5.1 杠杆 讲义(原卷版+解析版)-2023-2024学年京改版物理八年级全一册

资源下载
  1. 二一教育资源

5.1 杠杆 讲义(原卷版+解析版)-2023-2024学年京改版物理八年级全一册

资源简介

5.1 杠杆
知识梳理
1、杠杆定义:在力作用下绕着固定点转动硬棒叫杠杆。
说明:①杠杆可直可曲,形状任意。
②有些情况下,可将杠杆实际转一下,来帮助确定支点。如:鱼杆、铁锹。
2、杠杆五要素——组成杠杆示意图。
①支点:杠杆绕着转动点。用字母O 表示。
②动力:使杠杆转动力。用字母 F1 表示。
③阻力:阻碍杠杆转动力。用字母 F2 表示。
说明:动力、阻力都是杠杆受力,所以作用点在杠杆上。
动力、阻力方向不一定相反,但它们使杠杆转动方向相反
④动力臂:从支点到动力作用线距离。用字母l1表示。
⑤阻力臂:从支点到阻力作用线距离。用字母l2表示。
画力臂方法:一找支点、二画线、三连距离、四标签
⑴ 找支点O;
⑵ 画力作用线(虚线);
⑶ 画力臂(虚线,过支点垂直力作用线作垂线);
⑷ 标力臂(大括号)。
3、研究杠杆平衡条件:
杠杆平衡是指:杠杆静止或匀速转动。
实验前:应调节杠杆两端螺母,使杠杆在水平位置平衡。这样做目是:可以方便从杠杆上量出力臂。
1结论:杠杆平衡条件(或杠杆原理)是:
动力×动力臂=阻力×阻力臂。写成公式F1l1=F2l2 也可写成:F1 / F2=l2 / l1
⑵ 解题指导:分析解决有关杠杆平衡条件问题,必须要画出杠杆示意图;弄清受力及方向和力臂大小;然后根据具体情况具体分析,确定如何使用平衡条件解决有关问题。(如:杠杆转动时施加动力如何变化,沿什么方向施力最小等。)
⑶ 解决杠杆平衡时动力最小问题:此类问题中阻力×阻力臂为一定值,要使动力最小,必须使动力臂最大,要使动力臂最大需要做到
①在杠杆上找一点,使这点到支点距离最远;
②动力方向应该是过该点且和该连线垂直方向。
4、应用:
名称 结 构 特 征 特 点 应用举例
省力 杠杆 动力臂 大于 阻力臂 省力、 费距离 撬棒、铡刀、动滑轮、轮轴、羊角锤、钢丝钳、手推车、花枝剪刀
费力 杠杆 动力臂 小于 阻力臂 费力、 省距离 缝纫机踏板、起重臂 人前臂、理发剪刀、钓鱼杆
等臂 杠杆 动力臂 等于 阻力臂 不省力 不费力 天平,定滑轮
说明:应根据实际来选择杠杆,当需要较大力才能解决问题时,应选择省力杠杆,当为了使用方便,省距离时,应选费力杠杆。
基础训练
一、单选题
1.如图所示,下列工具的使用中,属于费力杠杆的是(  )
A. B.
C. D.
【答案】A
【详解】A、镊子在使用过程中,动力臂小于阻力臂,是费力杠杆;B、独轮车在使用过程中,动力臂大于阻力臂,是省力杠杆;C、起子在使用过程中,动力臂大于阻力臂,是省力杠杆;D、扳手在使用过程中,动力臂大于阻力臂,是省力杠杆.故选A.
2.下列说法中错误的是
A.杠杆一定有支点
B.使用辘轳可以省力
C.杠杆可以是弯的,也可以是直的
D.杠杆的长度等于动力臂与阻力臂之和
【答案】D
【详解】杠杆是可以绕固定点转动的硬棒.动力是从支点到力的作用线之间的距离.
A、由杠杆的定义可知,杠杆一定有支点,故A正确;
B、辘轳,可以看作动力动力臂大于阻力臂的杠杆,所以使用时可以省力,故B正确;
C、杠杆是可以围绕某一固定点转动的硬棒,不一定是直的,也可以是弯曲的,比如钳子、羊角锤等,故C正确;
D、力臂是从支点到力的作用线之间的距离,不是支点到力的作用点之间的距离,所以动力臂与阻力臂之和不一定等于杠杆的长度,故D错误.
故选D.
3.如图所示的杠杆中,动力的力臂用l表示,图中所画力臂正确的是( )
A. B. C.
D.
【答案】D
【详解】力臂的画法:先找支点,然后作力的作用线,从支点向力的作用线作垂线,标上字母和括号.
4.如图所示,活塞式抽水机手柄可以看作是绕O点转动的杠杆,它在动力F1和阻力F2的作用下,处于平衡状态,则( )
A.F1 OC=F2 OA B.F1 OD=F2 OB
C.F1 OE=F2 OA D.F1 OE=F2 OB
【答案】D
【详解】解:读图可知,F1为动力,其力臂是支点到动力作用线的垂直距离,应为OE;F2为阻力,其力臂是从支点到阻力作用线的垂直距离,应为OB,所以根据杠杆的平衡条件,最终的平衡关系是F1 OE=F2 OB,只有选项D符合题意.
故选D.
【点评】解答此题的关键一是熟知杠杆的平衡条件,二是能准确判断杠杆的力臂,后者是本题考查的真正目的.
5.如图是小龙探究“杠杆平衡条件”的实验装置,用弹簧测力计在C处竖直向上拉,杠杆保持平衡.若弹簧测力计逐渐向右倾斜,仍然使杠杆保持平衡,拉力F的变化情况是
A.变小 B.变大
C.不变 D.无法确定
【答案】B
【详解】根据杠杆平衡,,取勾码重力为F1,B点到转轴的距离为L1,在弹簧
测力计逐渐向右倾斜时,L2减小,所以F2增大,B正确.
6.质量为60kg的人站在跷跷板某一位置时,跷跷板处于如图所示的平衡状态.由此可估测球的质量约为
A.20kg B.30kg
C.60kg D.120kg
【答案】B
【详解】如图所示:
根据图示可知,;因为跷跷板处于平衡状态,所以;由 可得:;则球的质量:.
故选B.
【点睛】本题考查了学生对杠杆的平衡条件的掌握和运用,估测出两力臂的大小是本题的突破口.
7.观察图示的指甲刀的结构图,其中分析正确的是
A.一个杠杆,且是省力杠杆
B.两个杠杆,一个省力杠杆,一个费力杠杆
C.三个杠杆,一个省力杠杆,两个费力杠杆
D.三个杠杆,一个费力杠杆,两个省力杠杆
【答案】C
【详解】ABC杠杆的支点是B点,动力臂AB比阻力臂BC大,所以是省力杠杆;OBD杠杆的支点是O点,动力臂OB小于阻力臂OD,所以是费力杠杆;OED杠杆的支点是O点,动力臂 OE小于阻力臂OD,所以是费力杠杆。
故选C。
8.室内垃圾桶平时桶盖关闭不使垃圾散发异味,使用时用脚踩踏板,桶盖开启,根据室内垃圾桶的结构示意图,可确定桶中有两个杠杆在起作用,两杠杆支点为O1、O2.则对应的杠杆分别为
A.省力杠杆;省力杠杆
B.省力杠杆;费力杠杆
C.费力杠杆;费力杠杆
D.费力杠杆;省力杠杆
【答案】B
【详解】用脚踩踏板时,O1点是支点,动力作用在A点,阻力作用在B点.脚踩下踏板时,动力臂大于阻力臂,属于省力杠杆;
桶盖开启时,支点是O2,动力作用在C点,阻力作用在D点.在打开盖子的过程中,动力臂小于阻力臂,属于费力杠杆.
故选B.
【点睛】重点是杠杆的分类,即动力臂大于阻力臂时,为省力杠杆;动力臂小于阻力臂时,为费力杠杆,但省力杠杆费距离,费力杠杆省距离.解题量先判断杠杆在使用过程中,动力臂和阻力臂的大小关系,再判断它是属于哪种类型的杠杆.
9.如图所示,杠杆AOB用细线悬挂起来,当A端挂重物G1,B端挂重物G2时,杠杆平衡,此时OA恰好处于水平位置,AO=BO,杠杆重力不计,则
A.G1<G2 B.G1>G2
C.G1=G2 D.都有可能
【答案】A
【详解】OA恰好处于水平位置,AO=BO,作出两力的力臂如图:

根据杠杆的平衡条件:可知,力与相应的力臂成反比关系;
如图知,,所以物体的重力.
故选A.
【点睛】除了杠杆平衡条件的应用,关键还是力臂大小情况的判断,理解当力与杠杆垂直时,力臂是最长的,倾斜后力臂会变短.
10.在海南举办的大力士比赛中,有一个项目是把车轮推上台阶.下面把车轮推上台阶的四种方法,推力的作用点相同,推力的方向不同,如图所示,则哪一种推法最省力
A. B.
C. D.
【答案】C
【详解】试题分析:车轮就象一个杠杆,这个杠杆中的阻力和阻力臂大小都是相等的,根据杠杆的平衡条件可知,当力臂越大时,所用的动力越小,最大的力臂就是动力作用点与支点的连线,此时的动力应垂直于这个连线,故应选C.
【考点定位】杠杆的平衡条件
11.重为G的均匀木棒竖直悬于O点,在其下端施一水平拉力F,让棒缓慢转到图中虚线所示位置.在转动的过程中:( )
A.动力臂逐渐变大
B.阻力臂逐渐变小
C.动力F逐渐变大
D.动力F逐渐减小
【答案】C
【详解】杠杆在转动的过程中符合杠杆平衡的条件,即阻力为硬棒的重力,大小不变,硬棒在竖直位置时,重力的力臂为0,转过θ角后,重力力臂(阻力臂)逐渐增大;当硬棒在竖直位置时,F的力臂是杠杆的长度,且力臂最长,当杠杆转过θ后,力与杠杆不再垂直,所以动力臂变小;根据杠杆平衡的条件可得,阻力与阻力臂的乘积增大,而动力臂减小,所以动力逐渐增大。故选C。
二、填空题
12.如图所示,赛艇的桨可看成一个_____杠杆.
【答案】费力
【详解】在使用船桨的过程中,动力臂小于阻力臂,属于费力杠杆,费力但省距离,
【点睛】重点是杠杆的分类,主要包括以下几种:①省力杠杆,动力臂大于阻力臂;②费力杠杆,动力臂小于阻力臂;③等臂杠杆,动力臂等于阻力臂.
13.开瓶时使用的开瓶器(图a),可以简化成不计重力的省力杠杆(图b),O为支点,若动力F1和阻力F2,都与杠杆垂直,且AO=6cm,BO=1cm,F1=25N,则F2=______N。
【答案】150
【详解】由杠杆的平衡条件得
F1L1=F2L2

F1×AO=F2×BO
代入数据得
25N×6cm=F2×1cm
解得
F2=150N
14.如图是人们用木棒撬石块的示意图.撬石块有两种方法:第一种是以B点为支点,在C点用与棒垂直的力F1向下撬;第二种是以A点为支点,在C点用与棒垂直的力F2向上撬.(木棒自重不计)
(1)在图中画出力F1的力臂________-.
(2)若石块压在棒上的D点正好是AB的中点,你认为第______种方法更省力一些,理由是______.
【答案】 二 阻力臂都相等,第二种方法动力臂较长
【详解】(1)如图过支点B向力F1作垂线,则BC即为力F1的力臂,如图:
(2)因为D点正好是AB的中点,所以无论以A点还是B点为支点,阻力臂都相等,而以A点为支点时,动力臂更长;
根据杠杆的平衡条件,两种方法中的阻力与阻力臂的乘积不变,第二种方法动力臂较长,所以更省力.
【点睛】先要理解清楚力臂的概念,再练习作图,画力臂是很常见的作图题,但有些同学总会出错,牢记力臂是支点到力的作用线的距离.
15.在探究"杠杆平衡条件"的实验中,若杠杆在使用前左高右低,要使它水平平衡,应将杠杆左端的平衡螺母向_________调节.某小组得到的两组实验数据如下表所示:
根据实验数据,可以得出的结论是:_________(用文字或符号表述均可)
【答案】 左
【详解】杠杆在水平位置平衡后,支点到力的作用点的距离就等于力臂,因此在此实验中我们应首先调节杠杆在水平位置平衡;
由于杠杆左端高右端低,平衡螺母应向偏高的一端调节,所以应将杠杆左端的平衡螺母向左调节;
解析表格中数据:,而,可得:动力乘以动力臂等于阻力乘以阻力臂,根据第二次数据也可以得出同样的结果;
故根据实验数据,可以得出的结论是:.
16.如图所示是列车上常用的手推车,车内货物均匀摆放.车前行时,需经过障碍物.当车的前轮遇到障碍物A时,售货员向下按扶把,这时手推车可以视为______杠杆(选填“省力”或“费力”),若手推车和货物总重200 N,动力臂和阻力臂之比为2:3,则服务员作用在扶把上的动力为______N.当后轮遇到障碍物A时,售货员竖直向上提扶把,这种情况下,手推车可以视为______杠杆(选填“省力”或“费力”).
【答案】 费力 300 省力
【分析】结合图片和生活经验,确定手推车在使用过程中,动力臂和阻力臂的大小关系,再判断它是属于哪种类型的杠杆;知道手推车和货物总重(阻力)、动力臂和阻力臂的关系,利用杠杆平衡条件求作用在扶把上的动力.
【详解】(1)将手推车看作杠杆,手推车和货物的总重力为阻力,当车的前轮遇到障碍物A时,售货员向下按扶把,人对车的力作用在车把上,方向是竖直向下,动力臂和阻力臂之比为2:3,则动力臂小于阻力臂,此时手推车是费力杠杆,已知G=200N,L动:L阻=2:3,由杠杆平衡条件可得: ,所以 ;
(2)当小推车后轮遇到障碍物A时,售货员向上提扶把,车体是绕着B点转动的,故B点就是支点,因为货物在车内摆放均匀,重心就在车箱的中心,重力为阻力,人对车的力作用在车把上,方向是竖直向上,则手推车在使用过程中,动力臂大于阻力臂,所以该情况下手推车是省力杠杆.
三、作图题
17.(1)如图1为揭开井盖的示意图,O为支点,请在图中画出拉力F的力臂l。
( )
图1
(2)如图2所示是“探究电流与电压规律”的实验电路。检查电路发现连接存在错误,只需改接一根导线即可改正。请在接错的一根导线上打“×”,再画线把它改到正确的位置上。__
图2
【答案】
【详解】(1)[1]沿力F做力的作用线,从支点O向力的作用线做垂线,垂线段的长度即为力臂l。如答图所示。
(2)[2] 如题图所示,电流表与电阻并联,电压表串联在电路中,正确接法应将电流表串联在电路中,电压表并联在定值电阻两端,具体如答图所示。
18.在图中,O为支点,在A点画出使杠杆保持平衡的最小力F(保留作图痕迹)。
【答案】
【详解】力臂越长越省力,用力最小,那么力臂就要最长,直角三角形中,斜边最长,所以连接OA,过A点做垂直于OA斜向下的力,即为最小的力,如下图所示:
四、计算题
19.如图所示是某同学做俯卧撑时的示意图,他的质量为56kg,身体可视为杠杆,O点为支点,A点为重心。(10N/ kg)
(1)该同学所受重力是多少?
(2)在图中画出该同学所受重力的示意图,并画出重力的力臂l1;
(3)若OB=1.0m,BC=0.4m,求地面对双手支持力的大小。
【答案】(1)560N(2) (3)400N
【详解】解:(1)该同学的重力
G=mg=56㎏×10N/ kg=560N
(2)该同学所受重力的示意图如下,以O点为支点,过O点作重力作用线的垂线段,即为重力的力臂l1;
(3)地面对双手支持力F的方向竖直向上,其力臂长度为
OC=OB+ BC=1.0m+0.4m=1.4m
根据杠杆的平衡条件G·OB=F ·OC,
可得
五、实验题
20.对于杠杆的原理,我国古代也很注意研究,在古书《墨经》中就对杆秤作了科学的说明。某物理小组探究如图所示的一杆秤,通过观察和测量知道:杆秤上标有刻度,提纽在B点,秤钩在A点,O点为刻度的起点(为零刻度点,在B点左侧)。用刻度尺
量出OA=l1,OB=l2。
(1)秤钩不挂重物时,秤砣挂在O点时杆秤平衡,则重心C应在B点的__________侧(选填“左”、“右”或“不确定”)。 设该杆秤秤砣的质量为m,则杆秤自身重力(不含秤砣)和它的力臂的乘积是__________。
(2)物理小组利用空瓶(空瓶质量比秤砣质量小一些)、细线和原有秤砣测出原秤砣的质量。方法是:用细线系在空瓶上并置于__________点,慢慢往瓶中加沙子,如果杆秤恰能平衡,相当于新做了一个秤砣,再把它挂在秤钩上,移动原秤砣位置至杆秤平衡,秤杆上的读数即为原秤砣质量。
(3)物理小组通过查资料得到“如果杠杆受两个阻力,杠杆的平衡条件是:F动l动=F阻l阻+F′阻l′阻,如图所示”。则上一问中实际上只要有刻度尺利用科学推理也可测得秤砣质量,方法是:设想有两个完全一样的原秤砣甲、乙,将甲置于A点,乙置于B点右侧某点,杆秤恰好平衡。由杠杆的平衡条件可知,量出长度l1、l2后,只须从B点起向右量出长度__________,该位置杆秤上的读数即为秤砣的质量m。
【答案】 右 O
【详解】(1)[1][2]由于O点是刻度的起点,即秤钩上不挂重物时,秤砣的位置应该在O点,提起B,杆秤平衡,把秤砣作用在杆秤上的力看成动力,则阻力就是杆秤的重力作用点(重心)应该在B点的右侧;且根据杠杆的平衡条件可得
mgl2=G杆秤×力臂
(2)[3]做一个新秤砣的方法就是采用等交换替代法,由于秤砣放在O点处时能与杆秤的自重相平衡,那么如果我们也在O点用细线系一个小瓶,向里面加入适量的沙子,待杆秤平衡时,小瓶与沙子所起的作用就与秤砣的作用一样,故它们的质量是相等的。
(3)[4]根据已经得出的两个阻力的平衡规律,如果放在杆秤上,则存在如下关系
mg×(l1+l2)=mg×l′+G杆秤×力臂
将第(1)问的关系式代入可得
mg×l1=mg×l′
即l′= l1,故只需要从B点起向右量出长度l1,该位置杆秤上的读数即为秤砣的质量。
21.在研究杠杆平衡条件的实验中:
(1)小明调节杠杆在水平位置平衡后,按图甲所示,通过加挂钩码分别改变F1、F2,仍使杠杆在水平位置平衡,并用刻度尺在杠杆上测出对应的L1和L2,记录的实验数据如下表:
小明通过观察以上实验装置,并分析数据得出杠杆平衡的条件是:“动力乘以动力作用点到支点的距离=阻力乘以阻力作用点到支点的距离”.小华认为小明的结论不正确,小华为了验证自己的观点,只将图甲中的F1改用弹簧测力计来拉,实验中改变拉力的_____,仍使杠杆在水平位置平衡时,比较拉力的_____,即可证明小华的观点是否正确.
(2)某同学利用身边的塑料直尺和硬币若干来验证杠杆平衡的条件,如图乙所示,当杠杆在水平位置平衡时,他测出从支点O到硬币边缘的距离作为力臂L1和L2的大小,他测力臂的方法是_____的(选填“正确”或“错误”).如果将两边的硬币以相同速度同时匀速向支点移动的过程中,则杠杆_____(选填“仍平衡”、“向左倾斜”、“向右右倾斜”).
【答案】 方向 大小 错误 向左倾斜
【详解】解:
(1)如图,杠杆在水平位置平衡,力竖直作用在杠杆上,力臂在杠杆上,力臂是作用点到支点的距离.
将图中的F1改用弹簧测力计倾斜拉动杠杆在水平位置平衡,实验中改变拉力方向,观察拉力大小,计算“动力乘以动力作用点到支点的距离=阻力乘以阻力作用点到支点的距离”是否成立,即可证明小华的观点是否正确..
(2)①硬币放在杠杆上,杠杆在水平位置平衡,硬币作用在杠杆上的力通过硬币平面
圆心,力臂是从最下面平面圆心到支点的距离,因此他测量力臂的方法是错误的.
②如果将两边的硬币以相同速度同时匀速向支点移动的过程中,当在相同时间内,右端的硬币先到达支点,左端的硬币在支点的左侧,杠杆会向左倾斜.
点睛:本题考查了力臂的问题,力臂是支点到力的作用线的距离,而不是支点到力的作用点的距离.
22.小明要测量一根1m左右、粗细和质地都均匀的细木棒的质量,通过估测发现木棒的质量会超出现有天平的量程.于是,他想用其他方法进行测量.
现有器材:天平、一块质量适当的金属块、一把量程为20cm的刻度尺和几根足量长的细绳.
只利用现有器材请你帮他设计测量这根细木棒质量的方案,要求:
(1)写出主要实验步骤和需测量的物理量;
(2)写出木棒质量的数学表达式(用测量量表示).
【答案】(1)主要实验步骤:
①用天平称出金属块的质量m;
②用细绳和刻度尺测出木棒的长度L;
③将用细绳系好的金属块系在木棒的一端,然后再将另一细绳一端做成绳环套在木棒上,用手提起该绳的另一端,并移动绳环的位置,使木棒保持水平平衡;
④用细绳和刻度尺测量出绳环到系金属块那端的木棒长度L′.
(2)M=m.
【详解】(1)主要实验步骤:
①用天平称出金属块的质量m;
②用细绳和刻度尺测出木棒的长度L;
③将用细绳系好的金属块系在木棒的一端,然后再将另一细绳一端做成绳环套在木棒上,用手提起该绳的另一端,并移动绳环的位置,使木棒保持水平平衡;
④用细绳和刻度尺测量出绳环到系金属块那端的木棒长度L′.
(2)如图,以O为支点,
∵杠杆平衡,
∴G铁×L′=G×(L﹣L′)
即:mg×L′=Mg×(L﹣L′)
解得:木棒的质量:
M=m.
答:(1)主要实验步骤和需测量的物理量同上;
(2)木棒质量的数学表达式为M=m.
本题巧用杠杆平衡条件测量木棒的质量,难点在实验步骤的设计,想到把木棒当做杠杆去用是本题的突破口.5.1 杠杆
知识梳理
1、杠杆定义:在力作用下绕着固定点转动硬棒叫杠杆。
说明:①杠杆可直可曲,形状任意。
②有些情况下,可将杠杆实际转一下,来帮助确定支点。如:鱼杆、铁锹。
2、杠杆五要素——组成杠杆示意图。
①支点:杠杆绕着转动点。用字母O 表示。
②动力:使杠杆转动力。用字母 F1 表示。
③阻力:阻碍杠杆转动力。用字母 F2 表示。
说明:动力、阻力都是杠杆受力,所以作用点在杠杆上。
动力、阻力方向不一定相反,但它们使杠杆转动方向相反
④动力臂:从支点到动力作用线距离。用字母l1表示。
⑤阻力臂:从支点到阻力作用线距离。用字母l2表示。
画力臂方法:一找支点、二画线、三连距离、四标签
⑴ 找支点O;
⑵ 画力作用线(虚线);
⑶ 画力臂(虚线,过支点垂直力作用线作垂线);
⑷ 标力臂(大括号)。
3、研究杠杆平衡条件:
杠杆平衡是指:杠杆静止或匀速转动。
实验前:应调节杠杆两端螺母,使杠杆在水平位置平衡。这样做目是:可以方便从杠杆上量出力臂。
1结论:杠杆平衡条件(或杠杆原理)是:
动力×动力臂=阻力×阻力臂。写成公式F1l1=F2l2 也可写成:F1 / F2=l2 / l1
⑵ 解题指导:分析解决有关杠杆平衡条件问题,必须要画出杠杆示意图;弄清受力及方向和力臂大小;然后根据具体情况具体分析,确定如何使用平衡条件解决有关问题。(如:杠杆转动时施加动力如何变化,沿什么方向施力最小等。)
⑶ 解决杠杆平衡时动力最小问题:此类问题中阻力×阻力臂为一定值,要使动力最小,必须使动力臂最大,要使动力臂最大需要做到
①在杠杆上找一点,使这点到支点距离最远;
②动力方向应该是过该点且和该连线垂直方向。
4、应用:
名称 结 构 特 征 特 点 应用举例
省力 杠杆 动力臂 大于 阻力臂 省力、 费距离 撬棒、铡刀、动滑轮、轮轴、羊角锤、钢丝钳、手推车、花枝剪刀
费力 杠杆 动力臂 小于 阻力臂 费力、 省距离 缝纫机踏板、起重臂 人前臂、理发剪刀、钓鱼杆
等臂 杠杆 动力臂 等于 阻力臂 不省力 不费力 天平,定滑轮
说明:应根据实际来选择杠杆,当需要较大力才能解决问题时,应选择省力杠杆,当为了使用方便,省距离时,应选费力杠杆。
基础训练
一、单选题
1.如图所示,下列工具的使用中,属于费力杠杆的是(  )
A. B.
C. D.
2.下列说法中错误的是
A.杠杆一定有支点
B.使用辘轳可以省力
C.杠杆可以是弯的,也可以是直的
D.杠杆的长度等于动力臂与阻力臂之和
3.如图所示的杠杆中,动力的力臂用l表示,图中所画力臂正确的是( )
A. B. C. D.
4.如图所示,活塞式抽水机手柄可以看作是绕O点转动的杠杆,它在动力F1和阻力F2的作用下,处于平衡状态,则( )
A.F1 OC=F2 OA B.F1 OD=F2 OB
C.F1 OE=F2 OA D.F1 OE=F2 OB
5.如图是小龙探究“杠杆平衡条件”的实验装置,用弹簧测力计在C处竖直向上拉,杠杆保持平衡.若弹簧测力计逐渐向右倾斜,仍然使杠杆保持平衡,拉力F的变化情况是
A.变小 B.变大
C.不变 D.无法确定
6.质量为60kg的人站在跷跷板某一位置时,跷跷板处于如图所示的平衡状态.由此可估测球的质量约为
A.20kg B.30kg
C.60kg D.120kg
7.观察图示的指甲刀的结构图,其中分析正确的是
A.一个杠杆,且是省力杠杆
B.两个杠杆,一个省力杠杆,一个费力杠杆
C.三个杠杆,一个省力杠杆,两个费力杠杆
D.三个杠杆,一个费力杠杆,两个省力杠杆
8.室内垃圾桶平时桶盖关闭不使垃圾散发异味,使用时用脚踩踏板,桶盖开启,根据室内垃圾桶的结构示意图,可确定桶中有两个杠杆在起作用,两杠杆支点为O1、O2.则对应的杠杆分别为
A.省力杠杆;省力杠杆
B.省力杠杆;费力杠杆
C.费力杠杆;费力杠杆
D.费力杠杆;省力杠杆
9.如图所示,杠杆AOB用细线悬挂起来,当A端挂重物G1,B端挂重物G2时,杠杆平衡,此时OA恰好处于水平位置,AO=BO,杠杆重力不计,则
A.G1<G2 B.G1>G2
C.G1=G2 D.都有可能
10.在海南举办的大力士比赛中,有一个项目是把车轮推上台阶.下面把车轮推上台阶的四种方法,推力的作用点相同,推力的方向不同,如图所示,则哪一种推法最省力
A. B.
C. D.
11.重为G的均匀木棒竖直悬于O点,在其下端施一水平拉力F,让棒缓慢转到图中虚线所示位置.在转动的过程中:( )
A.动力臂逐渐变大
B.阻力臂逐渐变小
C.动力F逐渐变大
D.动力F逐渐减小
二、填空题
12.如图所示,赛艇的桨可看成一个_____杠杆.
13.开瓶时使用的开瓶器(图a),可以简化成不计重力的省力杠杆(图b),O为支点,若动力F1和阻力F2,都与杠杆垂直,且AO=6cm,BO=1cm,F1=25N,则F2=______N。
14.如图是人们用木棒撬石块的示意图.撬石块有两种方法:第一种是以B点为支点,在C点用与棒垂直的力F1向下撬;第二种是以A点为支点,在C点用与棒垂直的力F2向上撬.(木棒自重不计)
(1)在图中画出力F1的力臂________-.
(2)若石块压在棒上的D点正好是AB的中点,你认为第______种方法更省力一些,理由是______.
15.在探究"杠杆平衡条件"的实验中,若杠杆在使用前左高右低,要使它水平平衡,应将杠杆左端的平衡螺母向_________调节.某小组得到的两组实验数据如下表所示:
根据实验数据,可以得出的结论是:_________(用文字或符号表述均可)
16.如图所示是列车上常用的手推车,车内货物均匀摆放.车前行时,需经过障碍物.当车的前轮遇到障碍物A时,售货员向下按扶把,这时手推车可以视为______杠杆(选填“省力”或“费力”),若手推车和货物总重200 N,动力臂和阻力臂之比为2:3,则服务员作用在扶把上的动力为______N.当后轮遇到障碍物A时,售货员竖直向上提扶把,这种情况下,手推车可以视为______杠杆(选填“省力”或“费力”).
三、作图题
17.(1)如图1为揭开井盖的示意图,O为支点,请在图中画出拉力F的力臂l。
( )
图1
(2)如图2所示是“探究电流与电压规律”的实验电路。检查电路发现连接存在错误,只需改接一根导线即可改正。请在接错的一根导线上打“×”,再画线把它改到正确的位置上。__
图2
18.在图中,O为支点,在A点画出使杠杆保持平衡的最小力F(保留作图痕迹)。
四、计算题
19.如图所示是某同学做俯卧撑时的示意图,他的质量为56kg,身体可视为杠杆,O点为支点,A点为重心。(10N/ kg)
(1)该同学所受重力是多少?
(2)在图中画出该同学所受重力的示意图,并画出重力的力臂l1;
(3)若OB=1.0m,BC=0.4m,求地面对双手支持力的大小。
五、实验题
20.对于杠杆的原理,我国古代也很注意研究,在古书《墨经》中就对杆秤作了科学的说明。某物理小组探究如图所示的一杆秤,通过观察和测量知道:杆秤上标有刻度,提纽在B点,秤钩在A点,O点为刻度的起点(为零刻度点,在B点左侧)。用刻度尺量出OA=l1,OB=l2。
(1)秤钩不挂重物时,秤砣挂在O点时杆秤平衡,则重心C应在B点的__________侧(选填“左”、“右”或“不确定”)。 设该杆秤秤砣的质量为m,则杆秤自身重力(不含秤砣)和它的力臂的乘积是__________。
(2)物理小组利用空瓶(空瓶质量比秤砣质量小一些)、细线和原有秤砣测出原秤砣的质量。方法是:用细线系在空瓶上并置于__________点,慢慢往瓶中加沙子,如果杆秤恰能平衡,相当于新做了一个秤砣,再把它挂在秤钩上,移动原秤砣位置至杆秤平衡,秤杆上的读数即为原秤砣质量。
(3)物理小组通过查资料得到“如果杠杆受两个阻力,杠杆的平衡条件是:F动l动=F阻l阻+F′阻l′阻,如图所示”。则上一问中实际上只要有刻度尺利用科学推理也可测得秤砣质量,方法是:设想有两个完全一样的原秤砣甲、乙,将甲置于A点,乙置于B点右侧某点,杆秤恰好平衡。由杠杆的平衡条件可知,量出长度l1、l2后,只须从B点起向右量出长度__________,该位置杆秤上的读数即为秤砣的质量m。
21.在研究杠杆平衡条件的实验中:
(1)小明调节杠杆在水平位置平衡后,按图甲所示,通过加挂钩码分别改变F1、F2,仍使杠杆在水平位置平衡,并用刻度尺在杠杆上测出对应的L1和L2,记录的实验数据如下表:
小明通过观察以上实验装置,并分析数据得出杠杆平衡的条件是:“动力乘以动力作用点到支点的距离=阻力乘以阻力作用点到支点的距离”.小华认为小明的结论不正确,小华为了验证自己的观点,只将图甲中的F1改用弹簧测力计来拉,实验中改变拉力的_____,仍使杠杆在水平位置平衡时,比较拉力的_____,即可证明小华的观点是否正确.
(2)某同学利用身边的塑料直尺和硬币若干来验证杠杆平衡的条件,如图乙所示,当杠杆在水平位置平衡时,他测出从支点O到硬币边缘的距离作为力臂L1和L2的大小,他测力臂的方法是_____的(选填“正确”或“错误”).如果将两边的硬币以相同速度同时匀速向支点移动的过程中,则杠杆_____(选填“仍平衡”、“向左倾斜”、“向右右倾斜”).
22.小明要测量一根1m左右、粗细和质地都均匀的细木棒的质量,通过估测发现木棒的质量会超出现有天平的量程.于是,他想用其他方法进行测量.
现有器材:天平、一块质量适当的金属块、一把量程为20cm的刻度尺和几根足量长的细绳.
只利用现有器材请你帮他设计测量这根细木棒质量的方案,要求:
(1)写出主要实验步骤和需测量的物理量;
(2)写出木棒质量的数学表达式(用测量量表示).

展开更多......

收起↑

资源列表