资源简介 专题一 函数与导数第1讲 函数的图象与性质[考情分析] 1.函数的图象与性质是高考考查的重点和热点,主要考查函数的定义域与值域、分段函数、函数图象的识别与应用以及函数性质(单调性、奇偶性、周期性、对称性)的综合应用,难度属于中等及以上.2.此部分内容多以选择题、填空题的形式出现,有时在压轴题的位置,多与导数、不等式、创新性问题相结合命题.考点一 函数的概念与表示核心提炼1.复合函数的定义域(1)若f(x)的定义域为[m,n],则在f(g(x))中,由m≤g(x)≤n解得x的范围即为f(g(x))的定义域.(2)若f(g(x))的定义域为[m,n],则由m≤x≤n得到g(x)的范围,即为f(x)的定义域.2.分段函数分段函数的定义域等于各段函数的定义域的并集,值域等于各段函数值域的并集.例1 (1)(2023·南昌模拟)已知函数f(x)的定义域为(1,+∞),则函数F(x)=f(2x-3)+的定义域为( )A.(2,3] B.(-2,3]C.[-2,3] D.(0,3](2)(2023·重庆模拟)设a>0且a≠1,若函数f(x)=的值域是[5,+∞),则a的取值范围是( )A.[,+∞) B.(1,)C.(1,] D.(,+∞)规律方法 (1)形如f(g(x))的函数求值时,应遵循先内后外的原则.(2)对于分段函数的求值(解不等式)问题,必须依据条件准确地找出利用哪一段求解.跟踪演练1 (1)(2023·潍坊模拟)设函数f(x)=则f(8)等于( )A.10 B.9 C.7 D.6(2)(多选)设函数f(x)的定义域为D,如果对任意的x∈D,存在y∈D,使得f(x)=-f(y)成立,则称函数f(x)为“M函数”.下列为“M函数”的是( )A.f(x)=sin xcos x B.f(x)=ln x+exC.f(x)=2x D.f(x)=x2-2x考点二 函数的图象核心提炼1.作函数图象有两种基本方法:一是描点法;二是图象变换法,其中图象变换有平移变换、伸缩变换、对称变换.2.利用函数图象可以判断函数的单调性、奇偶性,作图时要准确画出图象的特点.例2 (1)(2023·宁波十校联考)函数f(x)=ln |x|cos的图象可能为( )(2)(多选)(2023·吉安模拟)已知函数f(x)=若x1A.x1+x2=-4B.x3x4=1C.1D.0规律方法 (1)确定函数图象的主要方法是利用函数的性质,如定义域、奇偶性、单调性等,特别是利用一些特殊点排除不符合要求的图象.(2)函数图象的应用主要体现为数形结合思想,借助于函数图象的特点和变化规律,求解有关不等式恒成立、最值、交点、方程的根等问题.跟踪演练2 (1)(2022·全国乙卷)如图是下列四个函数中的某个函数在区间[-3,3]的大致图象,则该函数是( )A.y= B.y=C.y= D.y=(2)已知函数f(x)=则下列图象错误的是( )考点三 函数的性质核心提炼1.函数的奇偶性(1)定义:若函数的定义域关于原点对称,则有f(x)是偶函数 f(-x)=f(x)=f(|x|);f(x)是奇函数 f(-x)=-f(x).(2)判断方法:定义法、图象法、奇偶函数性质法(如奇函数×奇函数是偶函数).2.函数单调性判断方法:定义法、图象法、导数法.3.函数的周期性若函数f(x)满足f(x+a)=f(x-a)或f(x+2a)=f(x),则函数y=f(x)的周期为2|a|.4.函数图象的对称中心和对称轴(1)若函数f(x)满足关系式f(a+x)+f(a-x)=2b,则函数y=f(x)的图象关于点(a,b)对称.(2)若函数f(x)满足关系式f(a+x)=f(b-x),则函数y=f(x)的图象关于直线x=对称.考向1 单调性与奇偶性例3 (2023·泰安模拟)已知奇函数f(x)在R上是减函数,g(x)=xf(x),若a=g(-log25.1),b=g(3),c=g(20.8),则a,b,c的大小关系为( )A.aC.b考向2 奇偶性、周期性与对称性例4 (多选)(2023·盐城统考)已知函数f(x),g(x)的定义域均为R,f(x)为偶函数,且f(x)+g(2-x)=1,g(x)-f(x-4)=3,下列说法正确的有( )A.函数g(x)的图象关于直线x=1对称B.函数f(x)的图象关于点(-1,-1)对称C.函数f(x)是以4为周期的周期函数D.函数g(x)是以6为周期的周期函数二级结论 (1)若f(x+a)=-f(x),其中f(x)≠0,则f(x)的周期为2|a|.(2)若f(x)的图象关于直线x=a和x=b对称,则f(x)的周期为2|a-b|.(3)若f(x)的图象关于点(a,0)和直线x=b对称,则f(x)的周期为4|a-b|.跟踪演练3 (1)(2023·林芝模拟)已知定义在R上的函数f(x)在(-∞,2]上单调递减,且f(x+2)为偶函数,则不等式f(x-1)>f(2x)的解集为( )A.∪(6,+∞)B.(-∞,-1)∪C.D.(2)(多选)已知函数f(x),g(x)的定义域为R,g′(x)为g(x)的导函数,g(x)为偶函数且f(x)+g′(x)=2,f(x)-g′(4-x)=2,则下列结论正确的是( )A.g′(x)为奇函数B.f(2)=2C.g′(2)=2D.f(2 022)=2第1讲 函数的图象与性质例1 (1)A (2)C跟踪演练1 (1)C (2)AB例2 (1)A(2)AB [函数f(x)=的图象如图所示,设f(x1)=f(x2)=f(x3)=f(x4)=t,则0则直线y=t与函数y=f(x)的图象的4个交点横坐标分别为x1,x2,x3,x4,对于A,函数y=-x2-4x的图象关于直线x=-2对称,则x1+x2=-4,故A正确;对于B,由图象可知|log2x3|=|log2x4|,且0所以-log2x3=log2x4,即log2(x3x4)=0,所以x3x4=1,故B正确;当x≤0时,f(x)=-x2-4x=-(x+2)2+4≤4,由图象可知log2x4∈(0,4),则1由图象可知-4所以x1x2x3x4=x1(-4-x1)=-x-4x1=-(x1+2)2+4∈(0,4),故D错误.]跟踪演练2 (1)A (2)D例3 D [因为f(x)为奇函数且在R上是减函数,所以f(-x)=-f(x),且当x>0时,f(x)<0.因为g(x)=xf(x),所以g(-x)=-xf(-x)=xf(x),故g(x)为偶函数.当x>0时,g′(x)=f(x)+xf′(x),因为f(x)<0,f′(x)<0,所以g′(x)<0.即g(x)在(0,+∞)上单调递减.a=g(-log25.1)=g(log25.1),因为3=log28>log25.1>log24=2>20.8,所以g(3)即b例4 BC [对于A选项,因为f(x)为偶函数,所以f(-x)=f(x).由f(x)+g(2-x)=1,可得f(-x)+g(2+x)=1,可得g(2+x)=g(2-x),所以函数g(x)的图象关于直线x=2对称,A错误;对于B选项,因为g(x)-f(x-4)=3,则g(2-x)-f(-2-x)=3,又因为f(x)+g(2-x)=1,可得f(x)+f(-2-x)=-2,所以函数f(x)的图象关于点(-1,-1)对称,B正确;对于C选项,因为函数f(x)为偶函数,且f(x)+f(-2-x)=-2,则f(x)+f(x+2)=-2,从而f(x+2)+f(x+4)=-2,则f(x+4)=f(x),所以函数f(x)是以4为周期的周期函数,C正确;对于D选项,因为g(x)-f(x-4)=3,且f(x)=f(x-4),所以g(x)-f(x)=3,又因为f(x)+g(2-x)=1,所以g(x)+g(2-x)=4,又因为g(2-x)=g(2+x),则g(x)+g(x+2)=4,所以g(x+2)+g(x+4)=4,故g(x+4)=g(x),因此函数g(x)是周期为4的周期函数,D错误.]跟踪演练3 (1)D(2)ABD [∵g(x)为偶函数,∴g(-x)=g(x),∴-g′(-x)=g′(x),即g′(x)为奇函数,故A正确;又f(x)+g′(x)=2,f(x)-g′(4-x)=2,令x=2,则解得f(2)=2,g′(2)=0,故B正确,C错误;∵f(x)-g′(4-x)=2,∴f(x+4)-g′(-x)=2,又g′(x)为奇函数,则f(x+4)+g′(x)=2,又f(x)+g′(x)=2,∴f(x+4)=f(x),故f(x)是以4为周期的周期函数,∴f(2 022)=f(2)=2,故D正确.] 展开更多...... 收起↑ 资源预览