2007-2008年高考中的圆锥曲线与方程试题汇编大全

资源下载
  1. 二一教育资源

2007-2008年高考中的圆锥曲线与方程试题汇编大全

资源简介

2007年高考中的“圆锥曲线与方程”试题汇编大全
一、选择题:
1.(2007安徽文)椭圆的离心率为( A )
(A) (B) (C) (D)
2.(2007安徽理)如图,和分别是双曲线的两个焦点,和是以为圆心,以为半径的圆与该双曲线左支的两个交点,
且△是等边三角形,则双曲线的离心率为( D )
(A) (B) (C) (D)
3.(2007北京文)椭圆的焦点为,,两条准线与轴的交点分别为,若,则该椭圆离心率的取值范围是( D )
A. B. C. D.
4.(2007福建文)以双曲线x2-y2=2的右焦点为圆心,且与其右准线相切的圆的方程是( B )
A.x2+y2-4x-3=0 B.x2+y2-4x+3=0 C.x2+y2+4x-5=0 D.x2+y2+4x+5=0
5.(2007福建理)以双曲线的右焦点为圆心,且与其渐近线相切的圆的方程是( A )
A  B 
C  D 
6.(2007江苏)在平面直角坐标系中,双曲线中心在原点,焦点在轴上,一条渐近线方程为,则它的离心率为(A)
A. B. C. D.
7.(2007海南、宁夏文、理)已知抛物线的焦点为,点,在抛物线上,且,则有( C )
A. B.
C. D.
8.(2007湖北理)双曲线C1:(a>0,b>0)的左准线为l,左焦点和右焦点分别为F1和F2;抛物线C2的准线为l,焦点为F2.C1和C2的一个交点为M,则等于( A )
A.-1 B.1 C. D.
9.(2007湖南文)设分别是椭圆的左、右焦点,P是其右准线上纵坐标为(为半焦距)的点,且,则椭圆的离心率是(D )
A. B. C. D.
10.(2007湖南理)设分别是椭圆()的左、右焦点,若在其右准线上存在使线段的中垂线过点,则椭圆离心率的取值范围是( D )
A. B. C. D.
11.(2007江西文)连接抛物线x2=4y的焦点F与点M(1,0)所得的线段与抛物线交于点A,设点O为坐标原点,则三角形OAM的面积为(B )
A.-1+ B.- C.1+ D.+
12.(2007江西文、理)设椭圆的离心率为e=,右焦点为F(c,0),方程ax2+bx-c=0的两个实根分别为x1和x2,则点P(x1,x2) ( C)
A.必在圆x2+y2=2上 B.必在圆x2+y2=2外
C.必在圆x2+y2=2内 D.以上三种情形都有可能
13.(2007辽宁文)双曲线的焦点坐标为(C )
A., B.,
C., D.,
14.(2007辽宁理)设为双曲线上的一点,是该双曲线的两个焦点,若,则的面积为( B )
A. B. C. D.
15.(2007全国Ⅰ文、理)已知双曲线的离心率为2,焦点是(-4,0),(4,0),则双曲线方程为( A )
(A) (B) (C) (C)
16.(2007全国Ⅰ文、理)抛物线y2=4x的焦点为F,准线为l,经过F且斜率为的直线与抛物线在x轴上方的部分相交于点A,AK⊥l,满足为K,则△AKF的面积是(C )
(A)4 (B)3 (C) 4 (D)8
17.(2007全国Ⅱ文)已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率为( D )
(A) (B) (C) (D)
18.(2007全国Ⅱ文)设F1,F2分别是双曲线x2-=1的左右焦点,若点P在双曲线上,且,则( B )
(A) (B)2 (C) (D) 2
19.(2007全国Ⅱ理)设F1,F2分别是双曲线的左、右焦点。若双曲线上存在点A,使∠F1AF2=90o,且|AF1|=3|AF2|,则双曲线离心率为( B )
(A) (B) (C) (D)
20.(2007全国Ⅱ理)设F为抛物线y2=4x的焦点,A、B、C为该抛物线上三点,若=0,则|FA|+|FB|+|FC|=( B )
(A)9 (B) 6 (C) 4 (D) 3
21.(2007山东文)设是坐标原点,是抛物线的焦点,是抛物线上的一点,与轴正向的夹角为,则为( B )
A. B. C. D.
22.(2007陕西文、理)抛物线的准线方程是( B )
(A) (B) (C) (D)
23.(2007陕西文、理)已知双曲线C∶>0,b>0),以C的右焦点为圆心且与C的渐近线相切的圆的半径是( B )
(A)a (B)b (C) (D)
24.(2007四川文、理)如果双曲线=1上一点P到双曲线右焦点的距离是2,那么点P到y轴的距离是( A )
(A) (B) (C) (D)
25.(2007四川文、理)已知抛物线上存在关于直线对称的相异两点A、B,则|AB|等于( C )
(A)3 (B)4 (C) (D)
26.(2007天津文、理)设双曲线的离心率为,且它的一条准线与抛物线的准线重合,则此双曲线的方程为( D )
A. B. C. D.
27.(2007浙江文、理)已知双曲线的左、右焦点分别为,,是准线上一点,且,,则双曲线的离心率是( B )
A. B. C. D.
28.(2007重庆文)已知以F1(2,0),F2(2,0)为焦点的椭圆与直线有且仅有一个交点,则椭圆的长轴长为( C )
(A) (B) (C) (D)
二、填空题:
1.(2007福建文)已知长方形ABCD,AB=4,BC=3,则以A、B为焦点,且过C、D两点的椭圆的离心率为 。
2.(2007福建理)已知正方形ABCD,则以A、B为焦点,且过C、D两点的椭圆的离心率为;
3.( 2007广东文)在平面直角坐标系xOy中,已知抛物线关于x轴对称,顶点在原点O,且过点P(2,4),则该抛物线的方程是 .
4. (2007广东理)在平面直角坐标系中,有一定点(2,1),若线段的垂直平分线过抛物线的焦点,则该抛物线的准线方程是 x= - .
5.(2007海南、宁夏文、理)已知双曲线的顶点到渐近线的距离为2,焦点到渐近线的距离为6,则该双曲线的离心率为  3  .
6.(2007湖北文)过双曲线左焦点F的直线交双曲线的左焦点M、N两点,F2为其右焦点,则|MF2|-|NF2|-|MN|的值为 8 。
7.(2007江苏)在平面直角坐标系中,已知顶点和,顶点在椭圆上,则  5/4  .
8.(2007辽宁文、理)设椭圆上一点到左准线的距离为10,是该椭圆的左焦点,若点满足,则= 2 .
9.(2007山东理)设O是坐标原点,F是抛物线y2=2px(p>0)的焦点,A是抛物线上的一点,与x轴正向的夹角为60°,则为 .
10.(2007上海文)以双曲线的中心为顶点,且以该双曲线的右焦点为焦点的抛物线方程是 .
11.(2007上海理)以双曲线的中心为焦点,且以该双曲线的左焦点为顶点的抛物线方程是 .
12.(2007重庆理)过双曲线的右焦点F作倾斜角为的直线,交双曲线于PQ两点,则|FP||FQ|的值为__________.
三、解答题:
1.(2007安徽文)(本小题满分14分)设F是抛物线G:x2=4y的焦点.
   (Ⅰ)过点P(0,-4)作抛物线G的切线,求切线方程:
(Ⅱ)设A、B为势物线G上异于原点的两点,且满足,延长AF、BF分别交抛物线G于点C,D,求四边形ABCD面积的最小值.
1.本小题主要考查抛物线的方程与性质,抛物线的切点和焦点,向量的数量积,直线与抛物线的位置关系,平均不等式等基础知识,考查综合分析问题、解决问题的能力,本小题满分14分.
解:(Ⅰ)设切点知抛物线在Q点处的切线斜率为,故所求切线方程为

因为点P(0,-4)在切线上,
所以
所以切线方程为y=±2x-4.
(Ⅱ)设
由题设知,直线AC的斜率k存在,由对称性,不妨设k>0.
因直线AC过焦点F(0,1),所以直线AC的方程为y=kx+1.
点A,C的坐标满足方程组

由根与系数的关系知
同理可求得
当k=1时,等号成立.所以,四边形ABCD面积的最小值为32.
2. (2007安徽理) (本小题满分12分)如图,曲线G的方程为y2=20(y≥0).以原点为圆心,以t(t >0)为半径的圆分别与曲线G和y轴的正半轴相交于点A与点B.直线AB与x轴相交于点C.
(Ⅰ)求点A的横坐标a与点C的横坐标c的关
系式;
(Ⅱ)设曲线G上点D的横坐标为a+2,求证:
直线CD的斜率为定值.
2.本小题综合考查平面解析几何知识,主要涉及平面直角坐标系中的两点间距离公式、直线的方程与斜率、抛物线上的点与曲线方程的关系,考查运算能力与思维能力,综合分析问题的能力.本小题满分12分.
解:(Ⅰ)由题意知,A().
因为
由于
由点B(0,t)C(c,0)的坐标知,直线BC的方程为
又因点A在直线BC上,故有
将(1)代入上式,得
解得
(Ⅱ)因为
所以直线CD的斜率为定值.
3.(2007北京文、理)(本小题共14分)如图,矩形的两条对角线相交于点,边所在直线的方程为点在边所在直线上.
(I)求边所在直线的方程;
(II)求矩形外接圆的方程;
(III)若动圆过点,且与矩形的外接圆外切,
求动圆的圆心的轨迹方程.
3.解:(I)因为边所在直线的方程为,且与垂直,所以直线的斜率为.
又因为点在直线上,
所以边所在直线的方程为.

(II)由解得点的坐标为,
因为矩形两条对角线的交点为.
所以为矩形外接圆的圆心.
又.
从而矩形外接圆的方程为.
(III)因为动圆过点,所以是该圆的半径,又因为动圆与圆外切,
所以,
即.
故点的轨迹是以为焦点,实轴长为的双曲线的左支.
因为实半轴长,半焦距.
所以虚半轴长.
从而动圆的圆心的轨迹方程为.
4.(2007福建文)(本小题满分14分)如图,已知点F(1,0),直线l:x=-1,P为平面上的动点,过P作l的垂线,垂足为点Q,且
·
(I)求动点P的轨迹C的方程;
(II)过点F的直线交轨迹C于A、B两点,交直线l于点M.
(1)已知的值;
(2)求||·||的最小值.
4.本小题考查直线、抛物线、向量等基础知识,考查轨迹方程的求法以及研究曲线几何特征的基本方法,考查运算能力和综合解题能力.满分14分.
解法一:(I)设点P(x,y),则Q(-1,y),由得:
(x+1,0)·(2,-y)=(x-1,y)·(-2,y),化简得C:y2=4x.
(II)(1)设直线AB的方程为:
x=my+1(m≠0).
设A(x1,y1),B(x2,y2),又M(-1,-).
联立方程组,消去x得:
y2-4my-4=0,
=(-4m)2+12>0,
由得:
,整理得:
,

=
=-2-
=0.
解法二:(I)由
∴·,
∴=0,

所以点P的轨迹C是抛物线,由题意,轨迹C的方程为:y2=4x.
(II)(1)由已知
则:…………①
过点A、B分别作准l的垂线,垂足分别为A1、B1,
则有:…………②
由①②得:
(II)(2)解:由解法一:
·=()2|y1-yM||y2-yM|
=(1+m2)|y1y2-yM(y1+y2)|+yM2|
=(1+m2)|-4+ ×4m+| =
=4(2+m2+) 4(2+2)=16.
当且仅当,即m=1时等号成立,所以·最小值为16.
5.(2007福建理)(本小题满分12分)如图,已知点F(1,0),直线l:x=-1,P为平面上的动点,过P作直线l的垂线,垂足为点Q,且=。
(1)求动点P的轨迹C的方程;
(2)过点F的直线交轨迹C于A、B两点,交直线l于点M,已知,,求的值。
5.本小题主要考查直线、抛物线、向量等基础知识,考查轨迹方程的求法以及研究曲线几何特征的基本方法,考查运算能力和综合解题能力.满分14分.
解法一:(Ⅰ)设点,则,由得:
,化简得.
(Ⅱ)设直线的方程为:

设,,又,
联立方程组,消去得:
,,故
由,得:
,,整理得:
,,

解法二:(Ⅰ)由得:,



所以点的轨迹是抛物线,由题意,轨迹的方程为:.
(Ⅱ)由已知,,得.
则:.…………①
过点分别作准线的垂线,垂足分别为,,
则有:.…………②
由①②得:,即.
6.( 2007广东文、理)(本小题满分14分)在平面直角坐标系xOy巾,已知圆心在第二象限、半径为的圆C与直线相切于坐标原点0.椭圆与圆c的一个交点到椭圆两焦点的距离之和为10.
(1)求圆C的方程; (2)试探究圆C上是否存在异于原点的点Q,使Q到椭圆右焦点F的距离等于线段OF的长.若存在,请求出点Q的坐标;若不存在,请说明理由.
6.【解析】(1)设圆的方程为………………………2分
依题意,,…………5分
解得,故所求圆的方程为……………………7分
(注:此问若结合图形加以分析会大大降低运算量!)
(2)由椭圆的第一定义可得,故椭圆方程为,焦点……9分
设,依题意, …………………11分
解得或(舍去) ……………………13分
存在使得该点到右焦点F的距离等于的长。……14分
7.(2007海南、宁夏文)(本小题满分12分)在平面直角坐标系中,已知圆的圆心为,过点且斜率为的直线与圆相交于不同的两点.
(Ⅰ)求的取值范围;
(Ⅱ)是否存在常数,使得向量与共线?如果存在,求值;如果不存在,请说明理由.
7.解:(Ⅰ)圆的方程可写成,所以圆心为,过且斜率为的直线方程为.
代入圆方程得,
整理得.   ①
直线与圆交于两个不同的点等价于

解得,即的取值范围为.
(Ⅱ)设,则,
由方程①,
    ②
又.    ③
而.
所以与共线等价于,
将②③代入上式,解得.
由(Ⅰ)知,故没有符合题意的常数.
8.(2007海南、宁夏理)(本小题满分12分)在平面直角坐标系中,经过点且斜率为的直线与椭圆有两个不同的交点和.
(I)求的取值范围;
(II)设椭圆与轴正半轴、轴正半轴的交点分别为,是否存在常数,使得向量与共线?如果存在,求值;如果不存在,请说明理由.
8.解:(Ⅰ)由已知条件,直线的方程为,
代入椭圆方程得.
整理得   ①
直线与椭圆有两个不同的交点和等价于,
解得或.即的取值范围为.
(Ⅱ)设,则,
由方程①,.   ②
又.    ③
而.
所以与共线等价于,
将②③代入上式,解得.
由(Ⅰ)知或,故没有符合题意的常数.
9. (2007湖北文、理)(本小题满分14分) 在平面直角坐标系中,过定点作直线与抛物线相交于A、B两点.
(Ⅰ)若点N是点C关于坐标原点O的对称点,求△ANB
面积的最小值;
(Ⅱ)是否存在垂直于y轴的直线l,使得l被以AC
为直径的圆截得的张长恒为定值?
若存在,求出l的方程;若不存在,说明理由.
(此题不要求在答题卡上画图)

9.本小题主要考查直线、圆和抛物线平面解析几何的基础知识,考查综合运用数学知识进行推理运算的能力和解决问题的能力.
解法1:(Ⅰ)依题意,点N的坐标为N(0,-p),可设A(x1·y1),B(x2,y2),直线AB的方程为y=kx+p,与x2=2py联立得消去y得x2-2pkx-2p2=0.
由韦达定理得x1+x2=2pk,x1x2=-2p2.
于是S△ABN=S△BCN+S△CAN =
=p|x1-x2|=p
令a-得a=此时|PQ|=p为定值,故满足条件的直线l存在.其方程为y=
即抛物线的通径所在的直线.
解法2:(Ⅰ)前同解法1,再由弦长公式得
|AB|=
=
=
又由点到直线的距离公式得d=
从而,S△ABC=d|AB|=
=2p2
∴当k=0时,(S△ABN)min=2
(Ⅱ)假设满足条件的直线l存在,其方程为y=a,则以AC为直径的圆的方程为
(x-0)(x-x1)+(y-p)(y-y1)=0,将直线方程y=a代入代
x2-x1x+(a-p)(a-y1)=0,则
△=x-4(a-p)(a-y1)=4
设直线l与以AC为直径的圆的交点为P(x3,y3),Q(x4,y4),则有
令a-此时|PQ|=p为定值,故满足条件的直线l存在,其方程为y=
即抛物线的通径所在的直线.
10.(2007湖南文)(本小题满分13分)已知双曲线的右焦点为F,过点F的动直线与双曲线相交与A、B两点,点C的坐标是(1,0).
(I)证明为常数;
(Ⅱ)若动点(其中为坐标原点),求点的轨迹方程.
10.解:由条件知,设,.
(I)当与轴垂直时,可设点的坐标分别为,,
此时.
当不与轴垂直时,设直线的方程是.
代入,有.
则是上述方程的两个实根,所以,,
于是

综上所述,为常数.
(II)解法一:设,则,,
,,由得:

于是的中点坐标为.
当不与轴垂直时,,即.
又因为两点在双曲线上,所以,,两式相减得
,即.
将代入上式,化简得.
当与轴垂直时,,求得,也满足上述方程.
所以点的轨迹方程是.
解法二:同解法一得……………………………………①
当不与轴垂直时,由(I) 有.…………………②
.………………………③
由①②③得.…………………………………………………④
.……………………………………………………………………⑤
当时,,由④⑤得,,将其代入⑤有
.整理得.
当时,点的坐标为,满足上述方程.
当与轴垂直时,,求得,也满足上述方程.
故点的轨迹方程是.
11.(2007湖南理)(本小题满分12分)已知双曲线的左、右焦点分别为,,过点的动直线与双曲线相交于两点.
(I)若动点满足(其中为坐标原点),求点的轨迹方程;
(II)在轴上是否存在定点,使·为常数?若存在,求出点的坐标;若不存在,请说明理由.
11.解:由条件知,,设,.
解法一:(I)设,则则,,
,由得

于是的中点坐标为.
当不与轴垂直时,,即.
又因为两点在双曲线上,所以,,两式相减得
,即.
将代入上式,化简得.
当与轴垂直时,,求得,也满足上述方程.
所以点的轨迹方程是.
(II)假设在轴上存在定点,使为常数.
当不与轴垂直时,设直线的方程是.
代入有.
则是上述方程的两个实根,所以,,
于是

因为是与无关的常数,所以,即,此时=.
当与轴垂直时,点的坐标可分别设为,,
此时.
故在轴上存在定点,使为常数.
解法二:(I)同解法一的(I)有
当不与轴垂直时,设直线的方程是.
代入有.
则是上述方程的两个实根,所以.

由①②③得.…………………………………………………④
.……………………………………………………………………⑤
当时,,由④⑤得,,将其代入⑤有
.整理得.
当时,点的坐标为,满足上述方程.
当与轴垂直时,,求得,也满足上述方程.
故点的轨迹方程是.
(II)假设在轴上存在定点点,使为常数,
当不与轴垂直时,由(I)有,.
以上同解法一的(II).
12、(2007江苏)(本小题满分14分)如图,在平面直角坐标系中,过轴正方向上一点任作一直线,与抛物线相交于两点,一条垂直于轴的直线,分别与线段和直线交于,
(1)若,求的值;(5分)
(2)若为线段的中点,求证:为此抛物线的切线;(5分)
(3)试问(2)的逆命题是否成立?说明理由。(4分)
12.解:(1)设过C点的直线为,所以,即,设A,=,,
因为,所以
,即,
所以,即
所以
(2)设过Q的切线为,,所以,即,它与的交点为M,又,所以Q,因为,所以,所以M,所以点M和点Q重合,也就是QA为此抛物线的切线。
(3)(2)的逆命题是成立,由(2)可知Q,因为PQ轴,所以
因为,所以P为AB的中点。
13.(2007江西文)(本小题满分14分) 设动点P到两定点F1(-l,0)和F2(1,0)的距离分别为d1和d2,∠F1PF2=2θ,且存在常数λ(0<λ<1),使得d1d2 sin2θ=λ.
(1)证明:动点P的轨迹C为双曲线,并求出C的方程;
(2)如图,过点F2的直线与双曲线C的右支交于A、B两
点.问:是否存在λ,使△F1AB是以点B为直角定点的
等腰直角三角形?若存在,求出λ的值;若不存在,说明
理由.
13.解:(1)在中,
(小于的常数)
故动点的轨迹是以,为焦点,实轴长的双曲线.
方程为.
(2)方法一:在中,设,,,.
假设为等腰直角三角形,则
由②与③得,

由⑤得,

故存在满足题设条件.
方法二:(1)设为等腰直角三角形,依题设可得
所以,.
则.①
由,可设,
则,.
则.②
由①②得.③
根据双曲线定义可得,.
平方得:.④
由③④消去可解得,
故存在满足题设条件.
14.(2007江西理)(本小题满分12分)设动点P到点A(-l,0)和B(1,0)的距离分别为d1和d2,∠APB=2θ,且存在常数λ(0<λ<1),使得d1d2 sin2θ=λ.
(1)证明:动点P的轨迹C为双曲线,并求出C的方程;
(2)过点B作直线交双曲线C的右支于M、N两点,试确定λ的范围,使·=0,其中点O为坐标原点.
14.解法一:(1)在中,,即,
,即(常数),
点的轨迹是以为焦点,实轴长的双曲线.
方程为:.
(2)设,
①当垂直于轴时,的方程为,,在双曲线上.
即,因为,所以.
②当不垂直于轴时,设的方程为.
由得:,
由题意知:,
所以,.
于是:.
因为,且在双曲线右支上,所以

由①②知,.
解法二:(1)同解法一
(2)设,,的中点为.
①当时,,
因为,所以;
②当时,.
又.所以;
由得,由第二定义得

所以.
于是由得
因为,所以,又,
解得:.由①②知.
15.(2007辽宁文、理)(本小题满分14分)已知正三角形的三个顶点都在抛物线上,其中为坐标原点,设圆是的内接圆(点为圆心)
(I)求圆的方程;
(II)设圆的方程为,过圆上任意一点分别作圆的两条切线,切点为,求的最大值和最小值.
15.本小题主要考查平面向量,圆与抛物线的方程及几何性质等基本知识,考查综合运用解析几何知识解决问题的能力。满分14分。
(Ⅰ)解法一:设A、B两点坐标分别为(),(),由题设知

解得,
所以A(6,2),B(6,-2)或A(6,-2),B(6,2)。
设圆心C的坐标为(r,0),则,所以圆C的方程为
……4分
解法二:设A、B两点坐标分别为(x1,y1),(x2,y2),由题设知
又因为,可得,即

由,可知x1=0,故A、B两点关于x轴对称,所以圆心C在x轴上,
设C点的坐标为(r,0),则A点的坐标为(),于是有,解得r=4,所以圆C的方程为
。……4分
(Ⅱ)解:设∠ECF=2a,则
……8分
在Rt△PCE中,,由圆的几何性质得
≤≥ 10分
所以≤≤,由此可得
≤≤.
故的最大值为,最小值为. 14分
16.(2007全国Ⅰ文、理)(本小题满分12分)已知椭圆的左、右焦点分别为F1、F2,过F1的直线交椭圆于B、D两点,过F2的直线交椭圆于A、C两点,且AC⊥BD,垂足为P.
(Ⅰ)设P点的坐标为(x0,y0),证明:;
(Ⅱ)求四过形ABCD的面积的最小值.
16.证明:(Ⅰ)椭圆的半焦距,
由知点在以线段为直径的圆上,
故,
所以,.
(Ⅱ)(ⅰ)当的斜率存在且时,的方程为,代入椭圆方程,并化简得.
设,,则
,,

因为与相交于点,且的斜率为.
所以,.
四边形的面积

当时,上式取等号.
(ⅱ)当的斜率或斜率不存在时,四边形的面积.
综上,四边形的面积的最小值为.
17.(2007全国Ⅱ文、理)(本小题满分12分)在直角坐标系xOy中,以O为圆心的圆与直线:相切
(1)求圆O的方程
(2)圆O与x轴相交于A、B两点,圆内的动点P使|PA|、|PO|、|PB|成等比数列,求
的取值范围。
17.解:(1)依题设,圆的半径等于原点到直线的距离,
即 .
得圆的方程为.
(2)不妨设.由即得

设,由成等比数列,得

即 .


由于点在圆内,故
由此得.
所以的取值范围为.
18.(2007山东文、理)(本小题满分14分) 已知椭圆的中心在坐标原点,焦点在轴上,椭圆上的点到焦点距离的最大值为3,最小值为1.
(1)求椭圆的标准方程;
(2)若直线与椭圆相交于两点(不是左右顶点),且以为直径的圆过椭圆的右顶点.求证:直线过定点,并求出该定点的坐标.
18.解:(1)由题意设椭圆的标准方程为,
由已知得:,

椭圆的标准方程为.
(2)设.
联立
得 ,则

又.
因为以为直径的圆过椭圆的右顶点,
,即.



解得:,且均满足.
当时,的方程,直线过点,与已知矛盾;
当时,的方程为,直线过定点.
所以,直线过定点,定点坐标为.
19.(2007陕西文、理)(本小题满分14分)已知椭圆C:=1(a>b>0)的离心率为,短轴一个端点到右焦点的距离为.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线l与椭圆C交于A、B两点,坐标原点O到直线l的距离为,求△AOB面积的最大值.
19.(本小题满分14分)
解:(Ⅰ)设椭圆的半焦距为,依题意
,所求椭圆方程为.
(Ⅱ)设,.
(1)当轴时,.
(2)当与轴不垂直时,
设直线的方程为.
由已知,得.
把代入椭圆方程,整理得,
,.

当且仅当,即时等号成立.当时,,
综上所述.
当最大时,面积取最大值.
20.(2007上海文)(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分5分,第3小题满分9分.
我们把由半椭圆 与半椭圆 合成的曲线称作“果圆”,其中,,.
如图,设点,,是相应椭圆的焦点,,和,是“果圆” 与,轴的交点,是线段的中点.
(1)若是边长为1的等边三角形,求该“果圆”的方程;
(2)设是“果圆”的半椭圆
上任意一点.求证:当取得最小值时,
在点或处;
(3)若是“果圆”上任意一点,
求取得最小值时点的横坐标.
20.解:(1) ,

于是,
所求“果圆”方程为,.
(2)设,则


, 的最小值只能在或处取到.
即当取得最小值时,在点或处.
(3),且和同时位于“果圆”的半椭圆和半椭圆上,所以,由(2)知,只需研究位于“果圆”的半椭圆上的情形即可.


当,即时,的最小值在时取到,
此时的横坐标是.
当,即时,由于在时是递减的,的最小值在时取到,此时的横坐标是.
综上所述,若,当取得最小值时,点的横坐标是;若,当取得最小值时,点的横坐标是或.
21(2007上海理)(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.
我们把由半椭圆 与半椭圆 合成的曲线称作“果圆”,其中,,.
如图,点,,是相应椭圆的焦点,,和,分别是“果圆”与,轴的交点.
(1)若是边长为1的等边三角形,求
“果圆”的方程;
(2)当时,求的取值范围;
(3)连接“果圆”上任意两点的线段称为“果圆”
的弦.试研究:是否存在实数,使斜率为的“果圆”
平行弦的中点轨迹总是落在某个椭圆上?若存在,
求出所有可能的值;若不存在,说明理由.
21. 解:(1) ,

于是,所求“果圆”方程为
,.
(2)由题意,得 ,即.
,,得.
又. .
(3)设“果圆”的方程为,.
记平行弦的斜率为.
当时,直线与半椭圆的交点是
,与半椭圆的交点是.
的中点满足
得 .
, .
综上所述,当时,“果圆”平行弦的中点轨迹总是落在某个椭圆上.
当时,以为斜率过的直线与半椭圆的交点是.
由此,在直线右侧,以为斜率的平行弦的中点轨迹在直线上,即不在某一椭圆上.
当时,可类似讨论得到平行弦中点轨迹不都在某一椭圆上.
22.(2007四川文)(本小题满分12分)求F1、F2分别是横线的左、右焦点.
(Ⅰ)若r是第一象限内该数轴上的一点,其PF+PF=-,求点P的作标;
(Ⅱ)设过定点M(0,2)的直线l与椭圆交于同的两点A、B,且∠ADB为锐角(其中O为作标原点),求直线l的斜率k的取值范围.
22.本题主要考察直线、椭圆、平面向量的数量积等基础知识,以及综合应用数学知识解决问题及推理计算能力。
解:(Ⅰ)解法一:易知
所以,设,则
由题意知,即,又 ∴
从而,而 ∴
故点的坐标是
解法二:易知,所以,设,则
(以下同解法一)
(Ⅱ)显然直线不满足题设条件,可设直线,
联立,消去,整理得:

由得:或 ①



∵,即 ∴ ②
故由①、②得或
23.(2007四川理)(本小题满分12分)设、分别是椭圆的左、右焦点.
(Ⅰ)若是该椭圆上的一个动点,求·的最大值和最小值;
(Ⅱ)设过定点的直线与椭圆交于不同的两点、,且∠为锐角(其中为坐标原点),求直线的斜率的取值范围.
23.本题主要考察直线、椭圆、平面向量的数量积等基础知识,以及综合应用数学知识解决问题及推理计算能力。
解:(Ⅰ)解法一:易知
所以,设,则
因为,故当,即点为椭圆短轴端点时,有最小值
当,即点为椭圆长轴端点时,有最大值
解法二:易知,所以,设,则
(以下同解法一)
(Ⅱ)显然直线不满足题设条件,可设直线,
联立,消去,整理得:

由得:或



∵,即 ∴
故由①、②得或
24.(2007天津文)(本小题满分14分)设椭圆的左、右焦点分别为是椭圆上的一点,,原点到直线的距离为.
(Ⅰ)证明;
(Ⅱ)求使得下述命题成立:设圆上任意点处的切线交椭圆于,两点,则.
24.本小题主要考查椭圆的标准方程和几何性质、直线方程、两条直线垂直、圆的方程等基础知识,考查曲线和方程的关系等解析几何的基本思想方法及推理、运算能力.满分14分.
(Ⅰ)证法一:由题设及,,不妨设点,其中
,由于点在椭圆上,有,

解得,从而得到,
直线的方程为,整理得

由题设,原点到直线的距离为,即

将代入原式并化简得,即.
证法二:同证法一,得到点的坐标为,
过点作,垂足为,易知,故
由椭圆定义得,又,所以

解得,而,得,即.
(Ⅱ)解法一:圆上的任意点处的切线方程为.
当时,圆上的任意点都在椭圆内,故此圆在点处的切线必交椭圆于两个不同的点和,因此点,的坐标是方程组
的解.当时,由①式得
代入②式,得,即

于是,

若,则

所以,.由,得.在区间内此方程的解为.
当时,必有,同理求得在区间内的解为.
另一方面,当时,可推出,从而.
综上所述,使得所述命题成立.
25.(2007天津理)(本小题满分14分)设椭圆的左、右焦点分别为是椭圆上的一点,,原点到直线的距离为.
(Ⅰ)证明;
(Ⅱ)设为椭圆上的两个动点,,过原点作直线的垂线,垂足为,求点的轨迹方程.
25.本小题主要考查椭圆的标准方程和几何性质、直线方程、求曲线的方程等基础知识,考查曲线和方程的关系等解析几何的基本思想方法及推理、运算能力.满分14分.
(Ⅰ)证法一:由题设及,,不妨设点,其中.由于点在椭圆上,有,即.
解得,从而得到.
直线的方程为,整理得.
由题设,原点到直线的距离为,即,
将代入上式并化简得,即.
证法二:同证法一,得到点的坐标为.
过点作,垂足为,易知,
故.
由椭圆定义得,又,
所以,
解得,而,得,即.
(Ⅱ)解法一:设点的坐标为.
当时,由知,直线的斜率为,所以直线的方程为,或,其中,.
点的坐标满足方程组
将①式代入②式,得,
整理得,
于是,.
由①式得

由知.将③式和④式代入得,

将代入上式,整理得.
当时,直线的方程为,的坐标满足方程组
所以,.
由知,即,
解得.
这时,点的坐标仍满足.
综上,点的轨迹方程为 .
解法二:设点的坐标为,直线的方程为,由,垂足为,可知直线的方程为.
记(显然),点的坐标满足方程组
由①式得.      ③
由②式得.   ④
将③式代入④式得.
整理得,
于是.   ⑤
由①式得.   ⑥
由②式得.  ⑦
将⑥式代入⑦式得,
整理得,
于是.   ⑧
由知.将⑤式和⑧式代入得,

将代入上式,得.
所以,点的轨迹方程为.
26.(2007浙江文、理)(本题14分)如图,直线与椭圆交于两点,记的面积为.
(I)求在,的条件下,的最大值;
(II)当,时,求直线的方程.
26.本题主要考查椭圆的几何性质、椭圆与直线的位置关系等基础知识,考查解析几何的基本思想方法和综合解题能力.满分14分.
(Ⅰ)解:设点的坐标为,点的坐标为,
由,解得,
所以

当且仅当时,取到最大值.
(Ⅱ)解:由
得,

. ②
设到的距离为,则

又因为,
所以,代入②式并整理,得

解得,,代入①式检验,,
故直线的方程是
或或,或.
27.(2007重庆文)(本小题满分12分,(Ⅰ)小问4分,(Ⅱ)小问8分)
如题(21)图,倾斜角为a的直线经过抛物线的焦点F,且与抛物线交于A、B两点。
(Ⅰ)求抛物线的焦点F的坐标及准线l的方程;
(Ⅱ)若a为锐角,作线段AB的垂直平分线m交x轴于点P,证明|FP|-|FP|cos2a为定值,并求此定值。
27.(本小题12分)
(Ⅰ)解:设抛物线的标准方程为,
则,从而
因此焦点的坐标为(2,0).
又准线方程的一般式为。
从而所求准线l的方程为。
答(21)图
(Ⅱ)解法一:如图(21)图作AC⊥l,BD⊥l,垂足为C、D,则由抛物线的定义知
|FA|=|FC|,|FB|=|BD|.
记A、B的横坐标分别为xxxz,则
|FA|=|AC|=解得,
类似地有,解得。
记直线m与AB的交点为E,则
所以。
故。
解法二:设,,直线AB的斜率为,则直线方程为。
将此式代入,得,故。
记直线m与AB的交点为,则


故直线m的方程为.
令y=0,得P的横坐标故

从而为定值。
28.(2007重庆理) (本小题满分12分)如图,中心在原点O的椭圆的右焦点为F(3,0),右准线l的方程为:x = 12。
(1)求椭圆的方程;
(2)在椭圆上任取三个不同点,使,证明
为定值,并求此定值。
28.(本小题12分)
解:(I)设椭圆方程为.
因焦点为,故半焦距.
又右准线的方程为,从而由已知

因此,.
故所求椭圆方程为.
(II)记椭圆的右顶点为,并设(1,2,3),不失一般性,
假设,且,.
又设点在上的射影为,因椭圆的离心率,从而有

解得 .
因此



故为定值.
2008年全国各地高考数学试题及解答分类汇编大全
(12圆锥曲线与方程)
一、选择题:
1.(2008北京理)若点到直线的距离比它到点的距离小1,则点的轨迹为( D )
A.圆 B.椭圆 C.双曲线 D.抛物线
2.(2008福建文、理)双曲线的两个焦点为,若P为其上的一点,且,则双曲线离心率的取值范围为( B )
A. B. C. D.
3、(2008海南、宁夏文)双曲线的焦距为( D )
A. 3 B. 4 C. 3 D. 4
4、(2008海南、宁夏理)已知点P在抛物线y2 = 4x上,那么点P到点Q(2,-1)的距离与点P到抛物线焦点距离之和取得最小值时,点P的坐标为( A )
A. (,-1) B. (,1) C. (1,2) D. (1,-2)
5. (2008湖北文、理)如图所示,“嫦娥一号”探月卫星沿地月转移轨道飞向月球,在月球附近一点P变轨进入以月球球心F为一个焦点的椭圆轨道I绕月飞行,之后卫星在P点第二次变轨进入仍以F为一个焦点的椭圆轨道Ⅱ绕月飞行,最终卫星在P点第三次变轨进入以F为圆形轨道Ⅲ绕月飞行,若用和分别表示椭圆轨道I和Ⅱ的焦距,用和分别表示椭圆轨道I和Ⅱ的长轴的长,给出下列式子:
①②③④
其中正确式子的序号是( B )
A.①③ B.②③ C.①④ D.②④
6.(2008湖南文) 双曲线的右支上存在一点,它到右焦点及左准线
的距离相等,则双曲线离心率的取值范围是( C )
A. B. C. D.
7. (2008湖南理)若双曲线(a>0,b>0)上横坐标为的点到右焦点的距离大于它到左准线的距离,则双曲线离心率的取值范围是( B. )
A.(1,2) B.(2,+) C.(1,5) D. (5,+)
8.(2008江西文、理) 已知是椭圆的两个焦点.满足·=0的点总在椭圆内部,则椭圆离心率的取值范围是(C )
A.(0,1) B.(0,] C.(0,) D.[,1)
9.(2008辽宁文) 已知双曲线的一个顶点到它的一条渐近线的距离为,则( D )
A.1 B.2 C.3 D.4
10.(2008辽宁理) 已知点P是抛物线上的一个动点,则点P到点(0,2)的距离与P到该抛物线准线的距离之和的最小值为( A )
A. B. C. D.
11.(2008全国Ⅰ卷文)若直线与圆有公共点,则( D )
A. B. C. D.
12.(2008全国Ⅱ卷文)设是等腰三角形,,则以为焦点且过点的双曲线的离心率为( B )
A. B. C. D.
13.(2008全国Ⅱ卷理)设,则双曲线的离心率的取值范围是( B )
A. B. C. D.
14.(2008山东理)设椭圆C1的离心率为,焦点在X轴上且长轴长为26.若曲线C2上的点
到椭圆C1的两个焦点的距离的差的绝对值等于8,则曲线C2的标准方程为( A )
(A) (B) (C) (D)
15.(2008陕西文、理) 双曲线(,)的左、右焦点分别是,过作倾斜角为的直线交双曲线右支于点,若垂直于轴,则双曲线的离心率为( B )
A. B. C. D.
16.(2008上海文)设是椭圆上的点.若是椭圆的两个焦点,则等于(D)
A.4 B.5 C.8 D.10
17.(2008四川文) 已知双曲线的左右焦点分别为,为的右支上一点,且,则的面积等于( C )
(A)  (B)   (C)  (D)
17.【解】:∵双曲线中

∵ ∴
作边上的高,则 ∴
∴的面积为 故选C
18.(2008四川理) 已知抛物线的焦点为,准线与轴的交点为,点在上且,则的面积为( B )
(A)  (B)  (C)  (D)
18.【解】:∵抛物线的焦点为,准线为 ∴
设,过点向准线作垂线,则
∵,又
∴由得,即,解得
∴的面积为 故选B
19(2008天津文)设椭圆的右焦点与抛物线的焦点相同,
离心率为,则此椭圆的方程为( B )
A. B. C. D.
20. (2008天津理)设椭圆上一点P到其左焦点的距离为3,到右焦点的距离为1,则P点到右准线的距离为( B )
(A) 6 (B) 2 (C) (D)
21.(2008浙江文、理)若双曲线的两个焦点到一条准线的距离之比为3:2,则双曲线的离心率是( D )
(A)3 (B)5 (C) (D)
22.(2008浙江理)如图,AB是平面的斜线段,A为斜足,若点P在平面内运动,使得△ABP的面积为定值,则动点P的轨迹是( B )
(A)圆 (B)椭圆 (C)一条直线 (D)两条平行直线
23. (2008重庆文)若双曲线的左焦点在抛物线y2=2px
的准线上,则p的值为 (C )
(A)2 (B)3 (C)4 (D)4
24. (2008重庆理)已知双曲线(a>0,b>0)的一条渐近线为y=kx(k>0),离心率e=,则双曲线方程为 (C )
(A)-=1 (B) (C) (D)
二、填空题:
1.(2008安徽文)已知双曲线的离心率是。则= 4
2. (2008福建文)若直线与圆没有公共点,则实数m的取值范围是
3、(2008海南、宁夏理)过双曲线的右顶点为A,右焦点为F。过点F平行双曲线的一条渐近线的直线与双曲线交于点B,则△AFB的面积为______________
4、(2008海南、宁夏文)过椭圆的右焦点作一条斜率为2的直线与椭圆交于A、B两点,O为坐标原点,则△OAB的面积为______________
5. (2008湖南理)已知椭圆(a>b>0)的右焦点为F,右准线为,离心率e=
过顶点A(0,b)作AM,垂足为M,则直线FM的斜率等于 .
6. (2008江苏)在平面直角坐标系中,椭圆1( 0)的焦距为2,以O为圆心,为半径的圆,过点作圆的两切线互相垂直,则离心率= .
7.(2008江西文)已知双曲线的两条渐近线方程为,若顶点到渐近线的距离为1,则双曲线方程为 .
8.(2008江西理)过抛物线的焦点F作倾斜角为30°的直线,与抛物线分别交于A、B两点(点A在y轴左侧),则= .
9.(2008全国Ⅰ卷文)在中,,.若以为焦点的椭圆经过点,则该椭圆的离心率 .
10.(2008全国Ⅰ卷文、理)已知抛物线的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为 2 .
11.(2008全国Ⅰ卷理)在中,,.若以为焦点的椭圆经过点,则该椭圆的离心率 .
12.(2008全国Ⅱ卷理)已知是抛物线的焦点,过且斜率为1的直线交于两点.设,则与的比值等于 .
13.(2008全国Ⅱ卷文)已知是抛物线的焦点,是上的两个点,线段AB的中点为,则的面积等于 2 .
13.(2008山东文)已知圆.以圆
与坐标轴的交点分别作为双曲线的一个焦点和顶点,则适合上述
条件的双曲线的标准方程为
14.(2008上海文)若直线经过抛物线的焦点,则实数 -1. .
15.(2008上海理)某海域内有一孤岛,岛四周的海平面(视为平面)上有一浅水区(含边界),其边界是长轴长为2a,短轴长为2b的椭圆,已知岛上甲、乙导航灯的海拔高度分别为h1、h2,且两个导航灯在海平面上的投影恰好落在椭圆的两个焦点上,现有船只经过该海域(船只的大小忽略不计),在船上测得甲、乙导航灯的仰角分别为θ1、θ2,那么船只已进入该浅水区的判别条件是
16.(2008天津理)已知圆C的圆心与抛物线的焦点关于直线对称.直线与圆C相交于两点,且,则圆C的方程为 .
17. (2008浙江文、理)已知F1、F2为椭圆的两个焦点,过F1的直线交椭圆于A、B两点。若|F2A|+|F2B|=12,则|AB|= 8 。
三、解答题:
1.(2008安徽文)设椭圆其相应于焦点的准线方程为.
(Ⅰ)求椭圆的方程;
(Ⅱ)已知过点倾斜角为的直线交椭圆于两点,求证:
;
(Ⅲ)过点作两条互相垂直的直线分别交椭圆于和,求 的最小值
1.解 :(1)由题意得:

椭圆的方程为

(2)方法一:
由(1)知是椭圆的左焦点,离心率
设为椭圆的左准线。则
作,与轴交于点H(如图)
点A在椭圆上




同理

方法二:
当时,记,则
将其代入方程 得
设 ,则是此二次方程的两个根.


................(1)
代入(1)式得 ........................(2)
当时, 仍满足(2)式。

(3)设直线的倾斜角为,由于由(2)可得


当时,取得最小值
2.(2008安徽理)设椭圆过点,且着焦点为
(Ⅰ)求椭圆的方程;
(Ⅱ)当过点的动直线与椭圆相交与两不同点时,在线段上取点,满足,证明:点总在某定直线上.
2.解 (1)由题意:
,解得,所求椭圆方程为
(2)方法一: 设点Q、A、B的坐标分别为。
由题设知均不为零,记,则且
又A,P,B,Q四点共线,从而
于是 ,

从而
,(1) ,(2)
又点A、B在椭圆C上,即

(1)+(2)×2并结合(3),(4)得
即点总在定直线上
方法二:设点,由题设,均不为零。

又 四点共线,可设,于是
(1)
(2)
由于在椭圆C上,将(1),(2)分别代入C的方程整理得
(3)
(4)
(4)-(3)    得
即点总在定直线上
3.(2008北京文)已知△ABC的顶点A,B在椭圆上,C在直线l:y=x+2上,且AB∥l.
(Ⅰ)当AB边通过坐标原点O时,求AB的长及△ABC的面积;
(Ⅱ)当∠ABC=90°,且斜边AC的长最大时,求AB所在直线的方程.
3. 解:(Ⅰ)因为AB∥l,且AB边通过点(0,0),所以AB所在直线的方程为y=x.
设A,B两点坐标分别为(x1,y1),(x2,y2).
由得
所以
又因为AB边上的高h等于原点到直线l的距离,
所以
(Ⅱ)设AB所在直线的方程为y=x+m.
由得
因为A,B在椭圆上,
所以
    设A,B两点坐标分别为(x1,y1),(x2,y2).

    所以
    又因为BC的长等于点(0,m)到直线l的距离,即
所以
    所以当m=-1时,AC边最长.(这时)
此时AB所在直线的方程为y=x-1.
4.(2008北京理)已知菱形的顶点在椭圆上,对角线所在直线的斜率为1.
(Ⅰ)当直线过点时,求直线的方程;
(Ⅱ)当时,求菱形面积的最大值.
4.解:(Ⅰ)由题意得直线的方程为.
因为四边形为菱形,所以.
于是可设直线的方程为.
由得.
因为在椭圆上,
所以,解得.
设两点坐标分别为,
则,,,.
所以.
所以的中点坐标为.
由四边形为菱形可知,点在直线上,
所以,解得.
所以直线的方程为,即.
(Ⅱ)因为四边形为菱形,且,
所以.
所以菱形的面积.
由(Ⅰ)可得,
所以.
所以当时,菱形的面积取得最大值.
5. (2008福建文) 如图,椭圆的一个焦点为F(1,0)且过点(2,0)。(1)求椭圆C的方程;(2)若AB为垂直与x轴的动弦,直线l:x=4与x轴交于N,直线AF与BN交于点M。
①求证:点M恒在椭圆C上;②求面积的最大值。
5. 解:(1)由题设a=2,c=1,从而:所以方程为:
(2)①有F(1,0),N(4,0); 设A(m,n),则B(m,-n),
AF与BN得方程分别为:,
设交点M坐标为:,则
; 点M恒在椭圆C上
②设AM的方程为x=ty+1,带入,得:
设,则有,

令,则
所以当时,有最大值3,此时AM过点F。
有最大值为
6.(2008福建理)如图、椭圆的一个焦点是F(1,0),O为坐标原点.
   
(Ⅰ)已知椭圆短轴的两个三等分点与一个焦点构成正三角形,求椭圆的方程;
  (Ⅱ)设过点F的直线l交椭圆于A、B两点.若直线l绕点F任意转动,值有,求a的取值范围.
6. 本小题主要考查直线与椭圆的位置关系、不等式的解法等基本知识,考查分类与整合思想,考查运算能力和综合解题能力.满分12分.
解法一:(Ⅰ)设M,N为短轴的两个三等分点,
因为△MNF为正三角形,
所以,
即1=
因此,椭圆方程为
(Ⅱ)设
(ⅰ)当直线 AB与x轴重合时,
(ⅱ)当直线AB不与x轴重合时,
设直线AB的方程为:
整理得
所以
因为恒有,所以AOB恒为钝角.
即恒成立.



又a2+b2m2>0,所以-m2a2b2+b2-a2b2+a2<0对mR恒成立,
即a2b2m2> a2 -a2b2+b2对mR恒成立.
当mR时,a2b2m2最小值为0,所以a2- a2b2+b2<0.
a2因为a>0,b>0,所以a0,
解得a>或a<(舍去),即a>,
综合(i)(ii),a的取值范围为(,+).
解法二:
(Ⅰ)同解法一,
(Ⅱ)解:(i)当直线l垂直于x轴时,
x=1代入=1.
因为恒有|OA|2+|OB|2<|AB|2,2(1+yA2)<4 yA2, yA2>1,即>1,
解得a>或a<(舍去),即a>.
(ii)当直线l不垂直于x轴时,设A(x1,y1), B(x2,y2).
设直线AB的方程为y=k(x-1)代入
得(b2+a2k2)x2-2a2k2x+ a2 k2- a2 b2=0,
故x1+x2=
因为恒有|OA|2+|OB|2<|AB|2,
所以x21+y21+ x22+ y22<( x2-x1)2+(y2-y1)2,
得x1x2+ y1y2<0恒成立.
x1x2+ y1y2= x1x2+k2(x1-1) (x2-1)=(1+k2) x1x2-k2(x1+x2)+ k2
=(1+k2).
由题意得(a2- a2 b2+b2)k2- a2 b2<0对kR恒成立.
①当a2- a2 b2+b2>0时,不合题意;
②当a2- a2 b2+b2=0时,a=;
③当a2- a2 b2+b2<0时,a2- a2(a2-1)+ (a2-1)<0,a4- 3a2 +1>0,
解得a2>或a2>(舍去),a>,因此a.
综合(i)(ii),a的取值范围为(,+).
7. (2008广东文、理)设b>0,椭圆方程为,抛物线方程为.如图4所示,过点F(0,b+2)作x轴的平行线,与抛物线在
第一象限的交点为G.已知抛物线在点G的切线经
过椭圆的右焦点.
(1)求满足条件的椭圆方程和抛物线方程;
(2)设A,B分别是椭圆长轴的左、右端点,试探究在
抛物线上是否存在点P,使得△ABP为直角三角形?
若存在,请指出共有几个这样的点?并说明理由
(不必具体求出这些点的坐标).
7.解: (1)解方程组得,
所以点G的坐标为G(4,b+2),
由,得,求导数得,
于是,抛物线在点G的切线l的斜率为,
又椭圆中,即c=b,所以椭圆的右焦点为(b,0)
由切线l过点,可知,解得b=1.
所以满足条件的椭圆方程和抛物线方程分别为和
(2) 在抛物线上存在点P,使得△ABP为直角三角形。且这样的点有4个。
证明:分别过点A、B做y轴的平行线,交抛物线于M,N点,则∠MAB=90O,∠NBA=90O,
显然M,N在抛物线上,且使得△ABM,△ABN为直角三角形。
若以为直角,设点坐标为,、两点的坐标分别为和,

关于的二次方程有一大于零的解,有两解,即以为直角的有两个,
综上所述, 满足条件的点共有4个。
8、(2008海南、宁夏理)在直角坐标系xOy中,椭圆C1:的左、右焦点分别为F1、F2。F2也是抛物线C2:的焦点,点M为C1与C2在第一象限的交点,且。
(1)求C1的方程;(2)平面上的点N满足,直线l∥MN,且与C1交于A、B两点,若·=0,求直线l的方程。
8.解:(Ⅰ)由:知.
设,在上,因为,所以,
得,.
在上,且椭圆的半焦距,于是
消去并整理得

解得(不合题意,舍去).
故椭圆的方程为.
(Ⅱ)由知四边形是平行四边形,其中心为坐标原点,
因为,所以与的斜率相同,
故的斜率.
设的方程为.
由消去并化简得

设,,
,.
因为,所以.

所以.
此时,
故所求直线的方程为,或.
9. (2008湖北文)已知双曲线的两个焦点为的曲线C上.
(Ⅰ)求双曲线C的方程;
(Ⅱ)记O为坐标原点,过点Q (0,2)的直线l与双曲线C相交于不同的两点E、F,若△OEF的面积为求直线l的方程
9.本小题主要考查双曲线的定义、标准方程、直线和双曲线位置关系等平面解析几何的基础知识,考查待写系数法、不等式的解法以及综合运用数学知识进行推理运算的能力.
(满分13分)
(Ⅰ)解法1:依题意,由a2+b2=4,得双曲线方程为(0<a2<4=,
将点(3,)代入上式,得.解得a2=18(舍去)或a2=2,
故所求双曲线方程为
解法2:依题意得,双曲线的半焦距c=2.
2a=|PF1|-|PF2|=
∴a2=2,b2=c2-a2=2.
∴双曲线C的方程为
(Ⅱ)解法1:依题意,可设直线l的方程为y=kx+2,代入双曲线C的方程并整理,
得(1-k2)x2-4kx-6=0.
∵直线I与双曲线C相交于不同的两点E、F,

∴k∈(-)∪(1,).
设E(x1,y1),F(x2,y2),则由①式得x1+x2=于是
|EF|=
=
而原点O到直线l的距离d=,
∴SΔOEF=
若SΔOEF=,即解得k=±,
满足②.故满足条件的直线l有两条,其方程分别为y=和
解法2:依题意,可设直线l的方程为y=kx+2,代入双曲线C的方程并整理,
得(1-k2)x2-4kx-6=0. ①
∵直线l与比曲线C相交于不同的两点E、F,

∴k∈(-)∪(1,). ②
设E(x1,y1),F(x2,y2),则由①式得
|x1-x2|=. ③
当E、F在同一支上时(如图1所示),
SΔOEF=|SΔOQF-SΔOQE|=;
当E、F在不同支上时(如图2所示),
SΔOEF=SΔOQF+SΔOQE=
综上得SΔOEF=,于是
由|OQ|=2及③式,得SΔOEF=.
若SΔOEF=2,即,解得k=±,满足②.
故满足条件的直线l有两条,其方程分别为y=和y=
10. (2008湖北理)如图,在以点O为圆心,|AB|=4为直径的半圆ADB中,OD⊥AB,P是半圆弧上一点,
∠POB=30°,曲线C是满足||MA|-|MB||为定值的动点M的轨迹,且曲线C过点P.
(Ⅰ)建立适当的平面直角坐标系,求曲线C的方程;
(Ⅱ)设过点D的直线l与曲线C相交于不同的两点E、F.
若△OEF的面积不小于2,求直线l斜率的取值范围.
10.本小题主要考查直线、圆和双曲线等平面解析几何的基础知识,考查轨迹方程的求法、不等式的解法以及综合解题能力.(满分13分)
(Ⅰ)解法1:以O为原点,AB、OD所在直线分别为x轴、y轴,建立平面直角坐标系,则A(-2,0),B(2,0),D(0,2),P(),依题意得
|MA|-|MB|=|PA|-|PB|=<|AB|=4.
∴曲线C是以原点为中心,A、B为焦点的双曲线.
设实平轴长为a,虚半轴长为b,半焦距为c,
则c=2,2a=2,∴a2=2,b2=c2-a2=2.
∴曲线C的方程为.
解法2:同解法1建立平面直角坐标系,则依题意可得|MA|-|MB|=|PA|-|PB|<
|AB|=4.
∴曲线C是以原点为中心,A、B为焦点的双曲线.
设双曲线的方程为>0,b>0).
则由  解得a2=b2=2,
∴曲线C的方程为
(Ⅱ)解法1:依题意,可设直线l的方程为y=kx+2,代入双曲线C的方程并整理得(1-K2)x2-4kx-6=0.
∵直线l与双曲线C相交于不同的两点E、F,
∴   
∴k∈(-,-1)∪(-1,1)∪(1,).
设E(x,y),F(x2,y2),则由①式得x1+x2=,于是
|EF|=

而原点O到直线l的距离d=,
∴S△DEF=
若△OEF面积不小于2,即S△OEF,则有

综合②、③知,直线l的斜率的取值范围为[-,-1]∪(1-,1) ∪(1, ).
解法2:依题意,可设直线l的方程为y=kx+2,代入双曲线C的方程并整理,
得(1-K2)x2-4kx-6=0.
∵直线l与双曲线C相交于不同的两点E、F,
∴ .
∴k∈(-,-1)∪(-1,1)∪(1,).
设E(x1,y1),F(x2,y2),则由①式得
|x1-x2|= ③
当E、F在同一去上时(如图1所示),
S△OEF=
当E、F在不同支上时(如图2所示).
S△ODE=
综上得S△OEF=于是
由|OD|=2及③式,得S△OEF=
若△OEF面积不小于2
 ④
综合②、④知,直线l的斜率的取值范围为[-,-1]∪(-1,1)∪(1,).
11.(2008湖南文)已知椭圆的中心在原点,一个焦点是,且两条准线间的距离为。
(I)求椭圆的方程;
(II)若存在过点A(1,0)的直线,使点F关于直线的对称点在椭圆上,
求的取值范围。
11.解:(I)设椭圆的方程为
由条件知且所以
故椭圆的方程是
(II)依题意, 直线的斜率存在且不为0,记为,则直线的方程是
设点关于直线的对称点为则
解得
因为点在椭圆上,所以即
设则
因为所以于是,
当且仅当
上述方程存在正实根,即直线存在.
解得所以
即的取值范围是
12. (2008湖南理)若A、B是抛物线y2=4x上的不同两点,弦AB(不平行于y轴)的垂直平分线与x轴相交于点P,则称弦AB是点P的一条“相关弦”.已知当x>2时,点P(x,0)
存在无穷多条“相关弦”.给定x0>2.
(I)证明:点P(x0,0)的所有“相关弦”的中点的横坐标相同;
(II) 试问:点P(x0,0)的“相关弦”的弦长中是否存在最大值?
若存在,求其最大值(用x0表示):若不存在,请说明理由.
12. 解: (I)设AB为点P(x0,0)的任意一条“相关弦”,且点A、B的坐标分别是
(x1,y1)、(x2,y2)(x1x2),则y21=4x1, y22=4x2,
两式相减得(y1+y2)(y1-y2)=4(x1-x2).因为x1x2,所以y1+y20.
设直线AB的斜率是k,弦AB的中点是M(xm, ym),则
k=.从而AB的垂直平分线l的方程为
又点P(x0,0)在直线上,所以
而于是故点P(x0,0)的所有“相关弦”的中点的横坐标都是x0-2.
(Ⅱ)由(Ⅰ)知,弦AB所在直线的方程是,代入中,
整理得 (·)
则是方程(·)的两个实根,且
设点P的“相关弦”AB的弦长为l,则

因为0<<4xm=4(xm-2) =4x0-8,于是设t=,则t(0,4x0-8).
记l2=g(t)=-[t-2(x0-3)]2+4(x0-1)2.
若x0>3,则2(x0-3) (0, 4x0-8),所以当t=2(x0-3),即=2(x0-3)时,
l有最大值2(x0-1).
若2所以0综上所述,当x0>3时,点P(x0,0)的“相关弦”的弦长中存在最大值,且最大值
为2(x0-1);当2< x03时,点P(x0,0)的“相关弦”的弦长中不存在最大值.
13.(2008江西文)已知抛物线和三个点,过点的一条直线交抛物线于、两点,的延长线分别交曲线于.
(1)证明三点共线;
(2)如果、、、四点共线,问:是否存在,使以线段为直径的圆与抛物线有异于、的交点?如果存在,求出的取值范围,并求出该交点到直线的距离;若不存在,请说明理由.
13.(1)证明:设,
则直线的方程:
即:
因在上,所以①
又直线方程:
由得:
所以
同理,
所以直线的方程:
令得
将①代入上式得,即点在直线上
所以三点共线
(2)解:由已知共线,所以
以为直径的圆的方程:
由得
所以(舍去),
要使圆与抛物线有异于的交点,则
所以存在,使以为直径的圆与抛物线有异于的交点
则,所以交点到的距离为
14.(2008江西理) 设点在直线上,过点作双曲线的两条切线,切点为,定点(,0).
(1)过点作直线的垂线,垂足为,
试求△的重心所在的曲线方程;
(2)求证:三点共线.
14..解:(1)设,,∵AN⊥直线,则
∴,∴,
设,则
,解得
,代入双曲线方程,并整理得,
即G点所在曲线方程为
(2)设,,PA斜率为k,则切线PA的方程为:
由,消去y并整理得:
,因为直线与双曲线相切,从而
△= = 0,及,解得
因此PA的方程为:
同理PB的方程为:
又在PA、PB上,

即点,都在直线上,
又也在上,
∴A、M、B三点共线。
15.(2008辽宁文) 在平面直角坐标系中,点P到两点,的距离之和等于4,设点P的轨迹为.
(Ⅰ)写出C的方程;
(Ⅱ)设直线与C交于A,B两点.k为何值时?此时的值是多少?
15.本小题主要考查平面向量,椭圆的定义、标准方程及直线与椭圆位置关系等基础知识,考查综合运用解析几何知识解决问题的能力.满分12分.
解:
(Ⅰ)设P(x,y),由椭圆定义可知,点P的轨迹C是以为焦点,长半轴为2的椭圆.它的短半轴,
故曲线C的方程为. 4分
(Ⅱ)设,其坐标满足
消去y并整理得,
故. 6分
,即.
而,
于是.
所以时,,故. 8分
当时,,.



所以. 12分
16.(2008辽宁理) 在直角坐标系中,点P到两点,的距离之和等于4,设点P的轨迹为,直线与C交于A,B两点.
(Ⅰ)写出C的方程;
(Ⅱ)若,求k的值;
(Ⅲ)若点A在第一象限,证明:当k>0时,恒有||>||.
16.本小题主要考查平面向量,椭圆的定义、标准方程及直线与椭圆位置关系等基础知识,考查综合运用解析几何知识解决问题的能力.满分12分.
解:
(Ⅰ)设P(x,y),由椭圆定义可知,点P的轨迹C是以为焦点,长半轴为2的椭圆.它的短半轴,
故曲线C的方程为. 3分
(Ⅱ)设,其坐标满足
消去y并整理得,
故. 5分
若,即.
而,
于是,
化简得,所以. 8分
(Ⅲ)



因为A在第一象限,故.由知,从而.又,
故,
即在题设条件下,恒有. 12分
17.(2008全国Ⅰ卷文、理)双曲线的中心为原点,焦点在轴上,两条渐近线分别为,经过右焦点垂直于的直线分别交于两点.已知成等差数列,且与同向.
(Ⅰ)求双曲线的离心率;
(Ⅱ)设被双曲线所截得的线段的长为4,求双曲线的方程.
17.解:(1)设,,
由勾股定理可得:
得:,,
由倍角公式,解得
则离心率.
(2)过直线方程为
与双曲线方程联立
将,代入,化简有
将数值代入,有
解得
最后求得双曲线方程为:.
18.(2008全国Ⅱ卷文、理)设椭圆中心在坐标原点,是它的两个顶点,直线与AB相交于点D,与椭圆相交于E、F两点.
(Ⅰ)若,求的值;
(Ⅱ)求四边形面积的最大值.
18.(Ⅰ)解:依题设得椭圆的方程为,
直线的方程分别为,. 2分
如图,设,其中,
且满足方程,
故.①
由知,得;
由在上知,得.
所以,
化简得,
解得或. 6分
(Ⅱ)解法一:根据点到直线的距离公式和①式知,点到的距离分别为,
. 9分
又,所以四边形的面积为

当,即当时,上式取等号.所以的最大值为. 12分
解法二:由题设,,.
设,,由①得,,
故四边形的面积为
9分

当时,上式取等号.所以的最大值为. 12分
19. (2008山东文)已知曲线所围成的封闭图形的面积为,曲线的内切圆半径为.记为以曲线与坐标轴的交点为顶点的椭圆.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设是过椭圆中心的任意弦,是线段的垂直平分线.是上异于椭圆中心的点.
(1)若(为坐标原点),当点在椭圆上运动时,求点的轨迹方程;
(2)若是与椭圆的交点,求的面积的最小值.
19.解:(Ⅰ)由题意得
又,
解得,.
因此所求椭圆的标准方程为.
(Ⅱ)(1)假设所在的直线斜率存在且不为零,设所在直线方程为,

解方程组得,,
所以.
设,由题意知,
所以,即,
因为是的垂直平分线,
所以直线的方程为,
即,
因此,
又,
所以,
故.
又当或不存在时,上式仍然成立.
综上所述,的轨迹方程为.
(2)当存在且时,由(1)得,,
由解得,,
所以,,.
解法一:由于

当且仅当时等号成立,即时等号成立,此时面积的最小值是.
当,.
当不存在时,.
综上所述,的面积的最小值为.
解法二:因为,
又,,
当且仅当时等号成立,即时等号成立,
此时面积的最小值是.
当,.
当不存在时,.
综上所述,的面积的最小值为.
20.(2008山东理) 如图,设抛物线方程为x2=2py(p>0),M为 直线y=-2p上任意一点,过M引抛物线的切线,切点分别为A,B.
(Ⅰ)求证:A,M,B三点的横坐标成等差数列;
(Ⅱ)已知当M点的坐标为(2,-2p)时,,求此时抛物线的方程;
(Ⅲ)是否存在点M,使得点C关于直线AB的对称点D在抛物线上,其中,点C满足(O为坐标原点).若存在,求出所有适合题意的点M的坐标;若不存在,请说明理由.
20.(Ⅰ)证明:由题意设
由得,则
所以
因此直线MA的方程为
        直线MB的方程为
所以 ①

由①、②得  
因此 ,即
所以A、M、B三点的横坐标成等差数列.
(Ⅱ)解:由(Ⅰ)知,当x0=2时,
将其代入①、②并整理得:
 
 
     所以 x1、x2是方程的两根,
因此

所以
由弦长公式得

    又,
所以p=1或p=2,
因此所求抛物线方程为或
(Ⅲ)解:设D(x3,y3),由题意得C(x1+ x2, y1+ y2),
则CD的中点坐标为
 设直线AB的方程为
 由点Q在直线AB上,并注意到点也在直线AB上,
 代入得
 若D(x3,y3)在抛物线上,则
 因此 x3=0或x3=2x0.
即D(0,0)或
(1)当x0=0时,则,此时,点M(0,-2p)适合题意.
(2)当,对于D(0,0),此时
  又AB⊥CD,
所以
即矛盾.
对于因为此时直线CD平行于y轴,

所以  直线AB与直线CD不垂直,与题设矛盾,
所以时,不存在符合题意的M点.
综上所述,仅存在一点M(0,-2p)适合题意.
21.(2008陕西文、理)已知抛物线:,直线交于两点,是线段的中点,过作轴的垂线交于点.
(Ⅰ)证明:抛物线在点处的切线与平行;
(Ⅱ)是否存在实数使,若存在,求的值;若不存在,说明理由.
21. 解法一:(Ⅰ)如图,设,,把代入得,
由韦达定理得,,
,点的坐标为.
设抛物线在点处的切线的方程为,
将代入上式得,
直线与抛物线相切,
,.
即.
(Ⅱ)假设存在实数,使,则,又是的中点,

由(Ⅰ)知

轴,.


,解得.
即存在,使.
解法二:(Ⅰ)如图,设,把代入得
.由韦达定理得.
,点的坐标为.,,
抛物线在点处的切线的斜率为,.
(Ⅱ)假设存在实数,使.
由(Ⅰ)知,则

,,解得.
即存在,使.
22.(2008上海文) 已知双曲线.
(1)求双曲线的渐近线方程;
(2)已知点的坐标为.设是双曲线上的点,是点关于原点的对称点.
记.求的取值范围;
(3)已知点的坐标分别为,为双曲线上在第一象限内的点.记为经过原点与点的直线,为截直线所得线段的长.试将表示为直线的斜率的函数.
22、【解】(1)所求渐近线方程为 ……………...3分
(2)设P的坐标为,则Q的坐标为, …………….4分

……………7分

的取值范围是 ……………9分
(3)若P为双曲线C上第一象限内的点,
则直线的斜率 ……………11分
由计算可得,当
当 ……………15分
∴ s表示为直线的斜率k的函数是….16分
23.(2008上海理)设P(a,b)(b≠0)是平面直角坐标系xOy中的点,l是经过原点与点(1,b)的直线,记Q是直线l与抛物线x2=2py(p≠0)的异于原点的交点
⑴已知a=1,b=2,p=2,求点Q的坐标
⑵已知点P(a,b)(ab≠0)在椭圆+y2=1上,p=,求证:点Q落在双曲线4x2-4y2=1上
⑶已知动点P(a,b)满足ab≠0,p=,若点Q始终落在一条关于x轴对称的抛物线上,试问动点P的轨迹落在哪种二次曲线上,并说明理由
23.解
(1)当时,
解方程组 得 即点的坐标为
(2)【证明】由方程组 得 即点的坐标为
时椭圆上的点,即
,因此点落在双曲线上
(3)设所在的抛物线方程为
将代入方程,得,即
当时,,此时点的轨迹落在抛物线上;
当时, ,此时点的轨迹落在圆上;
当时,,此时点的轨迹落在椭圆上;
当时,此时点的轨迹落在双曲线上;
24.(2008四川文)设椭圆的左右焦点分别为,离心率,点到右准线为的距离为
(Ⅰ)求的值;
(Ⅱ)设是上的两个动点,,
证明:当取最小值时,
24.【解】:因为,到的距离,所以由题设得
解得
由,得
(Ⅱ)由得,的方程为
故可设
由知知
得,所以

当且仅当时,上式取等号,此时
所以,

【点评】:此题重点考察椭圆基本量间的关系,进而求椭圆待定常数,考察向量与椭圆的综合应用;
【突破】:熟悉椭圆各基本量间的关系,数形结合,熟练进行向量的坐标运算,设而不求消元的思想在圆锥曲线问题中应灵活应用。
25.(2008四川理) 设椭圆的左右焦点分别为,离心率,右准线为,是上的两个动点,
(Ⅰ)若,求的值;
(Ⅱ)证明:当取最小值时,与共线。
25.【解】:由与,得
,的方程为


由得 ①
(Ⅰ)由,得


由①、②、③三式,消去,并求得

(Ⅱ)
当且仅当或时,取最小值
此时,
故与共线。
【点评】:此题重点考察椭圆中的基本量的关系,进而求椭圆待定常数,考察向量的综合应用;
【突破】:熟悉椭圆各基本量间的关系,数形结合,熟练地进行向量的坐标运算,设而不求消元的思想在圆锥曲线问题中的灵活应用。
26.(2008天津文、理)已知中心在原点的双曲线的一个焦点是,一条渐近线的方程是.
(Ⅰ)求双曲线的方程;
(Ⅱ)若以为斜率的直线与双曲线相交于两个不同的点,且线段的垂直平分线与两坐标轴围成的三角形的面积为,求的取值范围.
26.本小题主要考查双曲线的标准方程和几何性质、直线方程、两条直线垂直、线段的定比分点等基础知识,考查曲线和方程的关系等解析几何的基本思想方法,考查推理、运算能力.满分14分.
(Ⅰ)解:设双曲线的方程为,由题设得
解得
所以双曲线的方程为.
(Ⅱ)解:设直线的方程为,点,的坐标满足方程组
将①式代入②式,得,整理得

此方程有两个不等实根,于是,且
.整理得
. ③
由根与系数的关系可知线段的中点坐标满足
,.
从而线段的垂直平分线的方程为

此直线与轴,轴的交点坐标分别为,.由题设可得

整理得
,.
将上式代入③式得,
整理得
,.
解得或.
所以的取值范围是
27.(2008浙江文、理)已知曲线C是到点P()和到直线距离相等的点的轨迹。是过点Q(-1,0)的直线,M是C上(不在上)的动点;A、B在上,轴(如图)。
(Ⅰ)求曲线C的方程;
(Ⅱ)求出直线的方程,使得为常数
27.本题主要考查求曲线的轨迹方程、两条直线的位置
关系等基础知识,考查解析几何的基本思想方法和综合解题能力.满分15分.
(Ⅰ)解:设为上的点,则

到直线的距离为.
由题设得.
化简,得曲线的方程为.
(Ⅱ)解法一:
设,直线,则
,从而.
在中,因为


所以 .


当时,,
从而所求直线方程为.
解法二:设,直线,则,从而

过垂直于的直线.
因为,所以,

当时,,
从而所求直线方程为.
28.(2008重庆文) 如题(21)图,M(-2,0)和N(2,0)是平面上的两点,动点P满足:

(Ⅰ)求点P的轨迹方程;
(Ⅱ)设d为点P到直线l: 的距离,若,求的值.
28.(本小题12分)
解:(I)由双曲线的定义,点P的轨迹是以M、N为焦点,实轴长2a=2的双曲线.
因此半焦距c=2,实半轴a=1,从而虚半轴b=,
所以双曲线的方程为x2-=1.
(II)解法一:
由(I)由双曲线的定义,点P的轨迹是以M、N为焦点,实轴长2a=2的双曲线.
因此半焦距e=2,实半轴a=1,从而虚半轴b=.
R所以双曲线的方程为x2-=1.
(II)解法一:
由(I)及答(21)图,易知|PN|1,因|PM|=2|PN|2, ①
知|PM|>|PN|,故P为双曲线右支上的点,所以|PM|=|PN|+2. ②
将②代入①,得2||PN|2-|PN|-2=0,解得|PN|=,所以
|PN|=.
因为双曲线的离心率e==2,直线l:x=是双曲线的右准线,故=e=2,
所以d=|PN|,因此
解法:
设P(x,y),因|PN|1知
|PM|=2|PN|22|PN|>|PN|,
故P在双曲线右支上,所以x1.
由双曲线方程有y2=3x2-3.
因此
从而由|PM|=2|PN|2得
2x+1=2(4x2-4x+1),即8x2-10x+1=0.
所以x=(舍去x=).
有|PM|=2x+1=
d=x-=.

29. (2008重庆理)如图(21)图,M(-2,0)和N(2,0)是平面上的两点,动点P满足:
(Ⅰ)求点P的轨迹方程;
(Ⅱ)若,求点P的坐标.
29.(本小题12分)
解:(Ⅰ)由椭圆的定义,点P的轨迹是以M、N为焦点,长轴长2a=6的椭圆.
因此半焦距c=2,长半轴a=3,从而短半轴
b=,
所以椭圆的方程为
(Ⅱ)由得

因为不为椭圆长轴顶点,故P、M、N构成三角形.在△PMN中,

将①代入②,得

故点P在以M、N为焦点,实轴长为的双曲线上.
由(Ⅰ)知,点P的坐标又满足,所以
由方程组 解得
即P点坐标为

展开更多......

收起↑

资源预览