动,每盒坚果礼盒直接参与店内“每满100元减m元”的活动.售卖结束时,坚果礼盒全部售卖完,售卖过程中由于部分水果变质导致水果篮有50个没办法售出.若该水果店获得的利润率为20%,求m的值.
【变式训练2】某工厂有甲、乙两个车间,甲车间生产A产品,乙车间生产B产品,去年两个车间生产产品的数量相同且全部售出.已知A产品的销售单价比B产品的销售单价高100元,1件A产品与1件B产品售价和为300元.
(1)A、B两种产品的销售单价分别是多少元?
(2)今年,该工厂计划依托工业互联网将乙车间改造为专供用户定制B产品的生产车间.预计A产品在售价不变的情况下产量将在去年的基础上增加a%;B产品产量将在去年的基础上减少a%,但B产品的销售单价将提高2a%.则今年A、B两种产品全部售出后总销售额将在去年的基础上增加.求a的值.
【变式训练3】某超市计划购进甲、乙两种型号的节能灯共1000只,这两种节能灯的进价、售价如下表:
进价(元/只) 售价(元/只)
甲型 25 30
乙型 45 60
(1)如果进货款恰好为37000元,那么可以购进甲型节能灯多少只?
(2)超市为庆祝元旦进行大促销活动,决定对乙型节能灯进行打折销售,要求全部售完后,乙型节能灯的利润率为20%,请问乙型节能灯需打几折?
【变式训练4】武汉大洋百货经销甲、乙两种服装,甲种服装每件进价500元,售价800元;乙种服装商品每件售价
1200元,可盈利50%.
(1)每件甲种服装利润率为   ,乙种服装每件进价为   元;
(2)若该商场同时购进甲、乙两种服装共40件,恰好总进价用去27500元,求商场销售完这批服装,共盈利多少?
(3)在元旦当天,武汉大洋百货实行“满1000元减500元的优惠”(比如:某顾客购物1200元,他只需付款700元).到了晚上八点后,又推出“先打折”,再参与“满1000元减500元”的活动.张先生买了一件标价为3200元的羽绒服,张先生发现竟然比没打折前多付了20元钱问大洋百货商场晚上八点后推出的活动是先打多少折之后再参加活动?
类型四、工程问题
例.某工程队承包德阿公路绵竹市境内一段长为1755米的道路改造工程,由甲、乙两个施工小队分别从南、北两端同时施工.已知甲队比乙队平均每天多施工3米,经过5天施工后,两个小队共完成施工路段135米.
(1)求甲、乙两个小队平均每天各施工多少米?
(2)为加快进度,通过改进施工技术,在剩余的工程中,甲队平均每天能比原来多施工1米,乙队平均每天能比原来多施工2米,甲、乙同时按此施工,能够比原来提前多少天完成道路改造任务?
【变式训练1】某校职工周转房已经落成,有一些结构相同的房间需要粉刷墙面.已知3名一级技工去粉刷8个房间,结果有30m2墙面未来得及粉刷;同样时间内5名二级技工粉刷了10个房间,另外又多粉刷20m2墙面.每名一级技工比二级技工一天多粉刷12m2墙面.
(1)求每个房间需要粉刷的墙面面积;(列方程解决问题)
(2)若粉刷1m2墙面给付一级技工6元费用,给付二级技工5.5元费用,问一级技工和二级技工每人每天各挣多少工钱?
【变式训练2】湖北荆宜高速公路是“国家高速公路网规划”中的建设工程,该工程预算国拨总投资为24亿元,分土建、路面、设施三个建设项目,路面投资占土建投资的,设施投资比土建投资少40%、由于物价的上涨,工程建设实际总投资随之增长,路面投资的增长率是土建投资增长率的2.5倍,设施投资的增长率达到路面投资增长率的2倍,
(1)三个项目的预算投资分别是多少亿元?
(2)由于合理施工,使公路提前半年通车,每月可通行车辆100万辆,每辆车的平均收益为40元.这样,可将提前半年通车收益的70%用于该工程建设的实际投资,减少了国拨投资,使预算国拨总投资减少的百分率与土建投资的增长率相同,该工程的实际总投资是多少亿元?
类型五、行程问题
例.甲骑摩托车从A地去B地,乙开汽车从B地去A地,同时出发,匀速行驶,各自到达终点后停止,甲、乙两人间的距离为)与甲行驶的时间为之间的关系如图所示.
(1)以下是点M、点N、点P所代表的实际意义,请将M、N、P填入对应的横线上.
①甲到达终点_________.
②甲乙两人相遇_________.
③乙到达终点_________.
(2)AB两地之间的路程为_________千米;
(3)求甲、乙各自的速度;
(4)如果乙到达A地后立刻原路原速返回到B地,在甲到达B地的过程中,甲出发_________小时,甲乙相距100千米.
【变式训练1】为抗击疫情,支援B市,A市某蔬菜公司紧急调运两车蔬菜运往B市.甲、乙两辆货车从A市出发前往B市,乙车行驶途中发生故障原地维修,此时甲车刚好到达B市.甲车卸载蔬菜后立即原路原速返回接应乙车,把乙车的蔬菜装上甲车后立即原路原速又运往B市.乙车维修完毕后立即返回A市.两车离A市的距离y(km)与乙车所用时间x(h)之间的函数图象如图所示.
(1)甲车速度是_______km/h,乙车出发时速度是_______km/h;
(2)求乙车返回过程中,乙车离A市的距离y(km)与乙车所用时间x(h)的函数解析式(不要求写出自变量的取值范围);
(3)乙车出发多少小时,两车之间的距离是120km?请直接写出答案.
【变式训练2】随着互联网的普及和城市交通的多样化,人们出行的时间与方式有了更多的选择,某市有出租车、滴滴快车等网约车,收费标准见下图.
出租车起步价:14元里程费:超过3公里的部分2.4元/公里(不足1公里按1公里计) 滴滴快车起步价:12元里程费:2.5元/公里时长费:0.4元/分钟(滴滴快车行驶的平均速度为40公里/时)
(1)若乘坐这两种网约车的里程数都是9公里,则发现乘坐出租车最节省钱,求乘坐出租车费用为多少元?
(2)若从甲地到乙地,乘坐滴滴快车比出租车多用15元,求甲、乙两地间的里程数.
【变式训练3】A、B两地相距480km,C地在A、B两地之间.一辆轿车以100km/h的速度从A地出发匀速
行驶,前往B地.同时,一辆货车以80km/h的速度从B地岀发,匀速行驶,前往A地.
(1)当两车相遇时,求轿车行驶的时间;
(2)当两车相距120km时,求轿车行驶的时间;
(3)若轿车到达B地后,立刻以120km/h的速度原路返回,再次经过C地,两次经过C地的时间间隔为2.2h,求C
地距离A地路程.
类型六、方案问题
例.春节即将来临,甲、乙两单位准备组织退休职工到某风景区游玩.甲、乙两单位共102人,其中甲单位人数多于乙单位人数,且甲单位人数不够100人.经了解,该风景区的门票价格如下表:
数量(张) 1﹣50 51﹣100 101张及以上
单价(元/张) 60元 50元 40元
如果两单位分别单独购买门票,一共应付5500元.
(1)如果甲、乙两单位联合起来购买门票,那么比各自购买门票共可以节省多少钱?
(2)甲、乙两单位各有多少名退休职工准备参加游玩?
(3)如果甲单位有12名退休职工因身体原因不能外出游玩,那么你有几种购买方案,通过比较,你
如何购买门票才能最省钱?
【变式训练1】2021年“双十一”期间,很多国货品牌受到人们的青睐,销量大幅增长.某平台的体育用品旗舰店实行优惠销售,规定如下:对原价160元/件的某款运动速干衣和20元/双的某款运动棉袜开展促销活动,活动期间向客户提供两种优惠方案.
方案A:买一件运动速干衣送一双运动棉袜;
方案B:运动速干衣和运动棉袜均按9折付款.
某户外俱乐部准备购买运动速干衣30件,运动棉袜x双().
(1)若该户外俱乐部按方案A购买,需付款_______元(用含x的代数式表示);
若该户外俱乐部按方案B购买,需付款_______元(用含x的代数式表示).
(2)若x=40,通过计算说明此时按哪种方案购买较为合算:
(3)当购买运动棉袜多少双时两种方案付款相同.
【变式训练2】某企业有,两条加工相同原材料的生产线,在一天内,生产线共加工吨原材料,加工时间为 小时;在一天内,生产线共加工吨原材料,加工时间为 小时.
(1)当时,两条生产线的加工时间分别是多少小时?
(2)某一天,该企业把吨原材料分配到、两条生产线,两条生产线都在一天内完成了加工,且加工时间相同,则分配到两条生产线的吨数是多少?
【变式训练3】某校计划购买20张书柜和一批书架(书架不少于20只),现从A、B两家超市了解到:同型号的产品价格相同,书柜每张210元,书架每只70元,A超市的优惠政策为每买一张书柜赠送一只书架,B超市的优惠政策为所有商品八折,设购买书架a只.
(1)若该校到同一家超市选购所有商品,则到A超市要准备_____元货款,到B超市要准备_____元货款(用含a的式子表示);
(2)在(1)的情况下,当购买多少只书架时,无论到哪一家超市所付货款都一样?
(3)假如你是本次购买的负责人,学校想购买20张书柜和100只书架,且可到两家超市自由选购,请你设计一种购买方案,使付款额最少,最少付款额是多少?
攻略08 线段上动点问题的三种考法
类型一、求值问题
例.数轴上有A,B,C三点,A,B表示的数分别为m,n,点C在B的右侧,.
(1)如图1,若多项式是关于x的二次三项式,请直接写出m,n的值:
(2)如图2,在(1)的条件下,长度为1的线段(E在F的左侧)在A,B之间沿数轴水平滑动(不与A,B重合),点M是的中点,N是的中点,在滑动过程中,线段的长度是否发生变化,请判断并说明理由;
(3)若点D是的中点.
①直接写出点D表示的数____________(用含m,n的式子表示);
②若,试求线段的长.
【变式训练1】如图1,点C在线段AB上,图中共有三条线段AB,AC和BC,若其中有一条线段的长度是另外一条线段长度的2倍,则称点C是线段AB的“巧点”.
(1)线段的中点__这条线段的“巧点”;(填“是”或“不是”);
(2)如图2,已知AB=15cm.动点P从点A出发,以2cm/s的速度沿AB向点B匀速运动;点Q从点B出发,以1cm/s的速度沿BA向点A匀速运动,点P,Q同时出发,当其中一点到达终点时,运动停止.设移动的时间为t(s),当t=__s时,Q为A,P的“巧点”.
【变式训练2】已知:如图1,M是定长线段AB上一定点,C、D两点分别从M、B出发以1cm/s、3cm/s的速度沿直线BA向左运动,运动方向如箭头所示(C在线段AM上,D在线段BM上)
(1)若AB=11cm,当点C、D运动了1s,求AC+MD的值.
(2)若点C、D运动时,总有MD=3AC,直接填空:AM=  BM.
(3)在(2)的条件下,N是直线AB上一点,且AN﹣BN=MN,求的值.
【变式训练3】如图,数轴上有两点,点C从原点O出发,以每秒的速度在线段上运动,点D从点B出发,以每秒的速度在线段上运动.在运动过程中满足,若点M为直线上一点,且,则的值为_______.
类型二、证明定值问题
例.如图,已知线段,,线段在直线上运动(点在点的左侧,点在点的左侧),若.
(1)求线段,的长;
(2)若点,分别为线段,的中点,,求线段的长;
(3)当运动到某一时刻时,点与点重合,点是线段的延长线上任意一点,下列两个结论:①是定值,②是定值,请选择你认为正确的一个并加以说明.
【变式训练1】已知线段AB=m,CD=n,线段CD在直线AB上运动(A在B的左侧,C在D的左侧),且m,n满足|m-12|+(n-4)2=0.
(1)m=  ,n=  ;
(2)点D与点B重合时,线段CD以2个单位长度/秒的速度向左运动.
①如图1,点C在线段AB上,若M是线段AC的中点,N是线段BD的中点,求线段MN的长;
②P是直线AB上A点左侧一点,线段CD运动的同时,点F从点P出发以3个单位/秒的向右运动,点E是线段BC的中点,若点F与点C相遇1秒后与点E相遇.试探索整个运动过程中,FC-5DE是否为定值,若是,请求出该定值;若不是,请说明理由.
【变式训练2】如图,数轴上点,表示的有理数分别为,3,点是射线上的一个动点(不与点,重合),是线段靠近点的三等分点,是线段靠近点的三等分点.
(1)若点表示的有理数是0,那么的长为________;若点表示的有理数是6,那么的长为________;
(2)点在射线上运动(不与点,重合)的过程中,的长是否发生改变?若不改变,请写出求的长的过程;若改变,请说明理由.
【变式训练3】(1)如图1,在直线上,点在、两点之间,点为线段PB的中点,点为线段的中点,若,且使关于的方程无解.
①求线段的长;
②线段的长与点在线段上的位置有关吗?请说明理由;
(2)如图2,点为线段的中点,点在线段的延长线上,试说明的值不变.
类型三、数量关系
例.数轴上两点对应的数分别是,线段在数轴上运动,点在点的左边,且点是的中点.
(1)如图1,当线段运动到点均在之间时,若,则_________,点对应的数为________,________;
(2)如图2,当线段运动到点在之间时,画出草图并求与的数量关系.
【变式训练1】如图,已知线段AB,延长线段BA至C,使CB=AB.
(1)请根据题意将图形补充完整.直接写出= _______;
(2)设AB = 9cm,点D从点B出发,点E从点A出发,分别以3cm/s,1cm/s的速度沿直线AB向左运动.
①当点D在线段AB上运动,求的值;
②在点D,E沿直线AB向左运动的过程中,M,N分别是线段DE、AB的中点.当点C恰好为线段BD的三等分点时,求MN的长.
【变式训练2】已知点C在线段AB上,AC=2BC,点D、E在直线AB上,点D在点E的左侧,
(1)若AB=18,DE=8,线段DE在线段AB上移动,
①如图1,当E为BC中点时,求AD的长;
②当点C是线段DE的三等分点时,求AD的长;
(2)若AB=2DE,线段DE在直线上移动,且满足关系式,则=   .
攻略09 几何中动角问题的两种考法
类型一、判断角的数量之间的关系
例.如图所示,O是直线上的一点,是直角,平分.
(1)如图①,若,求的度数;
(2)在图①,若,直接写出的度数_________(用含a的代数式表示);
(3)将图①中的绕顶点O顺时针旋转至图②的位置.
①探究和的度数之间的关系,写出你的结论,并说明理由;
②在的内部有一条射线,满足,试确定与的度数之间的关系,说明理由.
【变式训练1】已知∠AOB=∠COD=90°,OE平分∠BOC.
(1)如图,若∠AOC=30°,则∠DOE的度数是______;(直接写出答案)
(2)将(1)中的条件“∠AOC=30°”改为“∠AOC是锐角”,猜想∠DOE与∠AOC的关系,并说明理由;
(3)若∠AOC是钝角,请先画出图形,再探索∠DOE与∠AOC之间的数量关系.(不用写探索过程,将结论直接写在你画的图的下面)
【变式训练2】如图,以直线AB上一点O为端点作射线OC,使,将一个直角三角形的直角顶点放在点O处.(注:)
(1)如图①,若直角三角板DOE的一边OD放在射线OB上,则________;
(2)如图②,将直角三角板DOE转到如图位置,当OC恰好平分时,求的度数;
(3)如图③,将直角三角板DOE绕点O转动,如果OD始终在的内部,直接写出和的数量关系_________.
【变式训练3】已知,,,分别平分,.
(1)如图1,当,重合时, 度;
(2)若将的从图1的位置绕点顺时针旋转,旋转角,满足且.
①如图2,用等式表示与之间的数量关系,并说明理由;
②在旋转过程中,请用等式表示与之间的数量关系,并直接写出答案.
【变式训练4】如图,已知,将一个直角三角形纸片()的一个顶点放在点处,现将三角形纸片绕点任意转动,平分斜边与的夹角,平分.
(1)将三角形纸片绕点转动(三角形纸片始终保持在的内部),若,则_______;
(2)将三角形纸片绕点转动(三角形纸片始终保持在的内部),若射线恰好平分,若,求的度数;
(3)将三角形纸片绕点从与重合位置逆时针转到与重合的位置,猜想在转动过程中和的数量关系?并说明理由.
类型二、定值问题
例.已知将一副三角尺(直角三角尺和)的两个顶点重合于点,,
(1)如图1,将三角尺绕点逆时针方向转动,当恰好平分时,求的度数;
(2)如图2,当三角尺摆放在内部时,作射线平分,射线平分,如果三角尺在内绕点任意转动,的度数是否发生变化?如果不变,求其值;如果变化,说明理由.
【变式训练1】如图,两条直线AB、CD相交于点O,且∠AOC=90°,射线OM从OB开始绕O点逆时针方向旋转,速度为15°/s,射线ON同时从OD开始绕O点顺时针方向旋转,速度为12°/s.两条射线OM、ON同时运动,运动时间为t秒.(本题出现的角均小于平角)
(1)当t=2时,∠MON的度数为 ,∠BON的度数为 ;∠MOC的度数为
(2)当0<t<12时,若∠AOM=3∠AON-60°,试求出t的值;
(3)当0<t<6时,探究的值,问:t满足怎样的条件是定值;满足怎样的条件不是定值?
【变式训练2】已知将一副三角板()如图1摆放,点O、A、C在一条直线上.将直角三角板绕点O逆时针方向转动,变化摆放如图位置.
(1)如图1,当点O、A、C在同一条直线上时,_______度;如图2,若要恰好平分,则_______度;
(2)如图3,当三角板摆放在内部时,作射线平分,射线平分,如果三角板在内绕点O任意转动,的度数是否发生变化?如果不变,求其值;如果变化,说明理由.
(3)当三角板从图1的位置开始,绕点O逆时针方向旋转一周,保持射线平分、射线平分(),在旋转过程中,(2)中的结论是否保持不变?如果保持不变,请说明理由;如果变化,请说明变化的情况和结果(即旋转角度a在什么范围内时的度数是多少).
类型三、求值问题
例.如图1,为直线上一点,过点作射线,,将一直角三角板()的直角顶点放在点处,一边在射线上,另一边与都在直线的上方.(注:本题旋转角度最多.)
(1)将图1中的三角板绕点以每秒的速度沿顺时针方向旋转.如图2,经过秒后,______度(用含的式子表示),若恰好平分,则______秒(直接写结果).
(2)在(1)问的基础上,若三角板在转动的同时,射线也绕点以每秒的速度沿顺时针方向旋转,如图3,经过秒后,______度(用含的式子表示)若平分,求为多少秒?
(3)若(2)问的条件不变,那么经过秒平分?(直接写结果)
【变式训练1】如图,将一副直角三角尺的直角顶点C叠放在一起.
(1)若∠DCE=35°,∠ACB=   ;若∠ACB=140°,则∠DCE=   ;
(2)猜想∠ACB与∠DCE的大小有何特殊关系,并说明理由;
(3)若保持三角尺BCE不动,三角尺ACD的CD边与CB边重合,然后将三角尺ACD绕点C按逆时针方向任意转动一个角度∠BCD.设∠BCD=α(0°<α<90°)
①∠ACB能否是∠DCE的4倍?若能求出α的值;若不能说明理由.
②三角尺ACD转动中,∠BCD每秒转动3°,当∠DCE=21°时,转动了多少秒?
【变式训练2】如图(1),∠BOC和∠AOB都是锐角,射线OB在∠AOC内部,,.(本题所涉及的角都是小于180°的角)
(1)如图(2),OM平分∠BOC,ON平分∠AOC,填空:
①当,时,______,______,______;
②______(用含有或的代数式表示).
(2)如图(3),P为∠AOB内任意一点,直线PQ过点O,点Q在∠AOB外部:
①当OM平分∠POB,ON平分∠POA,∠MON的度数为______;
②当OM平分∠QOB,ON平分∠QOA,∠MON的度数为______;
(∠MON的度数用含有或的代数式表示)
(3)如图(4),当,时,射线OP从OC处以5°/分的速度绕点O开始逆时针旋转一周,同时射线OQ从OB处以相同的速度绕点O逆时针也旋转一周,OM平分∠POQ,ON平分∠POA,那么多少分钟时,∠MON的度数是40°?
【变式训练3】如图1,点A、O、B依次在直线上,现将射线绕点O沿顺时针方向以每秒的速度旋转,同时射线绕点O沿逆时针方向以每秒的速度旋转,如图2,设旋转时间为.
(1)用含t的代数式表示:_______,_______.
(2)在运动过程中,当时,求t的值.
(3)在旋转过程中是否存在这样的t,使得直线平分由射线、射线、射线中的任意两条射线组成的角(大于而小于)?
【答案版】
攻略01 绝对值的三种化简方法
绝对值版块的内容在我们这学期比重较大,尤其是绝对值的化简。并且,在压轴题中,常见的题型是利用数轴化简绝对值和利用其几何意义化简绝对值,本攻略就这两块难点详细做出分析。
【知识点梳理】
1.绝对值的定义
一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|
2.绝对值的意义
①代数意义:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0;
②几何意义:一个数的绝对值就是表示这个数的点到原点的距离,离原点的距离越远,绝对值越大;离原点的距离越近,绝对值越小。
3.绝对值的化简:
类型一、利用数轴化简绝对值
例1.有理数a、b、c在数轴上位置如图,则的值为( ).
A. B. C.0 D.
【答案】A
【详解】根据数轴上点的位置得:,且,
则,,,
则.
故选A.
例2.有理数,在数轴上对应的位置如图所示,那么代数式的值是( )
A.-1 B.1 C.3 D.-3
【答案】D
【详解】解:根据数轴可知:-1∴原式.
故选:D.
【变式训练1】已知,数、、的大小关系如图所示:化简____.
【答案】
【详解】由数轴可得:b<0,0<a<c,
∴(a+c)>0,(b-a)<0,(a-c)<0,(b-c)<0,
∴a+c-(a-b)-2(c-a)+3(c-b)
=a+c-a+b-2c+2a+3c-3b=2a-2b+2c,
故答案为:2a-2b+2c.
【变式训练2】有理数a、b、c在数轴上的位置如图.
(1)判断正负,用“>”或“<”填空: , , .
(2)化简:
【答案】(1)<,<,>;(2)2c-2b-2a
【详解】解:由图可知,a<0,b>0,c>0,且|b|<|a|<|c|,
(1)b c<0,a+b<0, a+c>0;故答案为:<,<,>;
(2)=c b a-b-a+c=2c-2b-2a.
【变式训练3】有理数,在数轴上的对应点如图所示:
(1)填空:______0;______0;______0;(填“<”、“>”或“=”)
(2)化简:
【答案】(1)<,<,>;(2)
【详解】(1)从数轴可知:,,故答案为:<,<,>;
(2),

【变式训练4】有理数a、b、c在数轴上的位置如图:
(1)用“>”或“<”填空a_____0,b_____0,c﹣b______0,ab_____0.
(2)化简:|a|+|b+c|﹣|c﹣a|.
【答案】(1)<,>,>,<;(2)b
【解析】(1)解:由有理数a、b、c在数轴上的位置可知,a<0<b<c,
∴c﹣b>0,ab<0
故答案为:<,>,>,<;
(2)由有理数a、b、c在数轴上的位置可得,
b+c>0,c﹣a>0,
∴|a|+|b+c|﹣|c﹣a|=﹣a+b+c﹣c+a=b.
类型二、利用几何意义化简绝对值
例1.同学们都知道,|5-(-2)|表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对的两点之间的距离.试探索
(1)求|5-(-2)|=________;
(2)同样道理|x+1008|=|x-1005|表示数轴上有理数x所对点到-1008和1005所对的两点距离相等,则x=________;
(3)类似的|x+5|+|x-2|表示数轴上有理数x所对点到-5和2所对的两点距离之和,请你找出所有符合条件的整数x,使得|x+5|+|x-2|=7,这样的整数是__________.
(4)由以上探索猜想对于任何有理数x,|x-3|+|x-6|是否有最小值?如果有,写出最小值;如果没有,说明理由.
【答案】(1)7;(2);(3)-5,-4,-3,-2,-1,0,1,2;(4)有最小值,最小值为3.
【详解】(1)|5-(-2)|==7,故答案为:7
(2)∵|x+1008|=|x-1005|表示数轴上有理数x所对点到-1008和1005所对的两点距离相等,
∴x所对点为-1008和1005所对点的中点,∴x+1008>0,x-1005<0,
∵|x+1008|=|x-1005|,∴x+1008=-(x-1005),解得:,答案为:
(3)当x+5=0时,x=-5,当x-2=0时,x=2,
当x<-5时,|x+5|+|x-2|=-(x+5)-(x-2)=7,-x-5-x+2=7,解得:x=5(范围内不成立,舍去)
当-5≤x<2时,∴|x+5|+|x-2|=(x+5)-(x-2)=7,x+5-x+2=7,7=7,
∵x为整数,∴x=-5,-4,-3,-2,-1,0,1
当x≥2时,∴|x+5|+|x-2|=(x+5)+(x-2)=7,x+5+x-2=7,2x=4,解得:x=2,
综上所述:符合条件的整数为-5,-4,-3,-2,-1,0,1,2,
故答案为:-5,-4,-3,-2,-1,0,1,2
(4)∵|x-3|+|x-6|表示数轴上有理数x所对点到3和6所对的两点距离之和,
∴由(2)得3≤x≤6时|x-3|+|x-6|的值最小,
∴|x-3|+|x-6|=x-3-(x-6)=3,∴|x-3|+|x-6|有最小值,最小值为3.
【变式训练1】阅读下面的材料:
点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为∣AB∣,当A、B两点中有一点在原点时,不妨设点A在原点,如图1,∣AB∣=∣OB∣=∣b∣=∣a-b∣;当A、B两点都不在原点时:
①如图2,点A、B都在原点的右边:
∣AB∣=∣OB∣-∣OA∣=∣b∣-∣a∣=b-a=∣a-b∣;
②如图3,点A、B都在原点的左边:
∣AB∣=∣OB∣-∣OA∣=∣b∣-∣a∣=-b-(-a)=∣a-b∣;
③如图4,点A、B在原点的两边:
∣AB∣=∣OA∣+∣OB∣=∣a∣+∣b∣=a+(-b)=∣a-b∣,
综上,数轴上A、B两点之间的距离∣AB∣=∣a-b∣. 
回答下列问题:
(1)数轴上表示2和5的两点之间的距离是_________,数轴上表示-2和-5的两点之间的距离是________,数轴上表示1和-3的两点之间的距离是___________;
(2)数轴上表示x和-1的两点A和B之间的距离是________,如果∣AB∣=2, 那么x为__________.
(3)当代数式∣x+1∣+∣x-2∣取最小值时,相应的x的取值范围是__________.
【答案】(1)3,3,4;(2),1或-3;(3)
【解析】(1)解:数轴上表示2和5的两点之间的距离为,
数轴上表示-2和-5的两点之间的距离为,
数轴上表示1和-3的两点之间的距离为;
故答案为:3,3,4;
(2)解:数轴上表示x和-1的两点A和B之间的距离是,
根据题意得,即,所以x=1或-3,
故答案为,1或-3;
(3)解:代数式∣x+1∣+∣x-2∣可以看成x到-1和2的距离和,只有在-1和2之间才会有最小距离3,所以x的取值为,
故答案为:.
【变式训练2】结合数轴与绝对值的知识回答下列问题:
(1)数轴上表示4和1的两点之间的距离是   ;数轴上表示﹣3和2两点之间的距离是   ;一般地,数轴上表示数m和数n的两点之间的距离可以表示为|m﹣n|.那么,数轴上表示数x与5两点之间的距离可以表示为   ,表示数y与﹣1两点之间的距离可以表示为   .
(2)如果表示数a和﹣2的两点之间的距离是3,那么a=   ;若数轴上表示数a的点位于﹣4与2之间,求|a+4|+|a﹣2|的值;
(3)当a=   时,|a+5|+|a﹣1|+|a﹣4|的值最小,最小值是   .
【答案】(1)3,5,|x-5|,|y+1|;(2)1或-5;|a+4|+|a-2|=6;(3)1,9.
【详解】(1)数轴上表示4和1的两点之间的距离是4-1=3;表示-3和2两点之间的距离是2-(-3)=5;一般地,数轴上表示数m和数n的两点之间的距离可以表示为|m-n|.那么,数轴上表示数x与5两点之间的距离可以表示为|x-5|,表示数y与-1两点之间的距离可以表示为|y+1|.
故答案为:3,5,|x-5|,|y+1|;
(2)如果表示数a和-2的两点之间的距离是3,那么|a-(-2)|=3,
∴|a+2|=3,∴a+2=3或a+2=-3,解得a=1或a=-5;
∵|a+4|+|a-2|表示数a与-4的距离与a和2的距离之和,
若数轴上表示数a的点位于-4与2之间,则|a+4|+|a-2|的值等于2和-4之间的距离,等于6.
即|a+4|+|a-2|=6,故答案为:1或-5;
(3)|a+5|+|a-1|+|a-4|表示一点到-5,1,4三点的距离的和,
∴当a=1时,该式的值最小,最小值为6+0+3=9.
∴当a=1时,|a+5|+|a-1|+|a-4|的值最小,最小值是9.故答案为:1,9.
【变式训练3】(问题提出)的最小值是多少?
(阅读理解)为了解决这个问题,我们先从最简单的情况入手.的几何意义是这个数在数轴上对应的点到原点的距离,那么可以看作这个数在数轴上对应的点到1的距离;就可以看作这个数在数轴上对应的点到1和2两个点的距离之和.下面我们结合数轴研究的最小值.
我们先看表示的点可能的3种情况,如图所示:
(1)如图①,在1的左边,从图中很明显可以看出到1和2的距离之和大于1.
(2)如图②,在1,2之间(包括在1,2上),看出到1和2的距离之和等于1.
(3)如图③,在2的右边,从图中很明显可以看出到1和2的距离之和大于1.因此,我们可以得出结论:当在1,2之间(包括在1,2上)时,有最小值1.
(问题解决)
(1)的几何意义是 ,请你结合数轴探究:的最小值是 .
(2)请你结合图④探究的最小值是 ,由此可以得出为 .
(3)的最小值为 .
(4)的最小值为 .
(拓展应用)如图,已知使到-1,2的距离之和小于4,请直接写出的取值范围是 .
【答案】(1)a这个数在数轴上对应的点到4和7两个点的距离之和,3;(2)2,2;(3)6;(4)1021110;拓展应用 .
【详解】(1)的几何意义是a这个数在数轴上对应点到4和7两个点的距离之和;
当a在4和7之间时(包括4,7上),
可以看出a到4和7的距离之和等于3,此时取得最小值是3;
故答案为:a这个数在数轴上对应的点到3和6两个点的距离之和,最小值是3.
(2)当a取中间数2时,绝对值最小,的最小值是1+0+1=2;
如图所示:
故答案为:2,2;
(3)当a取最中间数时,绝对值最小,
的最小值是 ;
(4)当a取中间数1011时,绝对值最小,的最小值为:
1010+1009+1008+1007+……+1+0+1+2+3+……+1010=;
拓展应用
∵a使它到-1,2的距离之和小于4,∴,
∴①当时,则有,解得:,∴;
②当 时,则有,∴,
③当时,则有,解得:,∴,
综上:,数轴上表示如下:
类型三、分类讨论法化简绝对值
例1.化简:.
【答案】
【解析】试题解析:①当时,原式
②当时,原式
③当时,原式
④当时,原式
综上所述:
【变式训练1】若,则的值为_________.
【答案】0或2或4
【详解】∵,
∴a、b、c三个数中必定是一正两负,
∴当时,,此时
当时,,此时
当时,,此时
故答案为:0或2或4
【变式训练2】(1)数学小组遇到这样一个问题:若a,b均不为零,求的值.
请补充以下解答过程(直接填空)
①当两个字母a,b中有2个正,0个负时,x= ;②当两个字母a,b中有1个正,1个负时,x= ;③当两个字母a,b中有0个正,2个负时,x= ;综上,当a,b均不为零,求x的值为 .
(2)请仿照解答过程完成下列问题:
①若a,b,c均不为零,求的值.
②若a,b,c均不为零,且a+b+c=0,直接写出代数式的值.
【答案】(1)①2,②0,③-2,2或0或-2;(2)①1或3或-3或-1;②-1或1
【详解】(1)①∵a、b都是正数,∴=a, =b,∴=1+1=2,
故答案为:2;
②设a是负数,b是正数,∴=-a,=b,∴=-1+1=0,故答案为:0;
③∵a、b都是负数,∴=-a, =-b,∴=-1-1=-2,故答案为:-2;
综上,当a,b均不为零,求x的值为2或0或-2;
(2)①由题意可得:a、b、c的符号分为四种情况:
当a、b、c都是正数时,=1+1-1=1,
当a、b、c为两正一负且a、b为正c为负时,=1+1+1=3,
当a、b、c为一正两负且a、b为负c为正时,=-1-1-1=-3,
当a、b、c都是负数时,=-1-1+1=-1,
综上,的值为1或3或-3,或-1;
②∵a,b,c均不为零,且a+b+c=0,
∴=,
∴当a、b、c为两正一负时,=-1-1+1=-1,
当a、b、c为一正两负=-1+1+1=1,
综上,的值为-1或1.
攻略02 数轴上的三种动点问题
数轴的动点问题,无论在平时练习,还是月考,期中期末考试中属于压轴题的版块,其过程复杂,情况多变。那么,本攻略对其中常考的三种题型(求时间、求距离或者对应点、定值问题)做出详细分析与梳理。
【知识点梳理】
1.数轴上两点间的距离
数轴上A、B两点表示的数为分别为a、b,则A与B间的距离AB=|a-b|;
2.数轴上点移动规律
数轴上点向右移动则数变大(增加),向左移动数变小(减小);
当数a表示的点向右移动b个单位长度后到达点表示的数为a+b;向左移动b个单位长度后到达点表示的数为a-b.
类型一、求值(速度、时间、距离)
例1.如图在数轴上A点表示数a,B点表示数b,a,b满足+=0;
(1)点A表示的数为 ;点B表示的数为 ;
(2)若点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC,请在数轴上找一点C,使AC=2BC,则C点表示的数 ;
(3)若在原点O处放一挡板,一小球甲从点A处以1个单位/秒的速度向左运动;同时另一小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后 (忽略球的大小,可看作一点) 以原来的速度向相反的方向运动,设运动的时间为t(秒),请分别表示出甲,乙两小球到原点的距离 (用t表示).
【答案】(1)-2;6;(2)或14
(3)甲球与原点的距离为:t+2;当时,乙球到原点的距离为;当时,乙球到原点的距离为
【解析】(1)解:∵|a+2|+|b 6|=0,∴a+2=0,b 6=0,解得,a= 2,b=6,
∴点A表示的数为 2,点B表示的数为6.故答案为: 2;6.
(2)设数轴上点C表示的数为c,
∵AC=2BC,∴|c a|=2|c b|,即|c+2|=2|c 6|,
∵AC=2BC>BC,∴点C不可能在BA的延长线上,则C点可能在线段AB上和线段AB的延长线上,
①当C点在线段AB上时,则有 2 c 6,
得c+2=2(6 c),解得:c=;
②当C点在线段AB的延长线上时,则有c>6,得c+2=2(c 6),解得c=14,
故当AC=2BC时,c=或c=14;故答案为:或14.
(3)∵甲球运动的路程为:1 t=t,OA=2,∴甲球与原点的距离为:t+2;
乙球到原点的距离分两种情况:
当0∵OB=6,乙球运动的路程为:2 t=2t,乙到原点的距离:6 2t(0 t 3);
②当t>3时,乙球从原点O处开始一直向右运动,此时乙球到原点的距离为:2t 6(t>3).
例2.如图,数轴上两个动点A,B起始位置所表示的数分别为,4,A,B两点各自以一定的速度在数轴上运动,已知A点的运动速度为2个单位/秒.
(1)若A,B两点同时出发相向而行,正好在原点处相遇,请直接写出B点的运动速度.
(2)若A,B两点于起始位置按上述速度同时出发,向数轴正方向运动,几秒时两点相距8个单位长度?
(3)若A,B两点于起始位置按上述速度同时出发,向数轴负方向运动,与此同时,C点从原点出发作同方向的运动,如果在运动过程中,始终有,求C点的运动速度.
【答案】(1)1个单位/秒;(2)4秒和20秒;(3)个单位/秒
【解析】(1)解:B点的运动速度为:
=1个单位/秒.
(2)∵OA+OB=8+4=12>8,且A点运动速度大于B点的速度,
∴分两种情况,
①当点B在点A的右侧时,运动时间为=4秒.
②当点A在点B的右侧时,运动时间为=20秒,
综合①②得,4秒和20秒时,两点相距都是8个单位长度;
(3)设点C的运动速度为x个单位/秒,运动时间为t,根据题意得知
8+(2-x)×t=[4+(x-1)×t]×2,整理,得2-x=2x-2,解得x=,
故C点的运动速度为个单位/秒.
【变式训练1】如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”.图中点A表示-10,点B表示10,点C表示18,我们称点A和点C在数轴上相距28个长度单位.动点P、Q同时出发,点P从点A出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速;动点Q从点C出发,以1单位/秒的速度沿着数轴的负方向运动,从点B运动到点O期间速度变为原来的两倍,之后也立刻恢复原速.设运动的时间为t秒.问:
(1)动点P从点A运动至点C需要多少时间?
(2)求P、Q两点相遇时,t的值和相遇点M所对应的数.
【答案】(1)动点P从点A运动至点C需要19秒;
(2)P、Q两点相遇时,t的值为秒,相遇点M所对应的数是.
【解析】(1)解:由图可知:动点P从点A运动至C分成三段,分别为AO、OB、BC,
AO段时间为=5,OB段时间为=10,BC段时间为=4,
∴动点P从点A运动至C点需要时间为5+10+4=19(秒),
答:动点P从点A运动至点C需要19秒;
(2)解:点Q经过8秒后从点B运动到OB段,
而点P经过5秒后从点A运动到OB段,经过3秒后还在OB段,∴P、Q两点在OB段相遇,
设点Q经过8秒后从点B运动到OB段,再经进y秒与点P在OB段相遇,
依题意得:3+y+2y=10,解得:y=,∴P、Q两点相遇时经过的时间为8+=(秒),
此时相遇点M在“折线数轴”上所对应的数是为3+=;
答:P、Q两点相遇时,t的值为秒,相遇点M所对应的数是.
【变式训练2】如图,已知、、是数轴上三点,点表示的数为4,,.
(1)点表示的数是______,点表示的数是______.
(2)动点、分别从、同时出发,点以每秒2个单位长度的速度沿数轴向右匀速运动,点以每秒1个单位长度的速度沿数轴向左匀速运动,设点的运动时间为()秒.
①用含的代数式表示:点表示的数为______,点表示是数为______;
②当时,点、之间的距离为______;
③当点在上运动时,用含的代数式表示点、之间的距离;
④当点、到点的距离相等时,直接写出的值.
【答案】(1),6;(2)①,;②7;③;④t的值为或10
【解析】(1)解:A点在B点左边,B点表示4,AB=8,∴A点表示的数,4-8=-4;
C点在B点右边,BC=2,∴C点表示的数为:4+2=6;
(2)解:①P点向右运动,∴P点表示的数为-4+2t;
Q点向左运动,∴Q点表示的数为6-t;
②t=1时,P点-2,Q点5,两点距离=5-(-2)=7;
③∵Q点在右,P点在左,∴两点距离=6-t-(-4+2t)=10-3t,
④当P,Q相遇时,两点到C点距离相等,此时2t+t=10,解得:t=,
当P点在C点右边,Q点在C点左边时,-4+2t-6=6-(6-t),解得:t=10,
∴t的值为或10;
【变式训练3】如图,点A、B为数轴上的点(点A在数轴的正半轴),,N为AB的中点,且点N表示的数为2.
(1)点A表示的数为______,点B表示的数为______;
(2)点M为数轴上一动点,点C是AM的中点,若,求点M表示的数,并画出点M的位置;
(3)点P从点N出发,以每秒2个单位长度的速度沿数轴向左匀速运动,点Q从点B出发,以每秒1个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,设运动时间为秒.在运动过程中,点P、Q之间的距离为3时,求运动时间t的值.
【答案】(1)6,﹣2;(2)8或4;(3)1秒或7秒.
【解析】(1)解:∵,N为AB的中点,∴AN=BN=AB=4
∵点N表示的数为2,点A在点N的右侧,点B在点N的左侧
∴点A表示的数为2+4=6,点B表示的数为2-4=﹣2,即点A表示的数为6,点B表示的数为﹣2,
故答案为:6,﹣2
(2)解:当点M在点A的右侧时,如图1所示,
∵ C是AM的中点,CM=1,∴AM=2CM=2,∴点M表示的数是6+2=8;
当点M在点A的左侧时,如图2所示,
∵ C是AM的中点,CM=1,∴AM=2CM=2,
∴点M表示的数是6-2=4.故点M表示的数是8或4;
(3)解:当点P在点Q的右侧,即点P还没追上点Q时,如图3,
由题意得t+4-2t=3,解得t=1,
当点P在点Q的左侧,即点P追上点Q并超过点Q时,如图4所示,
由题意得2t-t-4=3,解得t=7,
∴点P、Q之间的距离为3时,运动时间t=1秒或7秒.
类型二、定值问题
例1.已知:a是单项式-xy2的系数,b是最小的正整数,c是多项式2m2n-m3n2-m-2的次数.请回答下列问题:
(1)请直接写出a、b、c的值.a= ,b= ,c= .
(2)数轴上,a、b、c三个数所对应的点分别为A、B、C,点A、B、C同时开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒1个单位长度和3个单位长度的速度向右运动,假设t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC.
①t秒钟过后,AC的长度为 (用含t的关系式表示);
②请问:BC-AB的值是否会随着时间t的变化而改变?若变化,请说明理由;若不变,请求出其值.
【答案】(1)-1,1,5;(2)①4t+6;②不会变化,2
【解析】(1)解:由题意得,
单项式-xy2的系数a=-1,最小的正整数b=1,
多项式2m2n-m3n2-m-2的次数c=5;
故答案为:-1,1,5
(2)①t秒后点A对应的数为a-t,点B对应的数为b+t,点C对应的数为c+3t,
故AC=|c+3t-a+t|=|5+4t+1|=6+4t;
故答案为:6+4t
②∵BC=5+3t-(1+t)=4+2t,
AB=1+t-(-1-t)=2+2t;
∴BC-AB=4+2t-2-2t=2,
故BC-AB的值不会随时间t的变化而改变.其值为2.
【变式训练1】如图,已知数轴上点A表示的数为12,B是数轴上一点.且.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为秒.
(1)写出数轴上点B表示的数___,点P表示的数___(用含t的代数式表示);
(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P,Q同时出发,问点P运动多少秒时追上点Q;
(3)若M为AP的中点,N为PB的中点,点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长.
【答案】(1)﹣8,12﹣5t;(2)点P运动10秒时追上点Q;
(3)线段MN的长度不发生变化,都等于10;理由见解析.
【解析】(1)解:∵点A表示的数为12,B在A点左边,AB=20,
∴点B表示的数是12-20=-8,
∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,运动时间为t(t>0)秒,
∴点P表示的数是12-5t.故答案为:-8,12-5t;
(2)解:设点P运动x秒追上点Q,Q表示的数是-8-3t,
根据题意得:12-5x=-8-3x,解得:x=10,
∴点P运动10秒时追上点Q;
(3)解:线段MN的长度不发生变化,都等于10;理由如下:
∵点A表示的数为12,点P表示的数是12-5t,M为AP的中点,
∴M表示的数是,
∵点B表示的数是-8,点P表示的数是12-5t,N为PB的中点,
∴N表示的数是,
∴MN=(12-t)-(2-t)=10.
【变式训练2】如图,已知数轴上点A表示的数为9,B是数轴负方向上一点,且.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,运动时间为秒.
(1)数轴上点B表示的数为_____,点P表示的数为________;(用含t的代数式表示)
(2)动点Q从点B出发,以每秒2个单位长度的速度沿数轴向左匀速运动,若点P,Q同时出发,问t为何值时,点P追上点Q?此时P点表示的数是多少?
(3)若点M是线段的中点,点N是线段的中点.点P在运动的过程中,线段的长度是否发生变化?若变化,请说明理由;若不变化,请求出的长度;
【答案】(1),;(2)-16;(3)不发生变化,
【解析】(1)解:∵数轴上点A表示的数为8,且AB=14,
∴点B表示的数为 6,
点P表示的数为,
故答案为:,.
(2)解:设点P运动t秒时,在点C处追上点Q,如图,则,
因为,所以.解得.
所以点P运动5秒时,在点C处追上点Q.
当时,.此时P点表示的数是.
(3)解:不发生变化.理由是:
因为M是线段的中点,N是线段的中点,所以.
分两种情况:①当点P在点A、B两点之间运动时,如图所示,
所以.
②当点P运动到点B的左侧时,如图所示,
所以.
综上所述,线段的长度不发生变化,其值为.
【变式训练3】点A、B在数轴上对应的数分别为a、b,且a、b满足.
(1)如图1,求线段AB的长;
(2)若点C在数轴上对应的数为x,且x是方程的根,在数轴上是否存在点P使,若存在,求出点P对应的数,若不存在,说明理由;
(3)如图2,点P在B点右侧,PA的中点为M,N为PB靠近于B点的四等分点,当P在B的右侧运动时,有两个结论:①的值不变;②的值不变,其中只有一个结论正确,请判断正确的结论,并直接写出该值.
【答案】(1)4;(2)存在,当点P表示的数为-1.5或3.5时,;理由见解析
(3)结论①正确,=2
【解析】(1)解:∵|a+1|+(b-3)2=0,∴a+1=0,b-3=0,∴a=-1,b=3,
∴AB=|-1-3|=4.答:AB的长为4;
(2)解:存在,∵,∴x=-2,∴BC==5.
设点P在数轴上对应的数是m,∵,∴|m+1|+|m-3|=5,
令m+1=0,m-3=0,∴m=-1或m=3.
①当m≤-1时,-m-1+3-m=5,m=-1.5;
②当-1<m≤3时,m+1+3-m=5,(舍去);
③当m>3时,m+1+m-3=5,m=3.5.∴当点P表示的数为-1.5或3.5时,;
(3)解:设P点所表示的数为n,∴PA=n+1,PB=n-3.
∵PA的中点为M,∴PM=PA=.
∵N为PB的四等分点且靠近于B点,∴BN=PB=,∴①PM-2BN=-2×=2(不变),
②PM+BN=+×=(随点P的变化而变化),
∴正确的结论为①,且PM-2BN=2.
类型三、点之间的位置关系问题
例1.如图,已知在数轴上有A,B两点,点A表示的数为8,点B在A点的左边,且.若有一动点P从数轴上点A出发,以每秒3个单位长度的速度沿数轴向左匀速运动,动点Q从点B出发,以每秒2个单位长度的速度沿着数轴向右匀速运动.设点P的运动时间为t秒.
(1)解决问题:
①当时,写出数轴上点B,P所表示的数;
②若点P,Q分别从A,B两点同时出发,问点P运动多少秒与点Q相距3个单位长度?
(2)探索问题:若M为AQ的中点,N为BP的中点.当点P在A,B两点之间运动时,探索线段MN与线段PQ的数量关系(写出过程).
【答案】(1)①点B表示-4,点P表示5;②1.8秒或3秒
(2)2MN+PQ=12或2MN-PQ=12,过程见解析
【解析】(1)解:①∵点A表示的数为8,B在A点左边,AB=12,∴点B表示的数是8-12=-4,
∵动点P从点A出发,以每秒3个单位长度的速度沿数轴向左匀速运动,
∴点P表示的数是8-3×1=5.
②设点P运动x秒时,与Q相距3个单位长度,
则AP=3x,BQ=2x,
∵AP+BQ=AB-3,∴3x+2x=9,解得:x=1.8,
∵AP+BQ=AB+3,∴3x+2x=15,解得:x=3.
∴点P运动1.8秒或3秒时与点Q相距3个单位长度.
(2)2MN+PQ=12或2MN-PQ=12;理由如下:
P在Q右侧时有:MN=MQ+NP-PQ=AQ+BP-PQ=(AQ+BP-PQ)-PQ=AB-PQ=(12-PQ),
即2MN+PQ=12.
同理P在Q左侧时有:2MN-PQ=12.
例2.如图,在数轴上A点表示的数为a,B点表示的数为b,C点表示的数为c,b是最大的负整数,且a,c满足|a+3|+(c﹣9)2=0.点P从点B出发以每秒3个单位长度的速度向左运动,到达点A后立刻返回到点C,到达点C后再返回到点A并停止.
(1)a=   ,b=   ;
(2)点P从点B离开后,在点P第二次到达点B的过程中,经过x秒钟,PA+PB+PC=13,求x的值.
(3)点P从点B出发的同时,数轴上的动点M,N分别从点A和点C同时出发,相向而行,速度分别为每秒4个单位长度和每秒5个单位长度,假设t秒钟时,P、M、N三点中恰好有一个点是另外两个点的中点,请直接写出所有满足条件的t的值.
【答案】(1)﹣3,﹣1;(2)或1或或;(3)1,,,8.
【解析】(1)解:b是最大的负整数,即b=﹣1,|a+3|+(c﹣9)2=0,
∴|a+3|=0,(c﹣9)2=0,∴a=﹣3,c=9,故答案为:﹣3,﹣1;
(2)解:AB=2,BC=10,AC=12,PA+PB+PC=13,PA+PC=12,则PB=1,
∴此时P点位置为﹣2或0,根据P的运动轨迹得:
由B到A时:x=1÷3=,由A到B时:x=3÷3=1,由B到C时:x=5÷3=,
由C到B时:x=23÷3=;故x的值为:或1或或.
(3)解:当P点由B到A运动时P=﹣3t-1(0≤t<),
当P点由A到C运动时P=﹣3+(3t-2)=3t-5(≤t<),
当P点由C到B运动时P=9-(3t-14)=﹣3t+23(≤t≤8),
当M点由A到C运动时M=4t-3,当N点由C到A运动时N=﹣5t+9,
PM相遇时3t+4t=2,t=,MN相遇时4t+5t=12,t=,PN相遇时3t+5t=12+2,t=,
0≤t<,P在中间,则4t-3﹣5t+9=2(﹣3t-1)解得t=﹣舍去;
<t<,M在中间,则﹣5t+9﹣3t-1=2(4t-3)解得t=舍去;
≤t<,M在中间,则﹣5t+9+3t-5=2(4t-3)解得t=1;
<t<,N在中间,则4t-3+3t-5=2(﹣5t+9)解得t=;
<t<,P在中间,则4t-3﹣5t+9=2(3t-5)解得t=;
≤t≤8,P在中间,则4t-3﹣5t+9=2(﹣3t+23)解得t=8;故t的值为:1,,,8.
【变式训练1】如图,已知A、B、C是数轴上三点,点O为原点,点C表示的数为6,BC=4, AB=12.
(1)写出数轴上点A、B表示的数;
(2)动点P、Q分别从A、C同时出发,沿数轴向右匀速运动.点P的速度是每秒6个单位长度,点Q的速度是每秒3个单位长度,点M为AP的中点,点N在线段CQ上,且CN=CQ,设运动时间为t(t>0)秒.
①求数轴上点M、N表示的数(用含t的式子表示);
②当M、B、N三个点中的其中一个点是另两点构成的线段的中点的时候,求t的值.
【答案】(1)A点表示-10, B表示2,
(2)①点M表示的数为:-10+3t,点N表示的数为:6+t,②t的值为:2秒或秒或20秒;
【解析】(1)解:∵O为原点,C表示6,BC=4,∴B表示2,∵AB=12,∴A点表示-10;
(2)解:①∵点P从A点以每秒6个单位长度沿数轴向右匀速运动,∴P点表示的数为-10+6t,
∵点M为AP的中点,∴点M表示的数为:(-10-10+6t)=-10+3t,
∵点Q从C点以每秒3个单位长度沿数轴向右匀速运动,
∴Q点表示的数为6+3t,
∵点N为CQ,∴点N表示的数为:6+×(6+3t-6)=6+t,
②当M是B、N中点,B点在左侧时,BM=MN,即-10+3t-2=6+t-(-10+3t),解得:t=,
当B是M、N中点,M点在左侧时,BM=BN,即2-(-10+3t)=6+t-2,解得:t=2,
当N是B、M中点,B点在左侧时,BN=MN,即6+t-2=-10+3t-(6+t),解得:t=20,
∴t的值为:2秒或秒或20秒;
【变式训练2】已知,如图1:数轴上有A、B、C三点,点A表示的数为-5, 点B表示的数为13, 点C表示的数为-2,将一条长为9个单位长度的线段MN放在该数轴上(点M在点N的左边).
(1)求线段AB中点表示的数;
(2)如图2:若从点M与点A重合开始,将线段MN以0.3个单位长度/秒的速度沿数轴向右移动,经过x秒后,点N恰为线段BC的中点,求x的值;
(3)如图3:在(2)的基础上,若线段MN向右移动的同时,动点P从点C开始以0.6个单位长度/秒的速度也沿数轴向右移动,设移动的时间为t秒,当P、N、B三个点中恰有一个点为另两个点所组成线段的中点时,求t的值.
【答案】(1)4;(2)5;(3)或
【解析】(1)解:线段AB中点表示的数为,∴线段AB中点表示的数为4;
(2)解:点N表示的数为:-5+9=4
线段BC中点表示的数为:
根据题意,得4+0.3x=5.5,解得:x=5,
∴点N恰为线段BC的中点重合时,x的值为5;
(3)解:当点N恰为线段BP的中点时,根据题意,得,方程无解,
当点P恰为线段BN的中点时,根据题意,得,解得:t=,
当点B恰为线段PN的中点时,根据题意,得,解得:t=,
综上,当P、N、B三个点中恰有一个点为另两个点所组成线段的中点时,t的值为或.
【变式训练3】已知A、B、C为数轴上三点,若点C到A的距离是点C到B的距离的2倍,我们就称点C是的优点.
例如:如图1,A,B为数轴上两点,点A表示的数为-1,点B表示的数为2,表示数1的点C到点A的距离是2,到点B的距离是1,那么点C是的优点;表示数0的点D到点C的距离是1,到点B的距离是2,那么点D是的优点.
(1)在图1中,点C是的优点,也是(A,_____________)的优点;点D是的优点,也是(B,_____________)的优点;
(2)如图2,A,B为数轴上两点,点A所表示的数为-2,点B所表示的数为4.设数所表示的点是的优点,求的值;
(3)如图3,A,B为数轴两点,点A所表的数为-20,点B所表示的数为40.现有一只电子蚂蚁Р从点B出发,以5个单位每秒的速度向左运动,到达点A停止,设点Р的运动时间为t秒,在点Р运动过程中,是否存在P、A和B中恰有一个点为其余两点的优点﹖如果存在请求出t的值;如果不存在,说明理由.
【答案】(1)D,A;(2)10或2;(3)当或或时,P、A和B中恰有一个点为其余两点的优点
【解析】(1)解:A,B为数轴上两点,点A表示的数为-1,点D表示的数为0,表示数1的点C到点A的距离是2,到点D的距离是1,那么点C是的优点;表示数0的点D到点B的距离是2,到点A的距离是1,那么点D是A的优点,
故答案为:D;A;
(2)解:由题意得,
∴或,
解得或;
(3)解:由题意得运动t秒时点P表示的数为,
∴,,,
当A是(B,P)的优点时,
∴,
解得;
当B为(A,P)的优点时,
解得;
当P为(A、B)的优点时,
解得;
当P为(B,A)的优点时,
解得;
综上所述,当或或时,P、A和B中恰有一个点为其余两点的优点
攻略03 代数式化简求值的四种考法
类型一、整体代入求值
例1.若,那么_________.
【答案】5
【详解】解:m-n=2,

故答案为:5.
例2.已知,则_________.
【答案】2
【详解】


故答案为:2.
例3.当时,多项式的值为5,则当时,该多项式的值为( )
A. B.5 C. D.3
【答案】D
【详解】解:当x=1时,多项式,即a+b=1,
则x=-1时,多项式
故选:D.
【变式训练1】已知,则的值为_______.
【答案】1
【详解】解:∵,
∴.
故答案为:1
【变式训练2】若,,则___.
【答案】0
【详解】解:∵,,∴== =0,故答案为0
【变式训练3】若,则的值为(   )
A. B. C. D.
【答案】D
【详解】解:∵,

故选:D.
【变式训练4】已知a+b=2ab,那么=(  )
A.6 B.7 C.9 D.10
【答案】B
【详解】解:∵,
∴=====,
故选:B.
类型二、特殊值法代入求值
例1.设,则的值为( )
A.2 B.8 C. D.
【答案】B
【详解】解:将x=-1代入得,,


即,
故选:B.
【变式训练1】已知(x﹣1)6=a6x6+a5x5+a4x4+a3x3+a2x2+a1x+a0,将x=0代入这个等式中可以求出a0=1.用这种方法可以求得a6+a5+a4+a3+a2+a1的值为(  )
A.﹣16 B.16 C.﹣1 D.1
【答案】C
【详解】解:当x=0时,可得a0=1
当x=1时,∵(x 1)6=a6x6+a5x5+a4x4+a3x3+a2x2+a1x+a0
∴a6+a5+a4+a3+a2+a1+a0=0,∴a6+a5+a4+a3+a2+a1= a0= 1,故选:C.
【变式训练2】若,则______.
【答案】
【详解】解:令x=0,代入等式中得到:,∴,
令x=1,代入等式中得到:,
令x=-1,代入等式中得到:,
将①式减去②式,得到:,
∴,
∴,
故答案为:.
【变式训练3】特殊值法,又叫特值法,是数学中通过设题中某个未知量为特殊值,从而通过简单的运算,得出最终答案的一种方法.例如:已知:,则
(1)取时,直接可以得到;
(2)取时,可以得到;
(3)取时,可以得到;
(4)把(2),(3)的结论相加,就可以得到,结合(1)的结论,从而得出.
请类比上例,解决下面的问题:已知.求:
(1)的值;
(2) 的值;
(3) 的值.
【答案】(1)4;(2)8;(3)0
【解析】(1)解:当时,
∵,
∴;
(2)解:当时,
∵,
∴;
(3)解:当时,
∵,
∴①;
当时,
∵,
∴②;
用①+②得:,
∴.
类型三、降幂思想求值
例.若,则_____;
【答案】2029
【详解】解:∵,
∴,
∴=x(2x2-4x-3x+12)+2020=x[2(x2-2x)-3x+12]+2020
= x[2×(-3)-3x+12]+2020=x(-3x+6)+2020=-3(x2-2x)+2020=-3×(-3)+2020=9+2020=2029
故答案为:2029.
【变式训练1】若实数x满足x2﹣2x﹣1=0,则2x3﹣7x2+4x﹣2016=_____.
【答案】
【详解】解:实数x满足x2﹣2x﹣1=0,,
故答案为:.
【变式训练2】如果的值为5,则的值为______.
【答案】1
【详解】∵,∴
∴,故答案为:1.
【变式训练3】已知x2﹣3x=2,那么多项式x3﹣x2﹣8x+9的值是 _____.
【答案】13
【详解】解:∵x2﹣3x=2,
∴x3﹣x2﹣8x+9

故答案为:13.
【变式训练4】已知,则的值是______.
【答案】2022
【详解】解:∵,
∴,
∴,
∴,
∴,
故答案为:2022.
类型四、含绝对值的代数式求值
例1.若,且,则的值是________
【答案】116或78
【详解】解:∵,,
∴、,
又∵ ,∴,
∴,或,,
∴或,
∴的值是或.
故答案为:116或78.
例2.已知=5,=4,且,则,则的值为( )
A.6 B.±6 C.14 D.6或14
【答案】D
【详解】解:,,
,,
又,
或.
当,时,;
当,时,.
综上,的值为或.
故选:D.
【变式训练1】已知,且,则的值为( )
A.或 B.或 C.或 D.或
【答案】C
【详解】解:∵,,
∴,,
∵,
∴,或,,
当,时,,
当,时,,
故选C.
【变式训练2】已知,a与b互为倒数,c与d互为相反数,求的值.
【答案】-2
【详解】解:,


因为与互为倒数,所以
因为与互为相反数,所以
原式=-2.
【变式训练3】已知,,且,则______.
【答案】1或-3
【详解】∵,,
∴a+2=±4,b 1=±2,
∴a=2或a= 6,b=3或b= 1;
∵,
∴a=2,b= 1或a= 6,b=3,
当a=2,b= 1时,则;
当a= 6,b=3时,则;
故答案为:1或-3.
攻略04 整式中加减无关型的三种考法
类型

展开更多......

收起↑

资源预览