专题一 函数与导数 第5讲 母题突破-2024年高考数学大二轮专题复习讲义(含解析)(3份打包 )

资源下载
  1. 二一教育资源

专题一 函数与导数 第5讲 母题突破-2024年高考数学大二轮专题复习讲义(含解析)(3份打包 )

资源简介

第5讲 导数的综合应用
[考情分析] 1.利用导数研究函数的单调性与极值(最值)是高考的常见题型,而导数与函数、不等式、方程、数列等的交汇命题是高考的热点和难点.2.多以解答题的形式压轴出现,难度较大.
母题突破1 导数与不等式的证明
母题 (2023·十堰调研)已知函数f(x)=(2-x)ex-ax-2.
(1)若f(x)在R上是减函数,求a的取值范围;
(2)当0≤a<1时,求证:f(x)在(0,+∞)上只有一个零点x0,且x0<.
思路分析
f′ x ≤0恒成立
f′ x max≤0求解
0 x0<\f(e,a+1),ax0+x0 ax0+x0< 2-x0
2-x0 ≤e
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
[子题1] (2023·哈师大附中模拟)已知函数f(x)=ex+exln x(其中e是自然对数的底数).
求证:f(x)≥ex2.
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
[子题2] 已知函数f(x)=ln x,g(x)=ex.证明:f(x)+>g(-x).
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
规律方法 利用导数证明不等式问题的方法
(1)直接构造函数法:证明不等式f(x)>g(x)(或f(x)0(或f(x)-g(x)<0),进而构造辅助函数h(x)=f(x)-g(x).
(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论.
(3)构造“形似”函数,稍作变形再构造,对原不等式同结构变形,根据相似结构构造辅助函数.
1.(2023·桂林模拟)已知函数f(x)=x2-cos x,求证:f(x)+2->0.
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
2.(2023·南昌模拟)已知函数f(x)=a(x2-1)-ln x(x>0).
若0________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________母题突破3 零点问题
母题 已知函数f(x)=sin x-,判断f(x)在(0,π)上零点的个数,并说明理由.
思路分析
等价转换f(x)=0
判断g(x)=ex·sin x-x+1的零点
讨论g(x)在上的零点个数
讨论g(x)在上的零点个数
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
[子题1] (2023·安庆模拟)已知函数f(x)=eln x+bx2e1-x.若f(x)的导函数f′(x)恰有两个零点,求b的取值范围.
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
[子题2] 设函数f(x)=aln(x+1)+x2(a∈R),函数g(x)=ax-1.证明:当a≤2时,函数H(x)=f(x)-g(x)至多有一个零点.
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
规律方法 (1)求解函数零点(方程根)个数问题的步骤
①将问题转化为函数的零点问题,进而转化为函数的图象与x轴(或直线y=k)在该区间上的交点问题.
②利用导数研究该函数在该区间上的单调性、极值(最值)、端点值等性质.
③结合图象求解.
(2)已知零点求参数的取值范围
①结合图象与单调性,分析函数的极值点.
②依据零点确定极值的范围.
③对于参数选择恰当的分类标准进行讨论.
1.(2023·郑州模拟)已知函数f(x)=xln x+a-ax(a∈R).若函数f(x)在区间[1,e]上有且只有一个零点,求实数a的取值范围.
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
2.(2023·商洛模拟)已知函数f(x)=(x-2)ex,其中e为自然对数的底数.函数g(x)=f(x)-ln x,证明:g(x)有且仅有两个零点.
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________母题突破2 恒成立问题与能成立问题
母题 (2023·新乡模拟)已知函数f(x)=x2-(2a+1)x+2aln x.若f(x)≥0恒成立,求实数a的取值范围.
思路分析一
f x ≥0恒成立
f x min≥0
分类讨论求f x min
思路分析二
f x ≥0恒成立
求证x-ln x>0
分离参数构造新函数
求新函数最值
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
[子题1] (2023·青岛模拟)已知函数f(x)=ex-a-ln x.若存在x0∈[e,+∞),使f(x0)<0,求a的取值范围.
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
[子题2] (2023·全国乙卷改编)已知函数f(x)=ln(1+x).若f′(x)≥0在区间(0,+∞)上恒成立,求a的取值范围.
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
规律方法 (1)由不等式恒成立求参数的取值范围问题的策略
①求最值法:将恒成立问题转化为利用导数求函数的最值问题.
②分离参数法:将参数分离出来,进而转化为a>f(x)max或a(2)不等式有解问题可类比恒成立问题进行转化,要理解清楚两类问题的差别.
1.已知函数f(x)=(x-4)ex-x2+6x,g(x)=ln x-(a+1)x,a>-1.若存在x1∈[1,3],对任意的x2∈[e2,e3],使得不等式g(x2)>f(x1)成立,求实数a的取值范围.(e3≈20.09)
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
2.(2023·全国甲卷)已知函数f(x)=ax-,x∈.
(1)当a=8时,讨论f(x)的单调性;
(2)若f(x)________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________第5讲 导数的综合应用
母题突破1 导数与不等式的证明
INCLUDEPICTURE "E:\\2023\\1二轮\\大二轮 数学 提高版\\学生WORD\\左括.TIF" \* MERGEFORMAT INCLUDEPICTURE "E:\\2023\\1二轮\\大二轮 数学 提高版\\学生WORD\\左括.TIF" \* MERGEFORMATINET INCLUDEPICTURE "E:\\2023\\1二轮\\大二轮 数学 提高版\\学生WORD\\答案精析\\左括.TIF" \* MERGEFORMATINET 母题 INCLUDEPICTURE "E:\\2023\\1二轮\\大二轮 数学 提高版\\学生WORD\\右括.TIF" \* MERGEFORMAT INCLUDEPICTURE "E:\\2023\\1二轮\\大二轮 数学 提高版\\学生WORD\\右括.TIF" \* MERGEFORMATINET INCLUDEPICTURE "E:\\2023\\1二轮\\大二轮 数学 提高版\\学生WORD\\答案精析\\右括.TIF" \* MERGEFORMATINET  (1)解 因为f(x)=(2-x)ex-ax-2,
所以f′(x)=(1-x)ex-a.由f(x)在R上是减函数,得f′(x)≤0,
即(1-x)ex-a≤0在R上恒成立.
令g(x)=(1-x)ex-a,
则g′(x)=-xex.
当x∈(-∞,0)时,g′(x)>0,g(x)单调递增;
当x∈(0,+∞)时,g′(x)<0,g(x)单调递减.
故g(x)max=g(0)=1-a≤0,解得a≥1,
即a的取值范围为[1,+∞).
(2)证明 由(1)可知,f′(x)在(0,+∞)上单调递减,
且当0≤a<1时,f′(0)=1-a>0,
f′(1)=-a≤0,
故 x1∈(0,1],使得f′(x1)=0.
当x∈(0,x1)时,f′(x)>0,函数f(x)单调递增;
当x∈(x1,+∞)时,f′(x)<0,函数f(x)单调递减.
因为f(0)=0,f(2)=-2a-2<0,
所以f(x)在(0,2)上只有一个零点x0,
故函数f(x)在(0,+∞)上只有一个零点x0.
因为0即证ax0+x0因为f(x0)=(2-x0)ex0-ax0-2=0,
所以(2-x0)ex0=ax0+2>ax0+x0,
令h(x)=(2-x)ex-e,0则h′(x)=(1-x)ex.
当x∈(0,1)时,h′(x)>0,h(x)单调递增;
当x∈(1,2)时,h′(x)<0,h(x)单调递减.
故h(x)max=h(1)=0.
即(2-x0)ex0-e≤0,即(2-x0)ex0≤e,所以ax0+x0[子题1] 证明 由f(x)≥ex2,
得ex+exln x≥ex2,
即+ln x-x≥0,
令g(x)=+ln x-x,
则g′(x)=+-1

=.
令h(x)=ex-1-x,则h′(x)=ex-1-1,
当x>1时,h′(x)>0;
当0所以h(x)在(0,1)上单调递减,在(1,+∞)上单调递增,
所以h(x)≥h(1)=0.
所以当01时,g′(x)>0,
所以g(x)在(0,1)上单调递减,在(1,+∞)上单调递增,
于是g(x)≥g(1)=0,原不等式得证.
[子题2] 证明 根据题意,g(-x)=e-x,所以f(x)+>g(-x)等价于xln x>xe-x-.
设函数m(x)=xln x,
则m′(x)=1+ln x,
所以当x∈时,m′(x)<0;
当x∈时,m′(x)>0,
故m(x)在上单调递减,在上单调递增,从而m(x)在(0,+∞)上的最小值为m=-.
设函数h(x)=xe-x-,x>0,
则h′(x)=e-x(1-x).
所以当x∈(0,1)时,h′(x)>0;
当x∈(1,+∞)时,h′(x)<0,
故h(x)在(0,1)上单调递增,
在(1,+∞)上单调递减,从而h(x)在(0,+∞)上的最大值为h(1)=-.
综上,当x>0时,m(x)>h(x),
即f(x)+>g(-x).
跟踪演练
1.证明 f(x)=x2-cos x,
要证f(x)+2->0,
即证x2-cos x+2->0.
即证x2-cos x>-2.
令g(x)=x2-cos x,
∵g(-x)=g(x),∴g(x)为偶函数,
当x∈[0,+∞)时,g′(x)=2x+sin x,令k(x)=2x+sin x,k′(x)=2+cos x>0,
∴g′(x)在[0,+∞)上单调递增,
∴g′(x)≥g′(0)=0,
∴g(x)在[0,+∞)上单调递增,
由g(x)为偶函数知,g(x)在(-∞,0]上单调递减,
∴g(x)≥g(0)=-1.
设h(x)=-2,
∴h′(x)=,
∴当x>1时,h′(x)<0,
∴h(x)在(1,+∞)上单调递减;
当x<1时,h′(x)>0,
∴h(x)在(-∞,1)上单调递增.
∴h(x)max=h(1)=-1,
∴x2-cos x>-2.
原不等式得证.
2.证明 由f(x)=a(x2-1)-ln x,
得f′(x)=2ax-=,
因为f′=0且>1.
所以当0当x>时,f′(x)>0,则f(x)在上单调递增,
所以当0f(1)=0,
又因为>1,所以f <0,
又当x→+∞时,f(x)→+∞,
所以必然存在x0>1,使得f(x0)=0,
即a=,
所以f′(x0)=·x0-,
要证f′(x0)<1-2a,
即证·x0-<1-,
即证-1-<0,
即证2ln x0-<0,
设φ(x)=2ln x-(x>1),
则φ′(x)=-1-
=-=-,
所以当x>1时,φ′(x)<0,
则φ(x)在(1,+∞)上单调递减,
所以φ(x)<φ(1)=0.
即2ln x0-<0,
即f′(x0)<1-2a.
母题突破2 恒成立问题与能成立问题
INCLUDEPICTURE "E:\\2023\\1二轮\\大二轮 数学 提高版\\学生WORD\\左括.TIF" \* MERGEFORMAT INCLUDEPICTURE "E:\\2023\\1二轮\\大二轮 数学 提高版\\学生WORD\\左括.TIF" \* MERGEFORMATINET INCLUDEPICTURE "E:\\2023\\1二轮\\大二轮 数学 提高版\\学生WORD\\答案精析\\左括.TIF" \* MERGEFORMATINET 母题 INCLUDEPICTURE "E:\\2023\\1二轮\\大二轮 数学 提高版\\学生WORD\\右括.TIF" \* MERGEFORMAT INCLUDEPICTURE "E:\\2023\\1二轮\\大二轮 数学 提高版\\学生WORD\\右括.TIF" \* MERGEFORMATINET INCLUDEPICTURE "E:\\2023\\1二轮\\大二轮 数学 提高版\\学生WORD\\答案精析\\右括.TIF" \* MERGEFORMATINET  解 方法一 (求最值法)
f(x)的定义域为(0,+∞),
因为f(x)≥0恒成立,
所以f(x)min≥0,
f′(x)=x-(2a+1)+

=.
当a≤0时,由f′(x)>0,得x>1;
由f′(x)<0,得0所以f(x)在(1,+∞)上单调递增,在(0,1)上单调递减,
所以f(x)min=f(1)=--2a,
由--2a≥0,可得a≤-.
当a>0时,注意到f(1)=--2a<0,不符合题意,故a≤-,即实数a的取值范围为.
方法二 (分离参数法)
由f(x)≥0,可得x2-x-2a(x-ln x)≥0.
构造函数h(x)=x-ln x,
则h′(x)=1-=,
由h′(x)>0,得x>1;由h′(x)<0,得0所以h(x)min=h(1)=1>0,
所以x-ln x>0,
所以原不等式等价于2a≤.
令g(x)=(x>0),
则g′(x)=.
令φ(x)=x+1-ln x,
则φ′(x)=,
由φ′(x)>0,得x>2;由φ′(x)<0,得0易知φ(x)在(0,2)上单调递减,在(2,+∞)上单调递增,
所以φ(x)≥φ(2)=2-ln 2>0,
所以当x>1时,g′(x)>0;
当0所以g(x)在(0,1)上单调递减,在(1,+∞)上单调递增,g(x)≥g(1)=-,
由2a≤-,得a≤-,故实数a的取值范围为.
[子题1] 解 存在x0∈[e,+∞),使f(x0)<0,
即-ln x0<0,即即存在x0∈[e,+∞),使ea>.
令h(x)=,因此只要函数h(x)=在区间[e,+∞)上的最小值小于ea即可.
h′(x)=,
令u(x)=ln x-,
∵u′(x)=+>0,
∴u(x)在[e,+∞)上单调递增,
又u(e)=1->0.
∴h′(x)=>0在[e,+∞)上恒成立.
∴h(x)=在[e,+∞)上单调递增,
函数h(x)=在区间[e,+∞)上的最小值为h(e)=ee,
由h(e)=eee.
故a的取值范围是(e,+∞).
[子题2] 解 f′(x)=-ln(x+1)+,
因为f′(x)≥0在区间(0,+∞)上恒成立.
令-ln(x+1)+≥0,
则-(x+1)ln(x+1)+(x+ax2)≥0,
令g(x)=ax2+x-(x+1)ln(x+1),
原问题等价于g(x)≥0在区间(0,+∞)上恒成立,
则g′(x)=2ax-ln(x+1),
当a≤0时,由于2ax≤0,ln(x+1)>0,
故g′(x)<0,g(x)在区间(0,+∞)上单调递减,
此时g(x)令h(x)=g′(x)=2ax-ln(x+1),
则h′(x)=2a-,
当a≥,即2a≥1时,由于<1,
所以h′(x)>0,h(x)在区间(0,+∞)上单调递增,即g′(x)在区间(0,+∞)上单调递增,
所以g′(x)>g′(0)=0,g(x)在区间(0,+∞)上单调递增,g(x)>g(0)=0,符合题意.
当0由h′(x)=2a-=0,
可得x=-1,
当x∈时,h′(x)<0,
h(x)在区间上单调递减,
即g′(x)在区间上单调递减,
注意到g′(0)=0,
故当x∈时,
g′(x)由于g(0)=0,故当x∈时,
g(x)跟踪演练
1.解 由f(x)=(x-4)ex-x2+6x,
得f′(x)=ex+(x-4)ex-2x+6
=(x-3)ex-2x+6=(x-3)(ex-2),
当x∈[1,3]时,f′(x)≤0,
所以f(x)在[1,3]上单调递减,f(x)min=f(3)=9-e3,
于是若存在x1∈[1,3],对任意的x2∈[e2,e3],使得不等式g(x2)>f(x1)成立,则ln x-(a+1)x>9-e3(a>-1)在[e2,e3]上恒成立,
即a+1<在[e2,e3]上恒成立,
令h(x)=,x∈[e2,e3],
则a+1h′(x)=
=,
因为x∈[e2,e3],
所以ln x∈[2,3],10-e3-ln x∈[7-e3,8-e3],
因为e3≈20.09,
所以8-e3≈8-20.09=-12.09<0,
所以h′(x)<0,
所以h(x)单调递减,故h(x)min=h(e3)==1-,
于是a+1<1-,得a<-,
又a>-1,所以实数a的取值范围是.
2.解 f′(x)=
a-
=a-
=a-,
令cos2x=t,则t∈(0,1),
则f′(x)=g(t)=a-
=,t∈(0,1).
(1)当a=8时,f′(x)=g(t)==,
当t∈,即x∈时,
f′(x)<0.
当t∈,即x∈时,
f′(x)>0.
所以f(x)在上单调递增,在上单调递减.
(2)设h(x)=f(x)-sin 2x,
h′(x)=f′(x)-2cos 2x
=g(t)-2(2cos2x-1)=-2(2t-1)
=a+2-4t+-,
设φ(t)=a+2-4t+-,
则φ′(t)=-4-+

=-,
当t∈(0,1)时,φ′(t)>0,φ(t)单调递增,
所以φ(t)<φ(1)=a-3.
若a∈(-∞,3],
则h′(x)=φ(t)即h(x)在上单调递减,
所以h(x)若a∈(3,+∞),当t→0+时,-=-32+→-∞,
所以φ(t)→-∞.
φ(1)=a-3>0.
所以 t0∈(0,1),使得φ(t0)=0,
即 x0∈,使得h′(x0)=0,
t0=cos2x0.
当t∈(t0,1)时,φ(t)>0,
即当x∈(0,x0)时,h′(x)>0,h(x)单调递增,
所以当x∈(0,x0)时,h(x)>h(0)=0,不符合题意.
综上,a的取值范围为(-∞,3].
母题突破3 零点问题
INCLUDEPICTURE "E:\\2023\\1二轮\\大二轮 数学 提高版\\学生WORD\\左括.TIF" \* MERGEFORMAT INCLUDEPICTURE "E:\\2023\\1二轮\\大二轮 数学 提高版\\学生WORD\\左括.TIF" \* MERGEFORMATINET INCLUDEPICTURE "E:\\2023\\1二轮\\大二轮 数学 提高版\\学生WORD\\答案精析\\左括.TIF" \* MERGEFORMATINET 母题 INCLUDEPICTURE "E:\\2023\\1二轮\\大二轮 数学 提高版\\学生WORD\\右括.TIF" \* MERGEFORMAT INCLUDEPICTURE "E:\\2023\\1二轮\\大二轮 数学 提高版\\学生WORD\\右括.TIF" \* MERGEFORMATINET  解 由f(x)=sin x-=0,
可得ex·sin x-x+1=0,
令g(x)=ex·sin x-x+1,x∈(0,π),
所以g′(x)=(sin x+cos x)ex-1,
①当x∈时,sin x+cos x=sin≥1,ex>1,
所以g′(x)>0,
所以g(x)在上单调递增,
又因为g(0)=1>0,所以g(x)在上没有零点;
②当x∈时,
令h(x)=ex-1,
所以h′(x)=2cos x·ex<0,
即h(x)在上单调递减,
又因为h=-1>0,h=-eπ-1<0,所以存在x0∈,使得h(x0)=0,
所以g(x)在上单调递增,在(x0,π)上单调递减,
因为g(x0)>g=-+1>0,
g(π)=-π+1<0,
所以g(x)在上没有零点,在(x0,π)上有且只有一个零点,
综上所述,f(x)在(0,π)上有且只有一个零点.
[子题1] 解 由f′(x)=+bx(2-x)e1-x=0得,=bx(x-2).
显然x≠2,x>0.
因此=b.
令g(x)=,x>0且x≠2,
则g′(x)=,
解方程x2-5x+4=0得,
x1=4,x2=1,
因此函数g(x)在(0,1)和(4,+∞)上单调递增,在(1,2)和(2,4)上单调递减,且极大值为g(1)=-e,极小值为g(4)=.g(x)的大致图象如图所示.
INCLUDEPICTURE "E:\\2023\\1二轮\\大二轮 数学 提高版\\学生WORD\\1-36.TIF" \* MERGEFORMAT INCLUDEPICTURE "E:\\2023\\1二轮\\大二轮 数学 提高版\\学生WORD\\1-36.TIF" \* MERGEFORMATINET INCLUDEPICTURE "E:\\2023\\1二轮\\大二轮 数学 提高版\\学生WORD\\答案精析\\1-36.TIF" \* MERGEFORMATINET
由图象可知,当b>或b<-e时,直线y=b与曲线y=g(x)的图象分别有两个交点,即函数f′(x)恰有两个零点.故b的取值范围是
(-∞,-e)∪.
[子题2] 证明 因为H(x)=aln(x+1)+x2-ax+1,
所以H′(x)=(x>-1),
令H′(x)=0,x1=0,x2=-1.
当x→-1+时,H(x)→-∞;
当x→+∞时,H(x)→+∞.
①当a=2时,H′(x)≥0,函数H(x)在定义域(-1,+∞)上为增函数,有一个零点;
②当a≤0时,-1≤-1,
令H′(x)>0,得x>0,
令H′(x)<0,得-1所以函数H(x)在区间(-1,0)上单调递减,在区间(0,+∞)上单调递增,
则函数H(x)在x=0处有最小值H(0)=1>0,此时函数H(x)无零点;
③当0令H′(x)>0,得-10,令H′(x)<0,得-1所以函数H(x)在区间,(0,+∞)上单调递增,
在区间上单调递减.
因为函数H(0)=1>0,
所以H>0,且H(x)>0在区间上恒成立.
H(x)在区间上有一个零点.
所以当0综上,当a≤2时,函数H(x)=f(x)-g(x)至多有一个零点.
跟踪演练
1.解 f(x)=xln x-ax+a,
易知f(1)=0,
所求问题等价于函数f(x)=xln x-ax+a在区间(1,e]上没有零点,
因为f′(x)=ln x+1-a,
所以当0f(x)在(0,ea-1)上单调递减,
当x>ea-1时,f′(x)>0,
f(x)在(ea-1,+∞)上单调递增.
①当ea-1≤1,即a≤1时,函数f(x)在区间(1,e]上单调递增,所以f(x)>f(1)=0,此时函数f(x)在区间(1,e]上没有零点,满足题意.
②当1要使f(x)在(1,e]上没有零点,只需f(e)<0,
即e-ae+a<0,解得a>,
所以③当e≤ea-1,即a≥2时,函数f(x)在区间(1,e]上单调递减,
f(x)在区间(1,e]上满足f(x)综上所述,实数a的取值范围是.
2.证明 因为g(x)=f(x)-ln x
=(x-2)ex-ln x,
则g′(x)=(x-1)ex-,x>0,
设h(x)=g′(x)=(x-1)ex-,
则h′(x)=xex+>0,
故g′(x)在(0,+∞)上单调递增.
因为g′(1)=-1<0,g′(2)=e2->0,所以存在唯一x0∈(1,2),使得g′(x0)=0.
故当x∈(0,x0)时,g′(x)<0;
当x∈(x0,+∞)时,g′(x)>0.
即g(x)在(0,x0)上单调递减,在(x0,+∞)上单调递增.
因为g(x0)0,
又因为ln 2≈0.69,则ln 2>,
所以g=-ln
=4-
=4-2+-4>4-2eln 2+-4
=4-4+>0,
由零点存在定理可知,函数g(x)在(0,x0),(x0,3)上各存在一个零点,
综上所述,g(x)有且仅有两个零点.

展开更多......

收起↑

资源列表