资源简介 第5讲 导数的综合应用[考情分析] 1.利用导数研究函数的单调性与极值(最值)是高考的常见题型,而导数与函数、不等式、方程、数列等的交汇命题是高考的热点和难点.2.多以解答题的形式压轴出现,难度较大.母题突破1 导数与不等式的证明母题 (2023·十堰调研)已知函数f(x)=(2-x)ex-ax-2.(1)若f(x)在R上是减函数,求a的取值范围;(2)当0≤a<1时,求证:f(x)在(0,+∞)上只有一个零点x0,且x0<.思路分析 f′ x ≤0恒成立 f′ x max≤0求解 0 x0<\f(e,a+1),ax0+x0 ax0+x0< 2-x0 2-x0 ≤e________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________[子题1] (2023·哈师大附中模拟)已知函数f(x)=ex+exln x(其中e是自然对数的底数).求证:f(x)≥ex2.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________[子题2] 已知函数f(x)=ln x,g(x)=ex.证明:f(x)+>g(-x).________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________规律方法 利用导数证明不等式问题的方法(1)直接构造函数法:证明不等式f(x)>g(x)(或f(x)0(或f(x)-g(x)<0),进而构造辅助函数h(x)=f(x)-g(x).(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论.(3)构造“形似”函数,稍作变形再构造,对原不等式同结构变形,根据相似结构构造辅助函数.1.(2023·桂林模拟)已知函数f(x)=x2-cos x,求证:f(x)+2->0.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________2.(2023·南昌模拟)已知函数f(x)=a(x2-1)-ln x(x>0).若0________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________母题突破3 零点问题母题 已知函数f(x)=sin x-,判断f(x)在(0,π)上零点的个数,并说明理由.思路分析 等价转换f(x)=0 判断g(x)=ex·sin x-x+1的零点 讨论g(x)在上的零点个数 讨论g(x)在上的零点个数________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________[子题1] (2023·安庆模拟)已知函数f(x)=eln x+bx2e1-x.若f(x)的导函数f′(x)恰有两个零点,求b的取值范围.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________[子题2] 设函数f(x)=aln(x+1)+x2(a∈R),函数g(x)=ax-1.证明:当a≤2时,函数H(x)=f(x)-g(x)至多有一个零点.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________规律方法 (1)求解函数零点(方程根)个数问题的步骤①将问题转化为函数的零点问题,进而转化为函数的图象与x轴(或直线y=k)在该区间上的交点问题.②利用导数研究该函数在该区间上的单调性、极值(最值)、端点值等性质.③结合图象求解.(2)已知零点求参数的取值范围①结合图象与单调性,分析函数的极值点.②依据零点确定极值的范围.③对于参数选择恰当的分类标准进行讨论.1.(2023·郑州模拟)已知函数f(x)=xln x+a-ax(a∈R).若函数f(x)在区间[1,e]上有且只有一个零点,求实数a的取值范围.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________2.(2023·商洛模拟)已知函数f(x)=(x-2)ex,其中e为自然对数的底数.函数g(x)=f(x)-ln x,证明:g(x)有且仅有两个零点.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________母题突破2 恒成立问题与能成立问题母题 (2023·新乡模拟)已知函数f(x)=x2-(2a+1)x+2aln x.若f(x)≥0恒成立,求实数a的取值范围.思路分析一 f x ≥0恒成立 f x min≥0 分类讨论求f x min思路分析二 f x ≥0恒成立 求证x-ln x>0 分离参数构造新函数 求新函数最值________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________[子题1] (2023·青岛模拟)已知函数f(x)=ex-a-ln x.若存在x0∈[e,+∞),使f(x0)<0,求a的取值范围.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________[子题2] (2023·全国乙卷改编)已知函数f(x)=ln(1+x).若f′(x)≥0在区间(0,+∞)上恒成立,求a的取值范围.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________规律方法 (1)由不等式恒成立求参数的取值范围问题的策略①求最值法:将恒成立问题转化为利用导数求函数的最值问题.②分离参数法:将参数分离出来,进而转化为a>f(x)max或a(2)不等式有解问题可类比恒成立问题进行转化,要理解清楚两类问题的差别.1.已知函数f(x)=(x-4)ex-x2+6x,g(x)=ln x-(a+1)x,a>-1.若存在x1∈[1,3],对任意的x2∈[e2,e3],使得不等式g(x2)>f(x1)成立,求实数a的取值范围.(e3≈20.09)________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________2.(2023·全国甲卷)已知函数f(x)=ax-,x∈.(1)当a=8时,讨论f(x)的单调性;(2)若f(x)________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________第5讲 导数的综合应用母题突破1 导数与不等式的证明INCLUDEPICTURE "E:\\2023\\1二轮\\大二轮 数学 提高版\\学生WORD\\左括.TIF" \* MERGEFORMAT INCLUDEPICTURE "E:\\2023\\1二轮\\大二轮 数学 提高版\\学生WORD\\左括.TIF" \* MERGEFORMATINET INCLUDEPICTURE "E:\\2023\\1二轮\\大二轮 数学 提高版\\学生WORD\\答案精析\\左括.TIF" \* MERGEFORMATINET 母题 INCLUDEPICTURE "E:\\2023\\1二轮\\大二轮 数学 提高版\\学生WORD\\右括.TIF" \* MERGEFORMAT INCLUDEPICTURE "E:\\2023\\1二轮\\大二轮 数学 提高版\\学生WORD\\右括.TIF" \* MERGEFORMATINET INCLUDEPICTURE "E:\\2023\\1二轮\\大二轮 数学 提高版\\学生WORD\\答案精析\\右括.TIF" \* MERGEFORMATINET (1)解 因为f(x)=(2-x)ex-ax-2,所以f′(x)=(1-x)ex-a.由f(x)在R上是减函数,得f′(x)≤0,即(1-x)ex-a≤0在R上恒成立.令g(x)=(1-x)ex-a,则g′(x)=-xex.当x∈(-∞,0)时,g′(x)>0,g(x)单调递增;当x∈(0,+∞)时,g′(x)<0,g(x)单调递减.故g(x)max=g(0)=1-a≤0,解得a≥1,即a的取值范围为[1,+∞).(2)证明 由(1)可知,f′(x)在(0,+∞)上单调递减,且当0≤a<1时,f′(0)=1-a>0,f′(1)=-a≤0,故 x1∈(0,1],使得f′(x1)=0.当x∈(0,x1)时,f′(x)>0,函数f(x)单调递增;当x∈(x1,+∞)时,f′(x)<0,函数f(x)单调递减.因为f(0)=0,f(2)=-2a-2<0,所以f(x)在(0,2)上只有一个零点x0,故函数f(x)在(0,+∞)上只有一个零点x0.因为0即证ax0+x0因为f(x0)=(2-x0)ex0-ax0-2=0,所以(2-x0)ex0=ax0+2>ax0+x0,令h(x)=(2-x)ex-e,0则h′(x)=(1-x)ex.当x∈(0,1)时,h′(x)>0,h(x)单调递增;当x∈(1,2)时,h′(x)<0,h(x)单调递减.故h(x)max=h(1)=0.即(2-x0)ex0-e≤0,即(2-x0)ex0≤e,所以ax0+x0[子题1] 证明 由f(x)≥ex2,得ex+exln x≥ex2,即+ln x-x≥0,令g(x)=+ln x-x,则g′(x)=+-1==.令h(x)=ex-1-x,则h′(x)=ex-1-1,当x>1时,h′(x)>0;当0所以h(x)在(0,1)上单调递减,在(1,+∞)上单调递增,所以h(x)≥h(1)=0.所以当01时,g′(x)>0,所以g(x)在(0,1)上单调递减,在(1,+∞)上单调递增,于是g(x)≥g(1)=0,原不等式得证.[子题2] 证明 根据题意,g(-x)=e-x,所以f(x)+>g(-x)等价于xln x>xe-x-.设函数m(x)=xln x,则m′(x)=1+ln x,所以当x∈时,m′(x)<0;当x∈时,m′(x)>0,故m(x)在上单调递减,在上单调递增,从而m(x)在(0,+∞)上的最小值为m=-.设函数h(x)=xe-x-,x>0,则h′(x)=e-x(1-x).所以当x∈(0,1)时,h′(x)>0;当x∈(1,+∞)时,h′(x)<0,故h(x)在(0,1)上单调递增,在(1,+∞)上单调递减,从而h(x)在(0,+∞)上的最大值为h(1)=-.综上,当x>0时,m(x)>h(x),即f(x)+>g(-x).跟踪演练1.证明 f(x)=x2-cos x,要证f(x)+2->0,即证x2-cos x+2->0.即证x2-cos x>-2.令g(x)=x2-cos x,∵g(-x)=g(x),∴g(x)为偶函数,当x∈[0,+∞)时,g′(x)=2x+sin x,令k(x)=2x+sin x,k′(x)=2+cos x>0,∴g′(x)在[0,+∞)上单调递增,∴g′(x)≥g′(0)=0,∴g(x)在[0,+∞)上单调递增,由g(x)为偶函数知,g(x)在(-∞,0]上单调递减,∴g(x)≥g(0)=-1.设h(x)=-2,∴h′(x)=,∴当x>1时,h′(x)<0,∴h(x)在(1,+∞)上单调递减;当x<1时,h′(x)>0,∴h(x)在(-∞,1)上单调递增.∴h(x)max=h(1)=-1,∴x2-cos x>-2.原不等式得证.2.证明 由f(x)=a(x2-1)-ln x,得f′(x)=2ax-=,因为f′=0且>1.所以当0当x>时,f′(x)>0,则f(x)在上单调递增,所以当0f(1)=0,又因为>1,所以f <0,又当x→+∞时,f(x)→+∞,所以必然存在x0>1,使得f(x0)=0,即a=,所以f′(x0)=·x0-,要证f′(x0)<1-2a,即证·x0-<1-,即证-1-<0,即证2ln x0-<0,设φ(x)=2ln x-(x>1),则φ′(x)=-1-=-=-,所以当x>1时,φ′(x)<0,则φ(x)在(1,+∞)上单调递减,所以φ(x)<φ(1)=0.即2ln x0-<0,即f′(x0)<1-2a.母题突破2 恒成立问题与能成立问题INCLUDEPICTURE "E:\\2023\\1二轮\\大二轮 数学 提高版\\学生WORD\\左括.TIF" \* MERGEFORMAT INCLUDEPICTURE "E:\\2023\\1二轮\\大二轮 数学 提高版\\学生WORD\\左括.TIF" \* MERGEFORMATINET INCLUDEPICTURE "E:\\2023\\1二轮\\大二轮 数学 提高版\\学生WORD\\答案精析\\左括.TIF" \* MERGEFORMATINET 母题 INCLUDEPICTURE "E:\\2023\\1二轮\\大二轮 数学 提高版\\学生WORD\\右括.TIF" \* MERGEFORMAT INCLUDEPICTURE "E:\\2023\\1二轮\\大二轮 数学 提高版\\学生WORD\\右括.TIF" \* MERGEFORMATINET INCLUDEPICTURE "E:\\2023\\1二轮\\大二轮 数学 提高版\\学生WORD\\答案精析\\右括.TIF" \* MERGEFORMATINET 解 方法一 (求最值法)f(x)的定义域为(0,+∞),因为f(x)≥0恒成立,所以f(x)min≥0,f′(x)=x-(2a+1)+==.当a≤0时,由f′(x)>0,得x>1;由f′(x)<0,得0所以f(x)在(1,+∞)上单调递增,在(0,1)上单调递减,所以f(x)min=f(1)=--2a,由--2a≥0,可得a≤-.当a>0时,注意到f(1)=--2a<0,不符合题意,故a≤-,即实数a的取值范围为.方法二 (分离参数法)由f(x)≥0,可得x2-x-2a(x-ln x)≥0.构造函数h(x)=x-ln x,则h′(x)=1-=,由h′(x)>0,得x>1;由h′(x)<0,得0所以h(x)min=h(1)=1>0,所以x-ln x>0,所以原不等式等价于2a≤.令g(x)=(x>0),则g′(x)=.令φ(x)=x+1-ln x,则φ′(x)=,由φ′(x)>0,得x>2;由φ′(x)<0,得0易知φ(x)在(0,2)上单调递减,在(2,+∞)上单调递增,所以φ(x)≥φ(2)=2-ln 2>0,所以当x>1时,g′(x)>0;当0所以g(x)在(0,1)上单调递减,在(1,+∞)上单调递增,g(x)≥g(1)=-,由2a≤-,得a≤-,故实数a的取值范围为.[子题1] 解 存在x0∈[e,+∞),使f(x0)<0,即-ln x0<0,即即存在x0∈[e,+∞),使ea>.令h(x)=,因此只要函数h(x)=在区间[e,+∞)上的最小值小于ea即可.h′(x)=,令u(x)=ln x-,∵u′(x)=+>0,∴u(x)在[e,+∞)上单调递增,又u(e)=1->0.∴h′(x)=>0在[e,+∞)上恒成立.∴h(x)=在[e,+∞)上单调递增,函数h(x)=在区间[e,+∞)上的最小值为h(e)=ee,由h(e)=eee.故a的取值范围是(e,+∞).[子题2] 解 f′(x)=-ln(x+1)+,因为f′(x)≥0在区间(0,+∞)上恒成立.令-ln(x+1)+≥0,则-(x+1)ln(x+1)+(x+ax2)≥0,令g(x)=ax2+x-(x+1)ln(x+1),原问题等价于g(x)≥0在区间(0,+∞)上恒成立,则g′(x)=2ax-ln(x+1),当a≤0时,由于2ax≤0,ln(x+1)>0,故g′(x)<0,g(x)在区间(0,+∞)上单调递减,此时g(x)令h(x)=g′(x)=2ax-ln(x+1),则h′(x)=2a-,当a≥,即2a≥1时,由于<1,所以h′(x)>0,h(x)在区间(0,+∞)上单调递增,即g′(x)在区间(0,+∞)上单调递增,所以g′(x)>g′(0)=0,g(x)在区间(0,+∞)上单调递增,g(x)>g(0)=0,符合题意.当0由h′(x)=2a-=0,可得x=-1,当x∈时,h′(x)<0,h(x)在区间上单调递减,即g′(x)在区间上单调递减,注意到g′(0)=0,故当x∈时,g′(x)由于g(0)=0,故当x∈时,g(x)跟踪演练1.解 由f(x)=(x-4)ex-x2+6x,得f′(x)=ex+(x-4)ex-2x+6=(x-3)ex-2x+6=(x-3)(ex-2),当x∈[1,3]时,f′(x)≤0,所以f(x)在[1,3]上单调递减,f(x)min=f(3)=9-e3,于是若存在x1∈[1,3],对任意的x2∈[e2,e3],使得不等式g(x2)>f(x1)成立,则ln x-(a+1)x>9-e3(a>-1)在[e2,e3]上恒成立,即a+1<在[e2,e3]上恒成立,令h(x)=,x∈[e2,e3],则a+1h′(x)==,因为x∈[e2,e3],所以ln x∈[2,3],10-e3-ln x∈[7-e3,8-e3],因为e3≈20.09,所以8-e3≈8-20.09=-12.09<0,所以h′(x)<0,所以h(x)单调递减,故h(x)min=h(e3)==1-,于是a+1<1-,得a<-,又a>-1,所以实数a的取值范围是.2.解 f′(x)=a-=a-=a-,令cos2x=t,则t∈(0,1),则f′(x)=g(t)=a-=,t∈(0,1).(1)当a=8时,f′(x)=g(t)==,当t∈,即x∈时,f′(x)<0.当t∈,即x∈时,f′(x)>0.所以f(x)在上单调递增,在上单调递减.(2)设h(x)=f(x)-sin 2x,h′(x)=f′(x)-2cos 2x=g(t)-2(2cos2x-1)=-2(2t-1)=a+2-4t+-,设φ(t)=a+2-4t+-,则φ′(t)=-4-+==-,当t∈(0,1)时,φ′(t)>0,φ(t)单调递增,所以φ(t)<φ(1)=a-3.若a∈(-∞,3],则h′(x)=φ(t)即h(x)在上单调递减,所以h(x)若a∈(3,+∞),当t→0+时,-=-32+→-∞,所以φ(t)→-∞.φ(1)=a-3>0.所以 t0∈(0,1),使得φ(t0)=0,即 x0∈,使得h′(x0)=0,t0=cos2x0.当t∈(t0,1)时,φ(t)>0,即当x∈(0,x0)时,h′(x)>0,h(x)单调递增,所以当x∈(0,x0)时,h(x)>h(0)=0,不符合题意.综上,a的取值范围为(-∞,3].母题突破3 零点问题INCLUDEPICTURE "E:\\2023\\1二轮\\大二轮 数学 提高版\\学生WORD\\左括.TIF" \* MERGEFORMAT INCLUDEPICTURE "E:\\2023\\1二轮\\大二轮 数学 提高版\\学生WORD\\左括.TIF" \* MERGEFORMATINET INCLUDEPICTURE "E:\\2023\\1二轮\\大二轮 数学 提高版\\学生WORD\\答案精析\\左括.TIF" \* MERGEFORMATINET 母题 INCLUDEPICTURE "E:\\2023\\1二轮\\大二轮 数学 提高版\\学生WORD\\右括.TIF" \* MERGEFORMAT INCLUDEPICTURE "E:\\2023\\1二轮\\大二轮 数学 提高版\\学生WORD\\右括.TIF" \* MERGEFORMATINET 解 由f(x)=sin x-=0,可得ex·sin x-x+1=0,令g(x)=ex·sin x-x+1,x∈(0,π),所以g′(x)=(sin x+cos x)ex-1,①当x∈时,sin x+cos x=sin≥1,ex>1,所以g′(x)>0,所以g(x)在上单调递增,又因为g(0)=1>0,所以g(x)在上没有零点;②当x∈时,令h(x)=ex-1,所以h′(x)=2cos x·ex<0,即h(x)在上单调递减,又因为h=-1>0,h=-eπ-1<0,所以存在x0∈,使得h(x0)=0,所以g(x)在上单调递增,在(x0,π)上单调递减,因为g(x0)>g=-+1>0,g(π)=-π+1<0,所以g(x)在上没有零点,在(x0,π)上有且只有一个零点,综上所述,f(x)在(0,π)上有且只有一个零点.[子题1] 解 由f′(x)=+bx(2-x)e1-x=0得,=bx(x-2).显然x≠2,x>0.因此=b.令g(x)=,x>0且x≠2,则g′(x)=,解方程x2-5x+4=0得,x1=4,x2=1,因此函数g(x)在(0,1)和(4,+∞)上单调递增,在(1,2)和(2,4)上单调递减,且极大值为g(1)=-e,极小值为g(4)=.g(x)的大致图象如图所示.INCLUDEPICTURE "E:\\2023\\1二轮\\大二轮 数学 提高版\\学生WORD\\1-36.TIF" \* MERGEFORMAT INCLUDEPICTURE "E:\\2023\\1二轮\\大二轮 数学 提高版\\学生WORD\\1-36.TIF" \* MERGEFORMATINET INCLUDEPICTURE "E:\\2023\\1二轮\\大二轮 数学 提高版\\学生WORD\\答案精析\\1-36.TIF" \* MERGEFORMATINET由图象可知,当b>或b<-e时,直线y=b与曲线y=g(x)的图象分别有两个交点,即函数f′(x)恰有两个零点.故b的取值范围是(-∞,-e)∪.[子题2] 证明 因为H(x)=aln(x+1)+x2-ax+1,所以H′(x)=(x>-1),令H′(x)=0,x1=0,x2=-1.当x→-1+时,H(x)→-∞;当x→+∞时,H(x)→+∞.①当a=2时,H′(x)≥0,函数H(x)在定义域(-1,+∞)上为增函数,有一个零点;②当a≤0时,-1≤-1,令H′(x)>0,得x>0,令H′(x)<0,得-1所以函数H(x)在区间(-1,0)上单调递减,在区间(0,+∞)上单调递增,则函数H(x)在x=0处有最小值H(0)=1>0,此时函数H(x)无零点;③当0令H′(x)>0,得-10,令H′(x)<0,得-1所以函数H(x)在区间,(0,+∞)上单调递增,在区间上单调递减.因为函数H(0)=1>0,所以H>0,且H(x)>0在区间上恒成立.H(x)在区间上有一个零点.所以当0综上,当a≤2时,函数H(x)=f(x)-g(x)至多有一个零点.跟踪演练1.解 f(x)=xln x-ax+a,易知f(1)=0,所求问题等价于函数f(x)=xln x-ax+a在区间(1,e]上没有零点,因为f′(x)=ln x+1-a,所以当0f(x)在(0,ea-1)上单调递减,当x>ea-1时,f′(x)>0,f(x)在(ea-1,+∞)上单调递增.①当ea-1≤1,即a≤1时,函数f(x)在区间(1,e]上单调递增,所以f(x)>f(1)=0,此时函数f(x)在区间(1,e]上没有零点,满足题意.②当1要使f(x)在(1,e]上没有零点,只需f(e)<0,即e-ae+a<0,解得a>,所以③当e≤ea-1,即a≥2时,函数f(x)在区间(1,e]上单调递减,f(x)在区间(1,e]上满足f(x)综上所述,实数a的取值范围是.2.证明 因为g(x)=f(x)-ln x=(x-2)ex-ln x,则g′(x)=(x-1)ex-,x>0,设h(x)=g′(x)=(x-1)ex-,则h′(x)=xex+>0,故g′(x)在(0,+∞)上单调递增.因为g′(1)=-1<0,g′(2)=e2->0,所以存在唯一x0∈(1,2),使得g′(x0)=0.故当x∈(0,x0)时,g′(x)<0;当x∈(x0,+∞)时,g′(x)>0.即g(x)在(0,x0)上单调递减,在(x0,+∞)上单调递增.因为g(x0)0,又因为ln 2≈0.69,则ln 2>,所以g=-ln =4-=4-2+-4>4-2eln 2+-4=4-4+>0,由零点存在定理可知,函数g(x)在(0,x0),(x0,3)上各存在一个零点,综上所述,g(x)有且仅有两个零点. 展开更多...... 收起↑ 资源列表 专题一 第5讲 母题突破1 导数与不等式的证明.docx 专题一 第5讲 母题突破2 恒成立问题与能成立问题.docx 专题一 第5讲 母题突破3 零点问题.docx 答案.doc