资源简介 中小学教育资源及组卷应用平台冲刺2024年高考数学真题练习卷(新高考专用)(考试时间:120分钟 试卷满分:150分)第I卷(选择题)一、单项选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合要求的。1.(2022·江苏·统考高考真题)“为整数”是“为整数”的( )条件A.充分不必要 B.必要不充分 C.充分必要 D.既不充分也不必要2.(2022·天津·统考高考真题)为研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:)的分组区间为,将其按从左到右的顺序分别编号为第一组,第二组,…,第五组,右图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为( )A.8 B.12 C.16 D.183.(2022·浙江·统考高考真题)已知(为虚数单位),则( )A. B. C. D.4.(2022·湖南·统考高考真题)如图,“十字歇山”是由两个直三棱柱重叠后的景象,重叠后的底面为正方形,直三棱柱的底面是顶角为,腰为3的等腰三角形,则该几何体的体积为( )A.23 B.24 C.26 D.275.(2022·天津·统考高考真题)已知抛物线分别是双曲线的左、右焦点,抛物线的准线过双曲线的左焦点,与双曲线的渐近线交于点A,若,则双曲线的标准方程为( )A. B.C. D.6.(2022·云南·统考高考真题)函数的图像为( )A. B.C. D.7.(2022·全国·统考高考真题)已知函数的定义域为R,且,则( )A. B. C.0 D.18.(2022·四川·统考高考真题)已知,关于该函数有下列四个说法:①的最小正周期为;②在上单调递增;③当时,的取值范围为;④的图象可由的图象向左平移个单位长度得到.以上四个说法中,正确的个数为( )A. B. C. D.二、多项选择题:本题共4小题,每小题5分,共20分,在每小题给出的四个选项中,有多项符合题目的要求,全部选对的得5分,部分选对的得2分,有选错的得0分。9.(2022·全国·统考高考真题)若x,y满足,则( )A. B.C. D.10.(2022·全国·统考高考真题)如图,四边形为正方形,平面,,记三棱锥,,的体积分别为,则( )A. B.C. D.11.(2022·全国·统考高考真题)已知O为坐标原点,过抛物线焦点F的直线与C交于A,B两点,其中A在第一象限,点,若,则( )A.直线的斜率为 B.C. D.12.(2022·江苏·统考高考真题)已知函数的图像关于点中心对称,则( )A.在区间单调递减B.在区间有两个极值点C.直线是曲线的对称轴D.直线是曲线的切线第II卷(非选择题)三、填空题:本题共4小题,每小题5分,共20分。13.(2022·天津·统考高考真题)设,对任意实数x,记.若至少有3个零点,则实数的取值范围为 .14.(2022·天津·统考高考真题)若直线与圆相交所得的弦长为,则 .15.(2022·天津·统考高考真题)在中,,D是AC中点,,试用表示为 ,若,则的最大值为16.(2022·浙江·统考高考真题)设点P在单位圆的内接正八边形的边上,则的取值范围是 .四、解答题:本题共6小题,共70分,解答应写出必要的文字说明、证明过程及验算步骤。17.(2022·云南·统考高考真题)设是等差数列,是等比数列,且.(1)求与的通项公式;(2)设的前n项和为,求证:;(3)求.18.(2022·上海·统考高考真题)已知,函数(1)求函数在处的切线方程;(2)若和有公共点,(i)当时,求的取值范围;(ii)求证:.19.(2022·北京·统考高考真题)直三棱柱中,,D为的中点,E为的中点,F为的中点.(1)求证:平面;(2)求直线与平面所成角的正弦值;(3)求平面与平面夹角的余弦值.20.(2022·广东·高考真题)某蔬菜基地种黄瓜,从历年市场行情可知,从二月一日起的天内,黄瓜市场售价(单位:元/千克)与上市时间(第天)的关系可用如图所示的一条折线表示,黄瓜的种植成本(单位:元/千克)与上市时间的关系可用如图所示的抛物线表示. (1)写出图表示的市场售价与上市时间的函数关系式及图表示的种植成本与上市时间的函数关系式;(2)若认定市场售价减去种植成本为纯收益,则何时上市能使黄瓜纯收益最大?21.(2022·湖南·统考高考真题)椭圆的右焦点为F、右顶点为A,上顶点为B,且满足.(1)求椭圆的离心率;(2)直线l与椭圆有唯一公共点M,与y轴相交于N(N异于M).记O为坐标原点,若,且的面积为,求椭圆的标准方程.22.(2022·全国·统考高考真题)已知函数.(1)当时,讨论的单调性;(2)当时,,求a的取值范围;(3)设,证明:.参考答案:1.A【分析】用充分条件、必要条件的定义判断.【详解】由为整数能推出为整数,故“为整数”是“为整数”的充分条件,由,为整数不能推出为整数,故“为整数”是“为整数”的不必要条件,综上所述,“为整数”是“为整数”的充分不必要条件,故选:A.2.B【分析】结合已知条件和频率分布直方图求出志愿者的总人数,进而求出第三组的总人数,从而可以求得结果.【详解】志愿者的总人数为=50,所以第三组人数为50×0.36=18,有疗效的人数为18-6=12.故选:B.3.B【分析】利用复数相等的条件可求.【详解】,而为实数,故,故选:B.4.D【分析】作出几何体直观图,由题意结合几何体体积公式即可得组合体的体积.【详解】该几何体由直三棱柱及直三棱柱组成,作于M,如图,因为,所以,因为重叠后的底面为正方形,所以,在直棱柱中,平面BHC,则,由可得平面,设重叠后的EG与交点为则则该几何体的体积为.故选:D.5.C【分析】由已知可得出的值,求出点的坐标,分析可得,由此可得出关于、、的方程组,解出这三个量的值,即可得出双曲线的标准方程.【详解】抛物线的准线方程为,则,则、,不妨设点为第二象限内的点,联立,可得,即点,因为且,则为等腰直角三角形,且,即,可得,所以,,解得,因此,双曲线的标准方程为.故选:C.6.D【分析】分析函数的定义域、奇偶性、单调性及其在上的函数值符号,结合排除法可得出合适的选项.【详解】函数的定义域为,且,函数为奇函数,A选项错误;又当时,,C选项错误;当时,函数单调递增,故B选项错误;故选:D.7.A【分析】法一:根据题意赋值即可知函数的一个周期为,求出函数一个周期中的的值,即可解出.【详解】[方法一]:赋值加性质因为,令可得,,所以,令可得,,即,所以函数为偶函数,令得,,即有,从而可知,,故,即,所以函数的一个周期为.因为,,,,,所以一个周期内的.由于22除以6余4,所以.故选:A.[方法二]:【最优解】构造特殊函数由,联想到余弦函数和差化积公式,可设,则由方法一中知,解得,取,所以,则,所以符合条件,因此的周期,,且,所以,由于22除以6余4,所以.故选:A.【整体点评】法一:利用赋值法求出函数的周期,即可解出,是该题的通性通法;法二:作为选择题,利用熟悉的函数使抽象问题具体化,简化推理过程,直接使用具体函数的性质解题,简单明了,是该题的最优解.8.A【分析】根据三角函数的图象与性质,以及变换法则即可判断各说法的真假.【详解】因为,所以的最小正周期为,①不正确;令,而在上递增,所以在上单调递增,②正确;因为,,所以,③不正确;由于,所以的图象可由的图象向右平移个单位长度得到,④不正确.故选:A.9.BC【分析】根据基本不等式或者取特值即可判断各选项的真假.【详解】因为(R),由可变形为,,解得,当且仅当时,,当且仅当时,,所以A错误,B正确;由可变形为,解得,当且仅当时取等号,所以C正确;因为变形可得,设,所以,因此,所以当时满足等式,但是不成立,所以D错误.故选:BC.10.CD【分析】直接由体积公式计算,连接交于点,连接,由计算出,依次判断选项即可.【详解】设,因为平面,,则,,连接交于点,连接,易得,又平面,平面,则,又,平面,则平面,又,过作于,易得四边形为矩形,则,则,,,则,,,则,则,,,故A、B错误;C、D正确.故选:CD.11.ACD【分析】由及抛物线方程求得,再由斜率公式即可判断A选项;表示出直线的方程,联立抛物线求得,即可求出判断B选项;由抛物线的定义求出即可判断C选项;由,求得,为钝角即可判断D选项.【详解】对于A,易得,由可得点在的垂直平分线上,则点横坐标为,代入抛物线可得,则,则直线的斜率为,A正确;对于B,由斜率为可得直线的方程为,联立抛物线方程得,设,则,则,代入抛物线得,解得,则,则,B错误;对于C,由抛物线定义知:,C正确;对于D,,则为钝角,又,则为钝角,又,则,D正确.故选:ACD.12.AD【分析】根据三角函数的性质逐个判断各选项,即可解出.【详解】由题意得:,所以,,即,又,所以时,,故.对A,当时,,由正弦函数图象知在上是单调递减;对B,当时,,由正弦函数图象知只有1个极值点,由,解得,即为函数的唯一极值点;对C,当时,,,直线不是对称轴;对D,由得:,解得或,从而得:或,所以函数在点处的切线斜率为,切线方程为:即.故选:AD.13.【分析】设,,分析可知函数至少有一个零点,可得出,求出的取值范围,然后对实数的取值范围进行分类讨论,根据题意可得出关于实数的不等式,综合可求得实数的取值范围.【详解】设,,由可得.要使得函数至少有个零点,则函数至少有一个零点,则,解得或.①当时,,作出函数、的图象如下图所示:此时函数只有两个零点,不合乎题意;②当时,设函数的两个零点分别为、,要使得函数至少有个零点,则,所以,,解得;③当时,,作出函数、的图象如下图所示:由图可知,函数的零点个数为,合乎题意;④当时,设函数的两个零点分别为、,要使得函数至少有个零点,则,可得,解得,此时.综上所述,实数的取值范围是.故答案为:.【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.14.【分析】计算出圆心到直线的距离,利用勾股定理可得出关于的等式,即可解得的值.【详解】圆的圆心坐标为,半径为,圆心到直线的距离为,由勾股定理可得,因为,解得.故答案为:.15.【分析】法一:根据向量的减法以及向量的数乘即可表示出,以为基底,表示出,由可得,再根据向量夹角公式以及基本不等式即可求出.法二:以点为原点建立平面直角坐标系,设,由可得点的轨迹为以为圆心,以为半径的圆,方程为,即可根据几何性质可知,当且仅当与相切时,最大,即求出.【详解】方法一:,,,当且仅当时取等号,而,所以.故答案为:;.方法二:如图所示,建立坐标系:,,,所以点的轨迹是以为圆心,以为半径的圆,当且仅当与相切时,最大,此时.故答案为:;.16.【分析】根据正八边形的结构特征,分别以圆心为原点,所在直线为轴,所在直线为轴建立平面直角坐标系,即可求出各顶点的坐标,设,再根据平面向量模的坐标计算公式即可得到,然后利用即可解出.【详解】以圆心为原点,所在直线为轴,所在直线为轴建立平面直角坐标系,如图所示:则,,设,于是,因为,所以,故的取值范围是.故答案为:.17.(1)(2)证明见解析(3)【分析】(1)利用等差等比数列的通项公式进行基本量运算即可得解;(2)由等比数列的性质及通项与前n项和的关系结合分析法即可得证;(3)先求得,进而由并项求和可得,再结合错位相减法可得解.【详解】(1)设公差为d,公比为,则,由可得(舍去),所以;(2)证明:因为所以要证,即证,即证,即证,而显然成立,所以;(3)因为,所以,设所以,则,作差得,所以,所以.18.(1)(2)(i);(ii)证明见解析【分析】(1)求出可求切线方程;(2)(i)当时,曲线和有公共点即为在上有零点,求导后分类讨论结合零点存在定理可求.(ii)曲线和有公共点即,利用点到直线的距离得到,利用导数可证,从而可得不等式成立.【详解】(1),故,而,曲线在点处的切线方程为即.(2)(i)当时,因为曲线和有公共点,故有解,设,故,故在上有解,设,故在上有零点,而,若,则恒成立,此时在上无零点,若,则在上恒成立,故在上为增函数,而,,故在上无零点,故,设,则,故在上为增函数,而,,故在上存在唯一零点,且时,;时,;故时,;时,;所以在上为减函数,在上为增函数,故,因为在上有零点,故,故,而,故即,设,则,故在上为增函数,而,故.(ii)因为曲线和有公共点,所以有解,其中,若,则,该式不成立,故.故,考虑直线,表示原点与直线上的动点之间的距离,故,所以,下证:对任意,总有,证明:当时,有,故成立.当时,即证,设,则(不恒为零),故在上为减函数,故即成立.综上,成立.下证:当时,恒成立,,则,故在上为增函数,故即恒成立.下证:在上恒成立,即证:,即证:,即证:,而,故成立.故,即成立.【点睛】思路点睛:导数背景下零点问题,注意利用函数的单调性结合零点存在定理来处理,而多变量的不等式的成立问题,注意从几何意义取构建不等式关系,再利用分析法来证明目标不等式.19.(1)证明见解析(2)(3)【分析】(1)以点为坐标原点,、、所在直线分别为、、轴建立空间直角坐标系,利用空间向量法可证得结论成立;(2)利用空间向量法可求得直线与平面夹角的正弦值;(3)利用空间向量法可求得平面与平面夹角的余弦值.【详解】(1)证明:在直三棱柱中,平面,且,则以点为坐标原点,、、所在直线分别为、、轴建立如下图所示的空间直角坐标系,则、、、、、、、、,则,易知平面的一个法向量为,则,故,平面,故平面.(2)解:,,,设平面的法向量为,则,取,可得,.因此,直线与平面夹角的正弦值为.(3)解:,,设平面的法向量为,则,取,可得,则,因此,平面与平面夹角的余弦值为.20.(1),(2)从二月一日开始的第天上市,能使黄瓜纯收益最大【分析】(1)采用待定系数法假设一次函数和二次函数解析式,代入已知点即可求得结果;(2)收益为,结合二次函数最值可求得结果.【详解】(1)当时,设,则,解得:,;当时,设,则,解得:,;综上所述:;设,,解得:,.(2)设从二月一日起的第天的纯收益为,由题意知:,即当时,,当时,在区间上取得最大值;当时,,当时,在区间上取得最大值;综上可知:当时,取得最大值,最大值为,即从二月一日开始的第天上市,能使黄瓜纯收益最大.21.(1)(2)【分析】(1)根据已知条件可得出关于、的等量关系,由此可求得该椭圆的离心率的值;(2)由(1)可知椭圆的方程为,设直线的方程为,将直线的方程与椭圆方程联立,由可得出,求出点的坐标,利用三角形的面积公式以及已知条件可求得的值,即可得出椭圆的方程.【详解】(1)解:,离心率为.(2)解:由(1)可知椭圆的方程为,易知直线的斜率存在,设直线的方程为,联立得,由,①,,由可得,②由可得,③联立①②③可得,,,故椭圆的标准方程为.22.(1)的减区间为,增区间为.(2)(3)见解析【分析】(1)求出,讨论其符号后可得的单调性.(2)设,求出,先讨论时题设中的不等式不成立,再就结合放缩法讨论符号,最后就结合放缩法讨论的范围后可得参数的取值范围.(3)由(2)可得对任意的恒成立,从而可得对任意的恒成立,结合裂项相消法可证题设中的不等式.【详解】(1)当时,,则,当时,,当时,,故的减区间为,增区间为.(2)设,则,又,设,则,若,则,因为为连续不间断函数,故存在,使得,总有,故在为增函数,故,故在为增函数,故,与题设矛盾.若,则,下证:对任意,总有成立,证明:设,故,故在上为减函数,故即成立.由上述不等式有,故总成立,即在上为减函数,所以.当时,有, 所以在上为减函数,所以.综上,.(3)取,则,总有成立,令,则,故即对任意的恒成立.所以对任意的,有,整理得到:,故,故不等式成立.【点睛】思路点睛:函数参数的不等式的恒成立问题,应该利用导数讨论函数的单调性,注意结合端点处导数的符号合理分类讨论,导数背景下数列不等式的证明,应根据已有的函数不等式合理构建数列不等式.21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)21世纪教育网(www.21cnjy.com) 展开更多...... 收起↑ 资源预览