3.5二次函数的应用-【全国通用】2024年名师导航中考数学一轮复习学案(教师版+学生版)

资源下载
  1. 二一教育资源

3.5二次函数的应用-【全国通用】2024年名师导航中考数学一轮复习学案(教师版+学生版)

资源简介

中小学教育资源及组卷应用平台
第三章 函数
第五节 二次函数的应用
考点分布 考查频率 命题趋势
考点1 二次函数的实际应用 ☆☆ 二次函数的应用在中考中较为常见,其中,二次函数在实际生活中的应用多为选填题,出题率不是特别高,一般需要根据题意自行建立二次函数模型;而利用二次函数图象解决实际问题和最值问题则多为解答题,此类问题需要多注意题意的理解,而且一般计算数据较大,还需根据实际情况判断所求结果是否合适,需要考生在做题过程中更为细心对待。
考点2 二次函数的几何问题 ☆☆☆
■考点一 二次函数的实际应用
1.用二次函数解决实际问题的一般步骤:
1)审:仔细 审题 ,理清 题意 ;
2)设:找出题中的变量和常量,分析它们之间的关系,与图形相关的问题要结合图形具体分析,设出适当的 未知数 ;
3)列:用二次函数表示出变量和常量之间的关系,建立二次函数模型,写出二次函数的 解析式 ;
4)解:依据已知条件,借助二次函数的解析式、图象和性质等求解实际问题;
5)检:检验结果,进行合理取舍,得出符合实际意义的结论.
2.利用二次函数解决利润最值的方法:巧设未知数,根据利润公式列出函数关系式,再利用二次函数的最值解决利润最大问题是否存在最大利润问题。
3.利用二次函数解决拱桥(门)/隧道/喷泉/球类运行轨迹类问题的方法:先建立适当的 平面直角坐标系 ,再根据题意找出已知点的坐标,并求出抛物线的解析式,最后根据图象信息解决实际问题。
4.利用二次函数解决面积最值的方法:先找好自变量及范围,再利用相关的图形面积公式,列出函数关系式,最后利用函数的最值解决面积最值问题。
5.利用二次函数解决动点问题的方法:首先要明确动点在哪条直线或抛物线上运动,运动速度是多少,结合直线或抛物线的表达式设出动点的 坐标 或表示出与动点有关的线段 长度 ,最后结合题干中与动点有关的条件进行计算.
■考点二 二次函数的几何问题
二次函数与几何知识联系密切,互相渗透,以点的坐标和线段长度的关系为纽带,把二次函数常与全相似、最大(小)面积、周长等结合起来,解决这类问题时,先要对已知和未知条件进行综合分析,用点的等、坐标和线段长度的联系,从图形中建立 二次函数 的模型,从而使问题得到解决,解这类问题的关键就是要善于利用几何图形和二次函数的有关性质和知识,并注意挖掘题目中的一些隐含条件,以达到解题目的。
1.二次函数与几何图形的长度(面积)问题
二次函数与几何图形的长度(面积)问题一般是利用距离或面积公式表示出图形长度(面积)的函数关系式(一般是二次函数的表达式),再利用函数的解析式的特点求长度(面积)的最值问题;此外还会涉及到长度(面积)相等、给出长度(面积)的值等问题,其核心处理方法都是表示出长度(面积)的表达式,再去研究相关的性质。
2.二次函数与特殊三角形
1)在二次函数的图象中研究等腰三角形的问题,需要注意分类讨论思想的应用,找准顶角与底角分类讨论的关键,借助等腰三角形的等边对等角、等角对等边、三线合一等性质来转化已知条件是常用的处理手段;
2)在二次函数的图象中研究直角三角形的问题,需要注意分类讨论思想的应用,找准直角顶点是分类讨论的关键,借助直角三角形的勾股定理,两锐角互补等性质来转化已知条件是常用的处理手段。
3.二次函数特殊平行四边形
在二次函数的图象中研究平行四边形的问题常会用到平行四边形的一些性质之间的转化,同时此类问题也会涉及到矩形、菱形、正方形的确定,其分析思想是互通的。
4.二次函数与线段和、差的最值问题
在二次函数的图象中研究线段的和、差最值问题,一般会用到将军饮马、胡不归、阿氏圆、瓜豆原理等来解决相关最值问题。
5.利用二次函数解决存在性问题的方法:一般先假设该点存在,根据该点所在的直线或抛物线的表达式,设出该点的 坐标 ;然后用该点的坐标表示出与该点有关的线段 长度 或其他点的 坐标 等;最后结合题干中其他条件列出等式,求出该点的坐标,然后判别该点坐标是否符合题意,若符合题意,则该点存在,否则该点不存在.
■易错提示
1. 二次函数在实际问题中的应用通常是在一定的取值范围内,一定要注意是否包含顶点坐标,如果顶点坐标不在取值范围内,应按照对称轴一侧的增减性探讨问题结论.
■考点一 二次函数的实际应用
◇典例1:(2023年浙江省湖州市中考数学真题)某水产经销商以每千克30元的价格购进一批某品种淡水鱼,由销售经验可知,这种淡水鱼的日销售量y(千克)与销售价格x(元/千克)存在一次函数关系,部分数据如下表所示:
销售价格x(元/千克) 50 40
日销售量y(千克) 100 200
(1)试求出y关于x的函数表达式.(2)设该经销商销售这种淡水鱼的日销售利润为W元,如果不考虑其他因素,求当销售价格x为多少时,日销售利润W最大?最大的日销售利润是多少元?
【答案】(1)
(2)销售价格为每千克45元时,日销售利润最大,最大日销售利润是2250元
【分析】(1)设y与x之间的函数关系式为,由表中数据即可得出结论;
(2)根据每日总利润=每千克利润×销售量列出函数解析式,根据函数的性质求最值即可.
【详解】(1)解:设y关于x的函数表达式为.
将和分别代入,得:,解得:,
∴y关于x的函数表达式是:;
(2)解:,
∵,∴当时,在的范围内,
W取到最大值,最大值是2250.
答:销售价格为每千克45元时,日销售利润最大,最大日销售利润是2250元.
【点睛】本题考查一次函数、二次函数的应用,关键是根据等量关系写出函数解析式.
◆变式训练
1.(2023年湖南省益阳市中考数学真题)某企业准备对A,B两个生产性项目进行投资,根据其生产成本、销售情况等因素进行分析得知:投资A项目一年后的收益(万元)与投入资金x(万元)的函数表达式为:,投资B项目一年后的收益(万元)与投入资金x(万元)的函数表达式为:.(1)若将10万元资金投入A项目,一年后获得的收益是多少?(2)若对A,B两个项目投入相同的资金m()万元,一年后两者获得的收益相等,则m的值是多少?(3)2023年,我国对小微企业施行所得税优惠政策.该企业将根据此政策获得的减免税款及其他结余资金共计32万元,全部投入到A,B两个项目中,当A,B两个项目分别投入多少万元时,一年后获得的收益之和最大?最大值是多少万元?
【答案】(1)4万元(2)
(3)当A,B两个项目分别投入28万,4万元时,一年后获得的收益之和最大,最大值是16万元.
【分析】(1)把代入可得答案;(2)当时,可得,再解方程可得答案;(3)设投入到B项目的资金为万元,则投入到A项目的资金为万元,设总收益为y万元,,而,再利用二次函数的性质可得答案.
【详解】(1)解:∵投资A项目一年后的收益(万元)与投入资金x(万元)的函数表达式为:,
当时,(万元);
(2)∵对A,B两个项目投入相同的资金m()万元,一年后两者获得的收益相等,
∴,整理得:,
解得:,(不符合题意),∴m的值为8.
(3)
设投入到B项目的资金为万元,则投入到A项目的资金为万元,设总收益为y万元,
∴,
而,∴当时,(万元);
∴当A,B两个项目分别投入28万,4万元时,一年后获得的收益之和最大,最大值是16万元.
【点睛】本题考查的是正比例函数的性质,一元二次方程的解法,列二次函数的解析式,二次函数的性质,理解题意,选择合适的方法解题是关键.
2.(2023年江苏省泰州市中考数学真题)某公司的化工产品成本为30元/千克.销售部门规定:一次性销售1000千克以内时,以50元/千克的价格销售;一次性销售不低于1000千克时,每增加1千克降价元.考虑到降价对利润的影响,一次性销售不低于1750千克时,均以某一固定价格销售.一次性销售利润y(元)与一次性销售量x(千克)的函数关系如图所示.

(1)当一次性销售800千克时利润为多少元?(2)求一次性销售量在之间时的最大利润;
(3)当一次性销售多少千克时利润为22100元?
【答案】(1)当一次性销售800千克时利润为16000元;(2)一次性销售量在之间时的最大利润为22500元;(3)当一次性销售为1300或1700千克时利润为22100元.
【分析】(1)用销售量×利润计算即可;(2)根据一次性销售不低于1000千克时,每增加1千克降价元求出销售单价,再乘以销售量即可列出函数解析式,再根据函数的性质求最值;
(3)根据(2)中解析式,令y=22100,解方程即可.
【详解】(1)解:根据题意,当时,,
∴当一次性销售800千克时利润为16000元;
(2)解:设一次性销售量在之间时,销售价格为,
∴,
∵,,∴当时,y有最大值,最大值为22500,
∴一次性销售量在之间时的最大利润为22500元;
(3)解:由(2)知,当时,,
∴当一次性销售量在之间时,利润为22100元,
∴,解得,
∴当一次性销售为1300或1700千克时利润为22100元.
【点睛】本题考查二次函数的应用,根据等量关系列出函数解析式,掌握二次函数的性质是解答本题的关键.
◇典例2:(2023年河南省中考数学真题)小林同学不仅是一名羽毛球运动爱好者,还喜欢运用数学知识对羽毛球比赛进行技术分析,下面是他对击球线路的分析.
如图,在平面直角坐标系中,点A,C在x轴上,球网与y轴的水平距离,,击球点P在y轴上.若选择扣球,羽毛球的飞行高度与水平距离近似满足一次函数关系;若选择吊球,羽毛球的飞行高度与水平距离近似满足二次函数关系.

(1)求点P的坐标和a的值.(2)小林分析发现,上面两种击球方式均能使球过网.要使球的落地点到C点的距离更近,请通过计算判断应选择哪种击球方式.
【答案】(1),,(2)选择吊球,使球的落地点到C点的距离更近
【分析】(1)在一次函数上,令,可求得,再代入即可求得的值;(2)由题意可知,令,分别求得,,即可求得落地点到点的距离,即可判断谁更近.
【详解】(1)解:在一次函数,令时,,∴,
将代入中,可得:,解得:;
(2)∵,,∴,
选择扣球,则令,即:,解得:,
即:落地点距离点距离为,∴落地点到C点的距离为,
选择吊球,则令,即:,解得:(负值舍去),
即:落地点距离点距离为,∴落地点到C点的距离为,
∵,∴选择吊球,使球的落地点到C点的距离更近.
【点睛】本题考查二次函数与一次函数的应用,理解题意,求得函数解析式是解决问题的关键.
◆变式训练
1.(2023年浙江省嘉兴市中考数学真题)根据以下素材,探究完成任务.
如何把实心球掷得更远?
素材1
小林在练习投掷实心球,其示意图如图,第一次练习时,球从点A处被抛出,其路线是抛物线.点A距离地面,当球到OA的水平距离为时,达到最大高度为.
素材2
根据体育老师建议,第二次练习时,小林在正前方处(如图)架起距离地面高为的横线.球从点A处被抛出,恰好越过横线,测得投掷距离.
问题解决
任务1
计算投掷距离 建立合适的直角坐标系,求素材1中的投掷距离.
任务2
探求高度变化 求素材2和素材1中球的最大高度的变化量
任务3
提出训练建议 为了把球掷得更远,请给小林提出一条合理的训练建议.
【答案】任务一:4m;任务二:;任务三:应该尽量提高掷出点的高度、尽量提高掷出点的速度、选择适当的掷出仰角
【分析】任务一:建立直角坐标系,由题意得:抛物线的顶点坐标为,设抛物线的解析式为,过点,利用待定系数法求出解析式,当时求出x的值即可得到;
任务二:建立直角坐标系,求出任务二的抛物线解析式,得到顶点纵坐标,与任务一的纵坐标相减即可; 任务三:根据题意给出合理的建议即可.
【详解】任务一:建立如图所示的直角坐标系,

由题意得:抛物线的顶点坐标为,设抛物线的解析式为,过点,
∴,解得,∴,
当时,,得(舍去),∴素材1中的投掷距离为4m;
(2)建立直角坐标系,如图,设素材2中抛物线的解析式为,
由题意得,过点,
∴,解得,∴
∴顶点纵坐标为,(m),
∴素材2和素材1中球的最大高度的变化量为;
任务三:应该尽量提高掷出点的高度、尽量提高掷出点的速度、选择适当的掷出仰角.
【点睛】此题考查了二次函数的实际应用,求函数解析式,求抛物线与坐标轴的距离,正确理解题意建立恰当的直角坐标系是解题的关键.
◇典例3:(2023年山东省威海市中考数学真题)城建部门计划修建一条喷泉步行通道.图1是项目俯视示意图.步行通道的一侧是一排垂直于路面的柱形喷水装置,另一侧是方形水池.图2是主视示意图.喷水装置的高度是2米,水流从喷头A处喷出后呈抛物线路径落入水池内,当水流在与喷头水平距离为2米时达到最高点B,此时距路面的最大高度为3.6米.为避免溅起的水雾影响通道上的行人,计划安装一个透明的倾斜防水罩,防水罩的一端固定在喷水装置上的点处,另一端与路面的垂直高度为1.8米,且与喷泉水流的水平距离为0.3米.点到水池外壁的水平距离米,求步行通道的宽.(结果精确到0.1米)参考数据:

【答案】3.2米
【分析】先以点O为坐标原点,所在直线为x轴,所在直线为y轴,建立平面直角坐标系,则,,设抛物线的解析式为,把代入,求得,即,再求出点D的坐标,即可求解.
【详解】解:如图,建立平面直角坐标系,由题意知:,,

∵抛物线的最高点B,∴设抛物线的解析式为,
把代入,得,解得,∴抛物线的解析式为,
令,则,解得:,
∴,∴ (米),
答:步行通道的宽的长约为3.2米.
【点睛】本题考查抛物线的实际应用.熟练掌握用待定系数法求抛物线解析式和抛物线的图象性质是解题的关键.
◆变式训练
1. (2023年吉林省长春市中考数学真题)年5月8日,商业首航完成——中国民商业运营国产大飞机正式起飞.时分航班抵达北京首都机场,穿过隆重的“水门礼”(寓意“接风洗尘”、是国际民航中高级别的礼仪).如图①,在一次“水门礼”的预演中,两辆消防车面向飞机喷射水柱,喷射的两条水柱近似看作形状相同的地物线的一部分.如图②,当两辆消防车喷水口A、B的水平距离为米时,两条水柱在物线的顶点H处相遇,此时相遇点H距地面米,喷水口A、B距地面均为4米.若两辆消防车同时后退米,两条水柱的形状及喷水口、到地面的距离均保持不变,则此时两条水柱相遇点距地面 米.

【答案】
【分析】根据题意求出原来抛物线的解析式,从而求得平移后的抛物线解析式,再令求平移后的抛物线与轴的交点即可.
【详解】解:由题意可知:、、,
设抛物线解析式为:,将代入解析式,
解得:,,
消防车同时后退米,即抛物线向左(右)平移米,
平移后的抛物线解析式为:,令,解得:,故答案为:.
【点睛】本题考查了待定系数法求抛物线解析式、函数图像的平移及坐标轴的交点;解题的关键是求得移动前后抛物线的解析式.
◇典例4:(2023年甘肃省兰州市中考数学真题)一名运动员在高的跳台进行跳水,身体(看成一点)在空中的运动轨迹是一条抛物线,运动员离水面的高度与离起跳点A的水平距离之间的函数关系如图所示,运动员离起跳点A的水平距离为时达到最高点,当运动员离起跳点A的水平距离为时离水面的距离为.

(1)求y关于x的函数表达式;(2)求运动员从起跳点到入水点的水平距离的长.
【答案】(1)y关于x的函数表达式为;
(2)运动员从起跳点到入水点的水平距离的长为.
【分析】(1)由题意得抛物线的对称轴为,经过点,,利用待定系数法即可求解;
(2)令,解方程即可求解.
【详解】(1)解:由题意得抛物线的对称轴为,经过点,,
设抛物线的表达式为,
∴,解得,∴y关于x的函数表达式为;
(2)解:令,则,解得(负值舍去),
∴运动员从起跳点到入水点的水平距离的长为.
【点睛】本题考查了二次函数在实际问题中的应用,数形结合并熟练掌握运用待定系数法求抛物线的解析式是解题的关键.
◆变式训练
1.(2023·广东深圳·校考模拟预测)已知某运动员在自由式滑雪大跳台比赛中取得优异成绩,为研究他从起跳至落在雪坡过程中的运动状态,如图,以起跳点为原点O,水平方向为x轴建立平面直角坐标系,我们研究发现他在空中飞行的高度y(米)与水平距离x(米)具有二次函数关系,记点A为该二次函数图象与x轴的交点,点B为该运动员的成绩达标点,轴于点C,相关数据如下:

水平距离x(米) 5 10 20 30
空中飞行的高度y(米) 4.5 6 0
(1)请求出第一次跳跃的高度y(米)与水平距离x(米)的二次函数解析式______;
(2)若该运动员第二次跳跃时高度y(米)与水平距离x(米)满足,则他第二次跳跃落地点与起跳点平面的水平距离为_____米,d_____30,成绩是否达标?_____.(填写是或否)
【答案】(1);(2);>;是.
【分析】 (1)设该二次函数的解析式为,根据点的坐标,利用待定系数法求解即可得;(2)求出当函数的函数值为时,的值,由此即可得.
【详解】(1)解:由题意,设该二次函数的解析式为,米,,
将点代入得:,解得,
则该二次函数的解析式为,故答案为:.
(2)解:对于二次函数,当时,,
解得或(不符合题意,舍去),则,
,, 即,
故答案为:;>;是.
【点睛】本题考查了二次函数的应用等知识点,熟练掌握二次函数的性质是解题关键.
◇典例5:(2023年贵州省中考数学真题)如图①,是一座抛物线型拱桥,小星学习二次函数后,受到该图启示设计了一建筑物造型,它的截面图是抛物线的一部分(如图②所示),抛物线的顶点在处,对称轴与水平线垂直,,点在抛物线上,且点到对称轴的距离,点在抛物线上,点到对称轴的距离是1.(1)求抛物线的表达式;(2)如图②,为更加稳固,小星想在上找一点,加装拉杆,同时使拉杆的长度之和最短,请你帮小星找到点的位置并求出坐标;(3)为了造型更加美观,小星重新设计抛物线,其表达式为,当时,函数的值总大于等于9.求的取值范围.
【答案】(1)(2)点的坐标为(3)
【分析】(1)设抛物线的解析式为,将,代入即可求解;
(2)点B关于y轴的对称点,则,求出直线与y轴的交点坐标即可;
(3)分和两种情况,根据最小值大于等于9列不等式,即可求解.
【详解】(1)解:抛物线的对称轴与y轴重合,设抛物线的解析式为,
,,,,
将,代入,得:,解得,抛物线的解析式为;
(2)解: 抛物线的解析式为,点到对称轴的距离是1,
当时,,,

作点B关于y轴的对称点,则,,,
当,,A共线时,拉杆长度之和最短,设直线的解析式为,
将,代入,得,解得,直线的解析式为,
当时,,点的坐标为,位置如下图所示:
(3)解:中,抛物线开口向下,
当时,在范围内,当时,y取最小值,最小值为:
则,解得,;
当时,在范围内,当时,y取最小值,最小值为:
则,解得,;综上可知,或,的取值范围为.
【点睛】本题考查二次函数的实际应用,涉及求二次函数解析式,求一次函数解析式,根据对称性求线段的最值,抛物线的增减性等知识点,解题的关键是熟练掌握二次函数的图象和性质,第3问注意分情况讨论.
◆变式训练
1. (2023·陕西·统考中考真题)某校想将新建图书楼的正门设计为一个抛物线型门,并要求所设计的拱门的跨度与拱高之积为,还要兼顾美观、大方,和谐、通畅等因素,设计部门按要求给出了两个设计方案.现把这两个方案中的拱门图形放入平面直角坐标系中,如图所示:
方案一,抛物线型拱门的跨度,拱高.其中,点N在x轴上,,.
方案二,抛物线型拱门的跨度,拱高.其中,点在x轴上,,.
要在拱门中设置高为的矩形框架,其面积越大越好(框架的粗细忽略不计).方案一中,矩形框架的面积记为,点A、D在抛物线上,边在上;方案二中,矩形框架的面积记为,点,在抛物线上,边在上.现知,小华已正确求出方案二中,当时,,请你根据以上提供的相关信息,解答下列问题:(1)求方案一中抛物线的函数表达式;(2)在方案一中,当时,求矩形框架的面积并比较,的大小.
【答案】(1)(2),
【分析】(1)利用待定系数法则,求出抛物线的解析式即可;
(2)在中,令得:,求出或,得出,求出,然后比较大小即可.
【详解】(1)解:由题意知,方案一中抛物线的顶点,
设抛物线的函数表达式为,把代入得:,解得:,
∴;∴方案一中抛物线的函数表达式为;
(2)解:在中,令得:,解得或,
∴,∴;∵,∴.
【点睛】本题主要考查了二次函数的应用,求二次函数解析式,解题的关键是熟练掌握待定系数法则,求出函数解析式.
◇典例6:(2023年黑龙江省大庆市中考数学真题)如图1,在平行四边形中,,已知点在边上,以1m/s的速度从点向点运动,点在边上,以的速度从点向点运动.若点,同时出发,当点到达点时,点恰好到达点处,此时两点都停止运动.图2是的面积与点的运动时间之间的函数关系图象(点为图象的最高点),则平行四边形的面积为( )

A. B. C. D.
【答案】C
【分析】根据题意可得:,,设,则,作交的延长线于点,作交的延长线于点,则可得,,从而得到,根据的最大值为3,求出的值,从而得到,最后由平行四边形的面积公式进行计算即可得到答案.
【详解】解:根据题意可得:,,
设,则,
作交的延长线于点,作交的延长线于点,

,,
,,

由图象可得的最大值为3,,解得:或(舍去),,

平行四边形的面积为:,故选:C.
【点睛】本题主要考查了平行四边形的性质、解直角三角形、二次函数的图象与性质,熟练掌握平行四边形的性质、二次函数的图象与性质,添加适当的辅助线构造直角三角形,是解题的关键.
◆变式训练
1. (2023年辽宁省锦州市中考数学真题)如图,在中,,,,在中,,,与在同一条直线上,点C与点E重合.以每秒1个单位长度的速度沿线段所在直线向右匀速运动,当点B运动到点F时,停止运动.设运动时间为t秒,与重叠部分的面积为S,则下列图象能大致反映S与t之间函数关系的是( )

A. B. C. D.
【答案】A
【分析】分,, 三种情况,分别求出函数解析即可判断.
【详解】解:过点D作于H,
,,
∵,,∴,∴
当时,如图,重叠部分为,此时,,
∴,∴,即,∴∴;
当时,如图,重叠部分为四边形,此时,,

∴,,
∵,∴,∴,
又,∴,∴,
∵,,∴,∴,
∴,即,∴,
∴;
当 时,如图,重叠部分为四边形,此时,,
∴,∵,∴,
∴,即∴,
综上,,∴符合题意的函数图象是选项A.故选:A.
【点睛】此题结合图像平移时面积的变化规律,考查二次函数相关知识,根据平移点的特点列出函数表达式是关键,有一定难度.
■考点二 二次函数综合问题
◇典例7:(2023年青海省西宁市中考数学真题)如图,在平面直角坐标系中,直线l与x轴交于点,与y轴交于点,抛物线经过点A,B,且对称轴是直线.

(1)求直线l的解析式;(2)求抛物线的解析式;(3)点P是直线l下方抛物线上的一动点,过点P作轴,垂足为C,交直线l于点D,过点P作,垂足为M.求的最大值及此时P点的坐标.
【答案】(1)(2)(3)的最大值是,此时的P点坐标是
【分析】(1)利用待定系数法求解即可;(2)根据题意可设抛物线的解析式为,再利用待定系数法求解即可;(3)由题意易证为等腰直角三角形,即得出.设点P的坐标为,则,从而可求出.再结合二次函数的性质可知:当时,有最大值是,此时最大,进而即可求解.
【详解】(1)解:设直线l的解析式为,
把A,B两点的坐标代入解析式,得, 解得:,∴直线l的解析式为;
(2)解:设抛物线的解析式为,
∵抛物线的对称轴为直线,∴.
把A,B两点坐标代入解析式,得,解得:,
∴抛物线的解析式为;
(3)解:∵ , ∴.
∵在中,∴.
∵轴,,∴.
在中,,,∴,∴.
在中,,,∴,∴.
设点P的坐标为,则,
∴.
∵,∴当时,有最大值是,此时最大,
∴,当时,,
∴,∴的最大值是,此时的P点坐标是.
【点睛】本题为二次函数综合题,考查利用待定系数法求函数解析式,二次函数的图象和性质等知识.掌握利用待定系数法求函数解析式和利用数形结合的思想是解题关键.
◆变式训练
1.(2023年辽宁省抚顺市、葫芦岛市中考数学真题)如图,抛物线与x轴交于点A和点,与y轴交于点,点P为第一象限内抛物线上的动点过点P作轴于点E,交于点F.(1)求抛物线的解析式;(2)当的周长是线段长度的2倍时,求点P的坐标;
(3)当点P运动到抛物线顶点时,点Q是y轴上的动点,连接,过点B作直线,连接并延长交直线于点M.当时,请直接写出点的坐标.

【答案】(1)(2)(3)或
【分析】(1)利用待定系数法求解;(2)根据直角三角形三角函数值可得,,进而可得的周长,结合已知条件可得,设,则,,从而可得方程,解方程即可;(3)先求出,,设,过点M作轴于点N,通过证明,求出,再求出直线的解析式为,将点代入解析式求出n的值即可.
【详解】(1)解:将,代入,
可得,解得,抛物线的解析式为;
(2)解:,,,,,
,,的周长,
的周长是线段长度的2倍,,设直线的解析式为,
将,代入可得,解得,直线的解析式为,
设,则,,
,,
,解得,(舍),
,;
(3)解:,当时,y取最大值,,
直线的解析式为,当时,,,
设,过点M作轴于点N,

由题意知,,,,
又,, ,,,
,设直线的解析式为,则,解得,
直线的解析式为,将点代入,得,
解得或,或.
【点睛】本题考查一次函数的图象和性质,二次函数的图象和性质,全等三角形的判定与性质,解直角三角形等,综合性较强,难度较大,熟练运用数形结合思想,正确作出辅助线是解题的关键.
◇典例8:(2023年浙江省湖州市中考数学真题)如图1,在平面直角坐标系中,二次函数的图象与y轴的交点坐标为,图象的顶点为M.矩形的顶点D与原点O重合,顶点A,C分别在x轴,y轴上,顶点B的坐标为.

(1)求c的值及顶点M的坐标,(2)如图2,将矩形沿x轴正方向平移t个单位得到对应的矩形.已知边,分别与函数的图象交于点P,Q,连接,过点P作于点G.①当时,求的长;②当点G与点Q不重合时,是否存在这样的t,使得的面积为1?若存在,求出此时t的值;若不存在,请说明理由.
【答案】(1),顶点M的坐标是 (2)①1;②存在,或
【分析】(1)把代入抛物线的解析式即可求出c,把抛物线转化为顶点式即可求出顶点坐标;
(2)①先判断当时,,的坐标分别是,,再求出,时点Q的纵坐标与点P的纵坐标,进而求解;
②先求出,易得P,Q的坐标分别是,,然后分点G在点Q的上方与点G在点Q的下方两种情况,结合函数图象求解即可.
【详解】(1)∵二次函数的图象与y轴的交点坐标为,
∴, ∴,∴顶点M的坐标是.
(2)①∵A在x轴上,B的坐标为,∴点A的坐标是.
当时,,的坐标分别是,.
当时,,即点Q的纵坐标是2,
当时,,即点P的纵坐标是1.
∵,∴点G的纵坐标是1, ∴.
②存在.理由如下:∵的面积为1,,∴.
根据题意,得P,Q的坐标分别是,.
如图1,当点G在点Q的上方时,,
此时(在的范围内),

如图2,当点G在点Q的下方时,,
此时(在的范围内). ∴或.
【点睛】本题考查了二次函数图象上点的坐标特点、矩形的性质以及三角形的面积等知识,熟练掌握二次函数的图象与性质、灵活应用数形结合思想是解题的关键.
◆变式训练
1.(2023年山东省青岛市中考数学真题)许多数学问题源于生活.雨伞是生活中的常用物品,我们用数学的眼光观察撑开后的雨伞(如图①)、可以发现数学研究的对象——抛物线.在如图②所示的直角坐标系中,伞柄在y轴上,坐标原点O为伞骨,的交点.点C为抛物线的顶点,点A,B在抛物线上,,关于y轴对称.分米,点A到x轴的距离是分米,A,B两点之间的距离是4分米.(1)求抛物线的表达式;(2)分别延长,交抛物线于点F,E,求E,F两点之间的距离;(3)以抛物线与坐标轴的三个交点为顶点的三角形面积为,将抛物线向右平移个单位,得到一条新抛物线,以新抛物线与坐标轴的三个交点为顶点的三角形面积为.若,求m的值.

【答案】(1);(2)(3)2或4;
【分析】(1)根据题意得到,,,设抛物线的解析式为代入求解即可得到答案;(2)分别求出,所在直线的解析式,求出与抛物线的交点F,E即可得到答案;(3)求出抛物线与坐标轴的交点得到,表示出新抛物线找到交点得到,根据面积公式列方程求解即可得到答案;
【详解】(1)解:设抛物线的解析式为,由题意可得,
,,,∴,,
把点A坐标代入所设解析式中得:,解得:,∴;
(2)解:设的解析式为:,的解析式为:,
分别将,代入得,,,解得:,,
∴的解析式为:,的解析式为:,
联立直线解析式与抛物线得:,解得(舍去),
同理,解,得(舍去),
∴,,∴E,F两点之间的距离为:;
(3)解:当时,,解得:,∴,
∵抛物线向右平移个单位,∴,
当时,,当时,,解得:,
∴,
∵,∴,解得:,(不符合题意舍去),,(不符合题意舍去),综上所述:m等于2或4;
【点睛】本题考查二次函数综合应用,解题的关键是熟练掌握函数与坐标轴的交点求法及平移的规律:左加右减,上加下减.
◇典例9:(2023年湖北省十堰市中考数学真题)已知抛物线过点和点,与轴交于点.

(1)求抛物线的解析式;(2)如图1,连接,点在线段上(与点不重合),点是的中点,连接,过点作交于点,连接,当面积是面积的3倍时,求点的坐标;(3)如图2,点是抛物线上对称轴右侧的点,是轴正半轴上的动点,若线段上存在点(与点不重合),使得,求的取值范围.
【答案】(1)(2)(3)
【分析】(1)待定系数法求解析式即可求解;(2)待定系数法求得直线的解析式为,设,过点作交的延长线于点,则,则的坐标为,得出是等腰直角三角形,设,则,证明,相似三角形的性质得出,则,可得,当面积是面积的3倍时,即,即,在中,,解方程即可求解;(3)根据三角形外角的性质,结合已知条件得出,证明,则,设交轴于点,过点作轴于点,求得直线的解析式为,联立,得出,勾股定理求得的长,根据相似三角形的性质得出关于的二次函数关系式,进而根据二次函数的性质求得最值,即可求解.
【详解】(1)解:∵抛物线过点和点,
∴解得:∴抛物线解析式为;
(2)∵抛物线与轴交于点,
当时,,∴,则,∵,∴,,
∵点是的中点,则,∴,设直线的解析式为,
∵点和点,∴解得:
∴直线的解析式为,设,
如图所示,过点作交的延长线于点,则,则的坐标为,

∴,∴,∴是等腰直角三角形,
设,则,∵,∴,
∵,∴,
∴∴∴即
∵∴即,∴,∴∴,
又,∴是等腰直角三角形,∴的面积为,
∵的面积为当面积是面积的3倍时
即即
在中,∴
∴解得:或(舍去)∴;
(3)∵,又,
∴,∴,∴,设交轴于点,过点作轴于点,
∵,∴,∵,∴,
设,则,在中,,
∴,解得:,∴,设直线的解析式为,
∴,∴,∴直线的解析式为,
联立,解得:或,∴,
∴,∵,
设,则,∴,
整理得:,
∵在线段上(与点不重合),∴,∴,
∴当时,取得的最大值为,∴.
【点睛】本题考查了二次函数的综合运用,面积问题,相似三角形的性质与判定,二次函数的性质,掌握二次函数的性质是解题的关键.
◆变式训练
1.(2023年辽宁省鞍山市中考数学真题)如图1,抛物线经过点,与y轴交于点,点E为第一象限内抛物线上一动点.
(1)求抛物线的解析式.(2)直线与x轴交于点A,与y轴交于点D,过点E作直线轴,交于点F,连接.当时,求点E的横坐标.(3)如图2,点N为x轴正半轴上一点,与交于点M.若,,求点E的坐标.
  
【答案】(1)(2)(3)或
【分析】(1)利用待定系数法,把已知点坐标代入解析式即可求解函数的解析式;
(2)分别过,向轴作垂线,垂足为,,根据证得 ,从而,设点坐标,分别表示出,坐标,再列方程求解即可;
(3)将平移到,连接,则;过作于,过作轴于,过作交延长线于,延长交轴于,设,则,,,由可得,从而,设由 可得,, ,再求出点坐标为,代入抛物线解析式中即可求得或,从而可得点坐标 .
【详解】(1)解:把和代入到解析式中可得
,解得,抛物线的解析式为:;
(2)直线中,令,则,所以,
直线中,令,则,所以,
分别过,向轴作垂线,垂足为,,
根据题意可得,轴,轴,和为直角三角形,
在和中,,,,
设,则,,,
从而,,
则有,解得(舍去),或,故点的横坐标为:;

(3)将平移到,连接,则四边形为平行四边形,,过作于,过作轴于,过作交延长线于,延长交轴于,
,可设,则,
∴,则,
设,轴,,,
,,,
,,,,
,,,
,,,则,
,,
,代入抛物线解析式中有:,
解得:或,当时,,当时,.
【点睛】本题是二次函数与相似三角形综合题,考查了待定系数法求二次函数解析式,相似三角形的判定与性质,全等三角形的判定与性质,正切的定义等知识,解题关键是在坐标系中利用等线段构造全等进行计算,构造相似三角形解决问题.
◇典例10:(2023年青海省中考数学真题)如图,二次函数的图象与轴相交于点和点,交轴于点.(1)求此二次函数的解析式;(2)设二次函数图象的顶点为,对称轴与轴交于点,求四边形的面积(请在图1中探索);(3)二次函数图象的对称轴上是否存在点,使得是以为底边的等腰三角形?若存在,请求出满足条件的点的坐标;若不存在,请说明理由(请在图中探索).

【答案】(1);(2);(3),
【分析】(1)将,两点坐标代入抛物线的解析式,进一步求解得出结果;
(2)连接,将二次函数的解析式配方求得顶点的坐标,邻求得的坐标,从而求得,,的长,再根据求得结果;
(3)设,,表示出和,根据列出方程求得的值,进而求得结果.
【详解】(1)解:由题意得,,∴,∴;
(2)解:如图,连接,

∵,∴,∴,,
由得,,∴,
∴;
(3)解:设,,∵,∴,
由得,∴,∴.
【点睛】本题考查了二次函数及其图象的性质,等腰三角形的判定,勾股定理等知识,解决问题的关键是熟练掌握有关基础知识.
◆变式训练
1.(2023年江苏省常州市中考数学真题)如图,二次函数的图像与x轴相交于点,其顶点是C.(1)_______;(2)D是第三象限抛物线上的一点,连接OD,;将原抛物线向左平移,使得平移后的抛物线经过点D,过点作x轴的垂线l.已知在l的左侧,平移前后的两条抛物线都下降,求k的取值范围;(3)将原抛物线平移,平移后的抛物线与原抛物线的对称轴相交于点Q,且其顶点P落在原抛物线上,连接PC、QC、PQ.已知是直角三角形,求点P的坐标.

【答案】(1);(2);(3)或.
【分析】(1)把代入即可求解;(2)过点D作DM⊥OA于点M,设,由,解得,进而求得平移后得抛物线,平移后得抛物线为,根据二次函数得性质即可得解;(3)先设出平移后顶点为,根据原抛物线,求得原抛物线的顶点,对称轴为x=1,进而得,再根据勾股定理构造方程即可得解.
【详解】(1)解:把代入得,
,解得,故答案为;
(2)解:过点D作DM⊥OA于点M,

∵,∴二次函数的解析式为设,
∵D是第三象限抛物线上的一点,连接OD,,
∴,解得m=或m=8(舍去),
当m=时,,∴,
∵,∴设将原抛物线向左平移后的抛物线为,
把代入得,解得a=3或a=(舍去),
∴平移后得抛物线为
∵过点作x轴的垂线l.已知在l的左侧,平移前后的两条抛物线都下降,
在的对称轴x=的左侧,y随x的增大而减小,此时原抛物线也是y随x的增大而减小,∴;
(3)解:由,设平移后的抛物线为,则顶点为,
∵顶点为在上,∴,
∴平移后的抛物线为,顶点为,
∵原抛物线,∴原抛物线的顶点,对称轴为x=1,
∵平移后的抛物线与原抛物线的对称轴相交于点Q,∴,
∵点Q、C在直线x=1上,平移后的抛物线顶点P在原抛物线顶点C的上方,两抛物线的交点Q在顶点P的上方,∴∠PCQ与∠CQP都是锐角,
∵是直角三角形,∴∠CPQ=90°,∴,
∴化简得,∴p=1(舍去),或p=3或p=,
当p=3时,,当p=时,,
∴点P坐标为或.
【点睛】本题考查了二次函数的图像及性质,勾股定理,解直角三角形以及待定系数法求二次函数的解析式,熟练掌握二次函数的图像及性质是解题的关键.
2.(2023年湖南省娄底市中考数学真题)如图,抛物线过点、点,交y轴于点C.(1)求b,c的值.(2)点是抛物线上的动点①当取何值时,的面积最大?并求出面积的最大值;②过点P作轴,交于点E,再过点P作轴,交抛物线于点F,连接,问:是否存在点P,使为等腰直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.

【答案】(1),(2)①当时,的面积由最大值,最大值为;
②当点的坐标为或时,为等腰直角三角形
【分析】(1)将、代入抛物线即可求解;
(2)①由(1)可知:,得,可求得的解析式为,过点P作轴,交于点E,交轴于点,易得,根据的面积,可得的面积,即可求解;
②由题意可知抛物线的对称轴为,则,分两种情况:当点在对称轴左侧时,即时,当点在对称轴右侧时,即时,分别进行讨论求解即可.
【详解】(1)解:将、代入抛物线中,
可得:,解得:,即:,;
(2)①由(1)可知:,当时,,即,
设的解析式为:,将,代入中,
可得,解得:,∴的解析式为:,
过点P作轴,交于点E,交轴于点,

∵,则,∴点E的横坐标也为,则纵坐标为,
∴,
的面积

∵,∴当时,的面积有最大值,最大值为;
②存在,当点的坐标为或时,为等腰直角三角形.
理由如下:由①可知,由题意可知抛物线的对称轴为直线,
∵轴,∴,,则,
当点在对称轴左侧时,即时,
,当时,为等腰直角三角形,
即:,整理得:,
解得:(,不符合题意,舍去)
此时,即点;
当点在对称轴右侧时,即时,
,当时,为等腰直角三角形,
即:,整理得:,解得:(,不符合题意,舍去)
此时:,即点;
综上所述,当点的坐标为或时,为等腰直角三角形.
【点睛】本题二次函数综合题,考查了利用待定系数法求函数解析式,二次函数的性质及图象上的点的特点,等腰直角三角形的性质,解本题的关键是表示出点的坐标,进行分类讨论.
◇典例11:(2023年西藏自治区中考数学真题)在平面直角坐标系中,抛物线与x轴交于,两点,与y轴交于点C.

(1)求抛物线的解析式;(2)如图甲,在y轴上找一点D,使为等腰三角形,请直接写出点D的坐标;(3)如图乙,点P为抛物线对称轴上一点,是否存在P、Q两点使以点A,C,P,Q为顶点的四边形是菱形?若存在,求出P、Q两点的坐标,若不存在,请说明理由.
【答案】(1);(2)或或或;
(3)存在,,或,或,或或
【分析】(1)将,代入,求出,即可得出答案;
(2)分别以点为顶点、以点为顶点、当以点为顶点,计算即可;
(3)抛物线的对称轴为直线,设,,求出,,,分三种情况:以为对角线或以为对角线或以为对角线.
【详解】(1)解:(1)∵,两点在抛物线上,
∴解得,,∴抛物线的解析式为:;
(2)令,∴,由为等腰三角形,如图甲,

当以点为顶点时,,点与原点重合,∴;
当以点为顶点时,,是等腰中线,∴,∴;
当以点为顶点时,∴点D的纵坐标为或,
∴综上所述,点D的坐标为或或或.
(3)存在,理由如下:抛物线的对称轴为:直线,
设,,∵,则,
,,
∵以为顶点的四边形是菱形,
∴分三种情况:以为对角线或以为对角线或以为对角线,
当以为对角线时,则,如图1,
∴,解得:,∴或
∵四边形是菱形,∴与互相垂直平分,即与的中点重合,
当时,∴,
解得:,∴
当时,∴,解得:,∴
以为对角线时,则,如图2,
∴,解得:,∴,∵四边形是菱形,
∴与互相垂直平分,即与中点重合,
∴,解得:,∴;
当以为对角线时,则,如图3,∴,解得:,∴,
∵四边形是菱形,∴与互相垂直平分,即与的中点重合,
∴,解得:∴,
综上所述,符合条件的点P、Q的坐标为: ,或,或,或或
【点睛】本题是二次函数综合题,考查了解析式的求法、等腰三角形的判定、菱形的性质、坐标与图形的性质、分类讨论等知识,熟练掌握菱形的性质和坐标与图形的性质是解题的关键.
◆变式训练
1.(2023年山东省淄博市中考数学真题)如图,一条抛物线经过的三个顶点,其中为坐标原点,点,点在第一象限内,对称轴是直线,且的面积为18
(1)求该抛物线对应的函数表达式;(2)求点的坐标;(3)设为线段的中点,为直线上的一个动点,连接,,将沿翻折,点的对应点为.问是否存在点,使得以,,,为顶点的四边形是平行四边形?若存在,求出所有符合条件的点的坐标;若不存在,请说明理由.

【答案】(1)(2)(3)存在,点的坐标为或或或
【分析】(1)根据对称轴为直线,将点代入,进而待定系数法求解析式即可求解;
(2)设,过点作轴交于点,过点作交于点,继而表示出的面积,根据的面积为,解方程,即可求解.
(3)先得出直线的解析式为,设,当为平行四边形的对角线时,可得,当为平行四边形的对角线时,,进而建立方程,得出点的坐标,即可求解.
【详解】(1)解:∵对称轴为直线,∴①,
将点代入得,∴②,
联立①②得,,∴解析式为;
(2)设,如图所示,过点作轴交于点,过点作交于点,

∴,,则,

解得:或(舍去),
(3)存在点,使得以,,,为顶点的四边形是平行四边形,理由如下:
∵,∴,设直线的解析式为,
∴,解得:,∴直线的解析式为,设,
如图所示,当BP为平行四边形的对角线时,,,
∵,∴,由对称性可知,,∴,
∴解得:∴点的坐标为或
如图3,当为平行四边形的对角线时,,,由对称性可知,,∴,
∴,解得:或,
∴点的坐标为或
综上所述,点的坐标为或或或.
【点睛】本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质,平行四边形的性质,轴对称的性质是解题的关键.
2.(2023年内蒙古中考数学真题)如图,在平面直角坐标系中,抛物线与轴的交点分别为和(点在点的左侧),与轴交于点,点是直线上方抛物线上一动点.(1)求抛物线的解析式;(2)如图1,过点作轴平行线交于点,过点作轴平行线交轴于点,求的最大值及点的坐标;(3)如图2,设点为抛物线对称轴上一动点,当点,点运动时,在坐标轴上确定点,使四边形为矩形,求出所有符合条件的点的坐标.
【答案】(1)(2)的最大值为,点的坐标为
(3)符合条件的点坐标为:或
【分析】(1)利用待定系数法即可求解;(2)先求得直线的解析式,设,则,,得到,利用二次函数的性质求解即可;(3)先求得抛物线的顶点,对称轴为,分当点在轴上和点在轴负半轴上时,两种情况讨论,当点在轴负半轴上时,证明,求得,再证明,求得点的坐标为,由点在抛物线上,列式计算求解即可.
【详解】(1)解:∵抛物线与轴交于点,与轴交于点
解得 抛物线的解析式为:;
(2)解:当时,,解得,,∴,
设直线的解析式为:,
把,代入得:,解得∴直线的解析式为,
设,∵轴,∴点的纵坐标为,
又∵点在直线上,∴,,
∴,∴,∵轴,∴,
∴,
∵,,∴当时,有最大值,最大值为,
当时,,∴点的坐标为;
答:的最大值为,点的坐标为;
(3)解:,则抛物线的顶点,对称轴为,
情况一:当点在轴上时,为抛物线的顶点,
∵四边形为矩形,∴与纵坐标相同,∴;
情况二:当点在轴负半轴上时,四边形为矩形,
过作轴的垂线,垂足为,过作轴的垂线,垂足为,
设,则,∴,,∴,
∵,∴,
又∵,∴,∴,
∵抛物线对称轴为,点在对称轴上,,
∴,,∴,即,
∵,,∴,
∴,∴,,
∴,∴点的坐标为,
∵点在抛物线上,∴,
解得,(舍去),∴,
综上所述:符合条件的点坐标为:或.
【点睛】本题考查二次函数的综合应用,涉及待定系数法,相似三角形的判定和性质,矩形的性质等知识,解题的关键是方程思想的应用.
◇典例12:(2023年湖北省鄂州市中考数学真题)某数学兴趣小组运用《几何画板》软件探究型抛物线图象.发现:如图1所示,该类型图象上任意一点P到定点的距离,始终等于它到定直线l:的距离(该结论不需要证明).他们称:定点F为图象的焦点,定直线l为图象的准线,叫做抛物线的准线方程.准线l与y轴的交点为H.其中原点O为的中点,.例如,抛物线,其焦点坐标为,准线方程为l:,其中,.
【基础训练】(1)请分别直接写出抛物线的焦点坐标和准线l的方程:_________,_________;
【技能训练】(2)如图2,已知抛物线上一点到焦点F的距离是它到x轴距离的3倍,求点P的坐标;
【能力提升】(3)如图3,已知抛物线的焦点为F,准线方程为l.直线m:交y轴于点C,抛物线上动点P到x轴的距离为,到直线m的距离为,请直接写出的最小值;
【拓展延伸】该兴趣小组继续探究还发现:若将抛物线平移至.抛物线内有一定点,直线l过点且与x轴平行.当动点P在该抛物线上运动时,点P到直线l的距离始终等于点P到点F的距离(该结论不需要证明).例如:抛物线上的动点P到点的距离等于点P到直线l:的距离.
请阅读上面的材料,探究下题:(4)如图4,点是第二象限内一定点,点P是抛物线上一动点,当取最小值时,请求出的面积.

【答案】(1),;(2);(3)(4)
【分析】(1)根据题中所给抛物线的焦点坐标和准线方程的定义求解即可;(2)利用两点间距离公式结合已知条件列式整理得,然后根据,求出,进而可得,问题得解;(3)过点作直线交于点,过点作准线交于点,结合题意和(1)中结论可知,,根据两点之间线段最短可得当,,三点共线时,的值最小;待定系数法求直线的解析式,求得点的坐标为,根据点是直线和直线m的交点,求得点的坐标为,即可求得和的值,即可求得;
(4)根据题意求得抛物线的焦点坐标为,准线l的方程为,过点作准线交于点,结合题意和(1)中结论可知,则,根据两点之间线段最短可得当,,三点共线时,的值最小;求得,即可求得的面积.
【详解】(1)解:∵抛物线中,∴,,
∴抛物线的焦点坐标为,准线l的方程为,故答案为:,;
(2)解:由(1)知抛物线的焦点F的坐标为,
∵点到焦点F的距离是它到x轴距离的3倍,
∴,整理得:,
又∵,∴解得:或(舍去),
∴,∴点P的坐标为;
(3)解:过点作直线交于点,过点作准线交于点,结合题意和(1)中结论可知,,如图:

若使得取最小值,即的值最小,故当,,三点共线时,,即此刻的值最小;∵直线与直线垂直,故设直线的解析式为,
将代入解得:,∴直线的解析式为,
∵点是直线和抛物线的交点,令,解得:,(舍去),故点的坐标为,∴,
∵点是直线和直线m的交点,令,解得:,故点的坐标为,
∴,.即的最小值为.
(4)解:∵抛物线中,∴,,
∴抛物线的焦点坐标为,准线l的方程为,过点作准线交于点,结合题意和(1)中结论可知,则,如图:
若使得取最小值,即的值最小,故当,,三点共线时,,即此刻的值最小;如图:
∵点的坐标为,准线,∴点的横坐标为,代入解得,
即,,则的面积为.
【点睛】本题考查了两点间距离公式结合,两点之间线段最短,三角形的面积,一次函数的交点坐标,一次函数与抛物线的交点坐标等,解决问题的关键是充分利用新知识的结论.
◆变式训练
1.(2023年宁夏回族自治区中考数学真题)如图,抛物线与轴交于,两点,与轴交于点.已知点的坐标是,抛物线的对称轴是直线.

(1)直接写出点的坐标;(2)在对称轴上找一点,使的值最小.求点的坐标和的最小值;(3)第一象限内的抛物线上有一动点,过点作轴,垂足为,连接交于点.依题意补全图形,当的值最大时,求点的坐标.
【答案】(1)(2)点,的最小值为(3)
【分析】(1)根据抛物线的对称性,进行求解即可;(2)根据抛物线的对称性,得到,得到当三点共线时,的值最小,为的长,求出直线的解析式,解析式与对称轴的交点即为点的坐标,两点间的距离公式求出的长,即为的最小值;(3)根据题意,补全图形,设,得到,,将的最大值转化为二次函数求最值,即可得解.
【详解】(1)解:∵点关于对称轴的对称点为点,对称轴为直线,∴点为;
(2)当时,,∴,连接,
∵,∴,∵点关于对称轴的对称点为点,∴,
∴当三点共线时,的值最小,为的长,设直线的解析式为:,

则:,解得:,∴,
∵点在抛物线的对称轴上,∴;∴点,的最小值为;
(3)过点作轴,垂足为,连接交于点,如图所示,
∵,设抛物线的解析式为:,
∵,∴,∴,∴,
设,则:,由(2)知:直线:,
∴,∴,
∵,∴,,∴,
∴,∴,∴,
∴,
∴当时,有最大值,此时.
【点睛】本题考查二次函数的综合应用.正确的求出函数解析式,利用抛物线的对称性以及数形结合的思想进行求解,是解题的关键.
1.(2023年黑龙江省齐齐哈尔市中考数学真题)如图,在正方形中,,动点M,N分别从点A,B同时出发,沿射线,射线的方向匀速运动,且速度的大小相等,连接,,.设点M运动的路程为,的面积为,下列图像中能反映与之间函数关系的是( )

A. B. C. D.
【答案】A
【分析】先根据,求出与之间函数关系式,再判断即可得出结论.
【详解】解:,
,,,
故与之间函数关系为二次函数,图像开口向上,时,函数有最小值6,故选:A.
【点睛】本题考查了正方形的性质,二次函数的图像与性质,本题的关键是求出与之间函数关系式,再判断与之间函数类型.
2.(2023年湖北省襄阳市中考数学真题)如图,一位篮球运动员投篮时,球从点出手后沿抛物线行进,篮球出手后距离地面的高度与篮球距离出手点的水平距离之间的函数关系式是.下列说法正确的是 (填序号).
①篮球行进过程中距离地面的最大高度为;②篮球出手点距离地面的高度为.

【答案】①
【分析】先求的顶点为,再求时的值即可判断.
【详解】解:由的顶点为,
得篮球行进过程中距离地面的最大高度为,即①正确;
由当时,,即②不正确;故答案为:①.
【点睛】本题主要考查了二次函数图象的应用,充分利用函数表达式是关键.
3.(2023年浙江省绍兴市中考数学真题)在平面直角坐标系中,一个图形上的点都在一边平行于轴的矩形内部(包括边界),这些矩形中面积最小的矩形称为该图形的关联矩形.例如:如图,函数的图象(抛物线中的实线部分),它的关联矩形为矩形.若二次函数图象的关联矩形恰好也是矩形,则 .

【答案】或
【分析】根据题意求得点,,,根据题意分两种情况,待定系数法求解析式即可求解.
【详解】由,当时,,∴,
∵,四边形是矩形,∴,
①当抛物线经过时,将点,代入,
∴解得:
②当抛物线经过点时,将点,代入,
∴解得:
综上所述,或,故答案为:或.
【点睛】本题考查了待定系数法求抛物线解析式,理解新定义,最小矩形的限制条件是解题的关键.
4.(2023年黑龙江省大庆市中考数学真题)某建筑物的窗户如图所示,上半部分是等腰三角形,,,点、、分别是边、、的中点;下半部分四边形是矩形,,制造窗户框的材料总长为16米(图中所有黑线的长度和),设米,米.(1)求与之间的函数关系式,并求出自变量的取值范围;
(2)当为多少时,窗户透过的光线最多(窗户的面积最大),并计算窗户的最大面积.

【答案】(1)
(2)当时,窗户透过的光线最多(窗户的面积最大),最大面积为.
【分析】(1)由可表示出的长,由,可表示出,,,,,的长,进而可求出与之间的函数关系式;
(2)根据(1)中相关数据列出函数解析式,然后利用函数的性质解答.
【详解】(1)∵四边形是矩形,∴,
∵,∴.
∵,是边的中点,∴,,
∵,∴,∴.
∵点、、分别是边、的中点,∴,
∴,∴,∴,
∵,∴,∴;
(2)设面积为S,则,
∴当时,窗户透过的光线最多(窗户的面积最大),最大面积为.
【点睛】本题考查了一次函数的应用,二次函数的应用,正确列出函数解析式是解答本题的关键.
5.(2023年湖北省黄石市中考数学真题)某工厂计划从现在开始,在每个生产周期内生产并销售完某型号设备,该设备的生产成本为万元/件.设第个生产周期设备的售价为万元/件,售价与之间的函数解析式是,其中是正整数.当时,;当时,.(1)求,的值;(2)设第个生产周期生产并销售完设备的数量为件,且y与x满足关系式.当时,工厂第几个生产周期获得的利润最大 最大的利润是多少万元
当时,若有且只有个生产周期的利润不小于万元,求实数的取值范围.
【答案】(1),;(2),;.
【分析】()用待定系数法求出,的值即可;
()当,根据利润(售价成本)设备的数量,可得出关于的二次函数,由函数的性质求出最值;
当时,关于的函数解析式,再画出关于的函数图象的简图,由题意可得结论.
【详解】(1)把时,;时,代入得:
,解得:,;
(2)设第个生产周期创造的利润为万元,由()知,当时,,
∴,,,
∵,,∴当时,取得最大值,最大值为,
∴工厂第个生产周期获得的利润最大,最大的利润是万元;
当时,,∴,
∴,则与的函数图象如图所示:

由图象可知,若有且只有个生产周期的利润不小于万元,
∴当,时,,当,时,,∴的取值范围.
【点睛】此题考查了一次函数与二次函数在销售问题中的应用,明确一次函数与二次函数的性质并分类讨论是解题的关键.
6.(2023年湖北省黄石市中考数学真题)如图,在平面直角坐标系中,抛物线与x轴交于两点,与y轴交于点.(1)求此抛物线的解析式;
(2)已知抛物线上有一点,其中,若,求的值;
(3)若点D,E分别是线段,上的动点,且,求的最小值.

【答案】(1);(2);(3).
【分析】(1)由待定系数法即可求解;(2)在中,,则,得到直线的表达式为:,进而求解;(3)作,证明且相似比为,故当、、共线时,为最小,进而求解.
【详解】(1)解:设抛物线的表达式为:,
即,则,故抛物线的表达式为:①;
(2)解:在中,,
,则,故设直线的表达式为:②,
联立①②得:,解得:(不合题意的值已舍去);
(3)解:作,

设,,且相似比为,则,
故当、、共线时,为最小,
在中,设边上的高为,则,
即,解得:,则,
则,过点作轴于点,则,
即点的纵坐标为:,同理可得,点的横坐标为:,即点,
由点、的坐标得,,即的最小值为.
【点睛】主要考查二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.
7.(2023年辽宁省盘锦市中考数学真题)如图,抛物线与轴交于点,,与轴交于点.(1)求抛物线的解析式.(2)如图1,点是轴上方抛物线上一点,射线轴于点,若,且,请直接写出点的坐标.(3)如图2,点是第一象限内一点,连接交轴于点,的延长线交抛物线于点,点在线段上,且,连接,若,求面积.
【答案】(1)(2)(3)
【分析】(1)将点,代入抛物线得到,解方程组即可得到答案;(2)设,,则,则,,从而表示出点的坐标为,代入抛物线解析式,求出的值即可得到答案;
(3)求出直线的表达式,利用,得到,求出点的坐标,再根据进行计算即可得到答案.
【详解】(1)解:抛物线与轴交于点,,
,解得:,抛物线的解析式为:;
(2)解:,设,,
,,,
点,,,点的坐标为,
点是轴上方抛物线上一点,,
解得:(舍去)或,;
(3)解:设点,直线的解析式为,
,,解得:,
直线的解析式为,当时,,
,,,
在抛物线中,当时,,,,
,设点的坐标为,
,,,,,
,解得:,点的坐标为,

【点睛】本题为二次函数综合,主要考查了求二次函数的解析式、二次函数图象和性质、一次函数的应用、锐角三角函数、三角形面积的计算,确定关键点的坐标是解本题的关键.
8.(2023年山东省济南市中考数学真题)在平面直角坐标系中,正方形的顶点,在轴上,,.抛物线与轴交于点和点.
(1)如图1,若抛物线过点,求抛物线的表达式和点的坐标;(2)如图2,在(1)的条件下,连接,作直线,平移线段,使点的对应点落在直线上,点的对应点落在抛物线上,求点的坐标;(3)若抛物线与正方形恰有两个交点,求的取值范围.

【答案】(1),;(2);(3)或
【分析】(1)将点,代入抛物线,利用待定系数法求出抛物线的表达式,再令,求出值,即可得到点的坐标;(2)设直线的表达式为,将点,代入解析式,利用待定系数法求出直线的表达式为:,设点,根据平移的性质,得到点,将点P代入,求出的值,即可得到点的坐标;(3)根据正方形和点C的坐标,得出,,,将代入,求得,进而得到顶点坐标,分两种情况讨论:①当抛物线顶点在正方形内部时,②当抛物线与直线交点在点上方,且与直线交点在点下方时,分别列出不等式组求解,即可得到答案.
【详解】(1)解:抛物线过点,
,解得:,抛物线表达式为,
当时,,解得:(舍去),,;
(2)解:设直线的表达式为,直线过点,,
,解得:,直线的表达式为:,
点在抛物线上,设点,
,,且由平移得到,
点向左平移2个单位,向上平移3个单位得到点,

点在直线上,将代入,
,整理得:,解得:,(舍去),
当时,点坐标为;
(3)解:四边形是正方形,,,,
,点A和点D的横坐标为,点B和点C的横坐标为2,
将代入,得:,,
顶点坐标为,
①如图,当抛物线顶点在正方形内部时,与正方形有两个交点,,解得:;

②如图,当抛物线与直线交点在点上方,且与直线交点在点下方时,与正方形有两个交点,,解得:,
综上所述,的取值范围为或.
【点睛】本题是二次函数综合题,考查了二次函数的图象和性质,待定系数法求函数解析式,平移的性质,函数图像上点的坐标特征,抛物线与直线交点问题,解一元二次方程,解一元一次不等式组等知识,利用分类讨论的思想,熟练掌握二次函数的图象和性质是解题关键.
9.(2023年四川省内江市中考数学真题)如图,在平面直角坐标系中,抛物线与x轴交于,两点.与y轴交于点.(1)求该抛物线的函数表达式;(2)若点P是直线下方抛物线上的一动点,过点P作x轴的平行线交于点K,过点P作y轴的平行线交x轴于点D,求与的最大值及此时点P的坐标;(3)在抛物线的对称轴上是否存在一点M,使得是以为一条直角边的直角三角形:若存在,请求出点M的坐标,若不存在,请说明理由.
【答案】(1)(2)存在,的最大值为,(3)或
【分析】(1)将、、代入抛物线解析式求解即可;
(2)可求直线的解析式为,设(),可求,从而可求,即可求解;
(3)过作交抛物线的对称轴于,过作交抛物线的对称轴于,连接,设, 可求,,由,可求,进而求出直线的解析式,即可求解.
【详解】(1)解:由题意得 ,解得:,
抛物线的解析式为.
(2)解:设直线的解析式为,则有
,解得:,直线的解析式为;
设(),,解得:,
,,
,,

,当时,的最大值为,
,.故的最大值为,.
(3)解:存在,如图,过作交抛物线的对称轴于,过作交抛物线的对称轴于,连接,
∵抛物线的对称轴为直线,设,
,,,
,,解得:,;
设直线的解析式为,则有
,解得,直线解析式为,
,且经过,直线解析式为,
当时,, ;综上所述:存在,的坐标为或.
【点睛】本题考查了待定系数法求函数解析式,二次函数中动点最值问题,直角三角形的判定,勾股定理等,掌握解法及找出动点坐标满足的函数解析式是解题的关键.
10.(2023年湖南省湘潭市中考数学真题)如图,二次函数的图象与轴交于,两点,与轴交于点,其中,.

(1)求这个二次函数的表达式;(2)在二次函数图象上是否存在点,使得?若存在,请求出点坐标;若不存在,请说明理由;(3)点是对称轴上一点,且点的纵坐标为,当是锐角三角形时,求的取值范围.
【答案】(1)(2)或或
(3)或.
【分析】(1)待定系数法求解析式即可求解;(2)根据,可得到的距离等于到的距离,进而作出两条的平行线,求得解析式,联立抛物线即可求解;
(3)根据题意,求得当是直角三角形时的的值,进而观察图象,即可求解,分和两种情况讨论,分别计算即可求解.
【详解】(1)解:将点,代入,得
解得:∴抛物线解析式为;
(2)∵,顶点坐标为,
当时,解得:∴,则
∵,则∴是等腰直角三角形,
∵∴到的距离等于到的距离,
∵,,设直线的解析式为
∴解得:∴直线的解析式为,
如图所示,过点作的平行线,交抛物线于点,

设的解析式为,将点代入得,解得:
∴直线的解析式为,
解得:或∴,

∴∴是等腰直角三角形,且,
如图所示,延长至,使得,过点作的平行线,交轴于点,则,则符合题意的点在直线上,∵是等腰直角三角形,
∴∴是等腰直角三角形,∴∴
设直线的解析式为∴解得:∴直线的解析式为
联立 解得:或
∴或
综上所述,或或;
(3)①当时,如图所示,过点作交于点,
当点与点重合时,是直角三角形,当时,是直角三角形,

设交于点,∵直线的解析式为,则,∴,
∵,∴是等腰直角三角形,∴∴,
设,则
∵∴
解得:(舍去)或∴
∵是锐角三角形∴;
当时,如图所示,同理可得即∴
解得:或(舍去) 由(2)可得时,∴

综上所述,当是锐角三角形时,或.
【点睛】本题考查二次函数综合运用,面积问题,角度问题,熟练掌握二次函数的性质是解题的关键.
1.(2023·广东深圳·校考模拟预测)某池塘的截面如图所示,池底呈抛物线形,在图中建立平面直角坐标系,并标出相关数据(单位:).有下列结论:
①;②池底所在抛物线的解析式为;③池塘最深处到水面的距离为;
④若池塘中水面的宽度减少为原来的一半,则最深处到水面的距离减少为原来的.
其中结论正确的个数是( )
A.4个 B.3个 C.2个 D.1个
【答案】B
【分析】根据图象可以判断①;设出池底所在抛物线的解析式为,再把代入解析式求出即可判断②;把代入解析式求出,再用即可判断③;把代入解析式即可判断④.
【详解】解:①观察图形可知,,故①正确;
②设池底所在抛物线的解析式为,
将代入,可得,故抛物线的解析式为;故②正确;
③,当时,,
故池塘最深处到水面的距离为,故③错误;
④当池塘中水面的宽度减少为原来的一半,即水面宽度为12时,
将代入,得,可知此时最深处到水面的距离为,
即为原来的,故④正确.故选:B.
【点睛】本题考查抛物线的实际应用,体现了数学建模、数学抽象、数学运算素养.
2.(2023·山西大同·校联考模拟预测)生物学研究表明,在一定的温度范围内,酶的活性会随温度的升高逐渐增强;在最适温度时,酶的活性最强;超过一定温度范围,酶的活性又随温度的升高逐渐减弱,甚至会失去活性现已知某种酶的活性值(单位:)与温度(单位:)的关系可以近似用二次函数来表示,则当温度为最适宜温度时,该种酶的活性值为 .

【答案】240
【分析】化为顶点式求解即可.
【详解】解:,
∵,∴抛物线开口向下,当时,的最大值为,
故当温度为时,该种酶的活性值为.故答案为:.
【点睛】本题考查了二次函数图象的应用,熟练掌握二次函数的性质是解答本题的关键.对于二次函数(a,h,k为常数,),当时,抛物线开口向上,在对称轴的左侧y随x的增大而减小,在对称轴的右侧y随x的增大而增大,此时函数有最小值;当时,抛物线开口向下,在对称轴的左侧y随x的增大而增大,在对称轴的右侧y随x的增大而减小,此时函数有最大值.
3.(2023·广东深圳·校考模拟预测)某公园内人工湖上有一座拱桥(横截面如图所示),跨度为4米.在距点A水平距离为d米的地点,拱桥距离水面的高度为h米.小红根据学习函数的经验,对d和h之间的关系进行了探究.

下面是小红的探究过程,请补充完整:
(1)经过测量,得出了d和h的几组对应值,如下表.
d/米 0 0.6 1 1.8 2.4 3 3.6 4
h/米 0.88 1.90 2.38 2.86 2.80 2.38 1.60 0.88
在d和h这两个变量中,______是自变量,______是这个变量的函数;
(2)在下面的平面直角坐标系中,画出(1)中所确定的函数的图象;
(3)结合表格数据和函数图象,解决问题:①求该函数的解析式:②公园欲开设游船项目,现有长为3.5米,宽为1.5米,露出水面高度为2米的游船.为安全起见,公园要在水面上的C,D两处设置警戒线,并且,要求游船能从C,D两点之间安全通过,则C处距桥墩的距离至少为多少米 (,精确到0.1米)

【答案】(1)d,h(2)见解析(3)①;②C处距桥墩的距离至少为0.7米
【分析】根据函数的定义进行判断作答即可
(2)①待定系数法求解析式即可;②令,代入求解即可.
【详解】(1)解:由题意知,在d和h这两个变量中,d是自变量,h是这个变量的函数
故答案为:d,h;
(2)解:描点,连线,作图如下;
(3)①解:设二次函数的解析式为,
把,代入得:,解得:,
∴二次函数的解析式为;
②解:令,得:,解得
或,∴则C处距桥墩的距离至少为0.7米.
【点睛】本题考查了函数的定义,二次函数解析式,二次函数的图象,二次函数的应用.解题的关键在于正确的求二次函数解析式.
4.(2023·山东临沂·统考一模)如图,灌溉车为绿化带浇水,喷水口离地竖直高度为.可以把灌溉车喷出水的上、下边缘抽象为平面直角坐标系中两条抛物线的部分图象;把绿化带横截面抽象为矩形,其水平宽度,竖直高度.下边缘抛物线是由上边缘抛物线向左平移得到,上边抛物线最高点离喷水口的水平距离为、高出喷水口,灌溉车到绿化带的距离为(单位:)

(1)求上边缘抛物线的函数解析式,并求喷出水的最大射程;(2)求下边缘抛物线与x轴的正半轴交点的坐标;(3)要使灌溉车行驶时喷出的水能浇灌到整个绿化带,直接写出的取值范围
【答案】(1),米(2)(3)
【分析】(1)由顶点得,设,再根据抛物线过点,可得的值,从而解决问题;(2)过点H作轴,交上边缘抛物线于点M,当时,则
解得:,,则,则下边缘抛物线是由上边缘抛物线向左平移得到的,可得点的坐标;(3)根据,求出点的坐标,利用增减性可得的最大值为最小值,从而得出答案.
【详解】(1)解:由题意得是上边缘抛物线的顶点,设,
又抛物线过点,,,上边缘抛物线的函数解析式为;
令,则解得:,∴米.
(2)解:如图,过点H作轴,交上边缘抛物线于点M,
对于上边缘抛物线,当时,
则解得:,,则,
∵下边缘抛物线是由上边缘抛物线向左平移得到
下边缘抛物线是由上边缘抛物线向左平移得到的,∴点B是点C向左平移得到,
由(1)知米,∴(米)点的坐标为;
(3)解:,点的纵坐标为,,解得,
,,当时,随的增大而减小,
当时,要使,则,
当时,随的增大而增大,且时,,
当时,要使,则,
,灌溉车行驶时喷出的水能浇灌到整个绿化带,的最大值为,
再看下边缘抛物线,喷出的水能浇灌到绿化带底部的条件是,的最小值为2,
综上所述,的取值范围是.
【点睛】本题是二次函数实际应用,主要考查了待定系数法求二次函数解析式,二次函数的图象性质,二次函数的图象的平移,二次函数与方程的关系等知识,读懂题意,建立二次函数模型是解题关键.
5.(2023·河南洛阳·校联考一模)如图,是某水上乐园为亲子游乐区新设滑梯的示意图,其中线段是竖直高度为6米的平台,滑道分为两部分,其中段是双曲线,段是抛物线的一部分,两滑道的连接点B为抛物线的顶点,B点的竖直高度为2米,滑道与水平面的交点D距的水平距离为8米,以点O为坐标原点建立平面直角坐标系,距直线的水平距离为x.

(1)请求出滑道段y与x之间的函数关系式;(2)当滑行者滑到C点时,距地面的距离为1米,求滑行者此时距滑道起点A的水平距离;(3)在建模实验中发现,为保证滑行者的安全,滑道落地点D与最高点B连线与水平面夹角应不大于,,求长度的取值范围.
【答案】(1)滑道段y与x之间函数关系式为
(2)滑行者距滑道起点的水平距离为米(3)
【分析】(1)由B在双曲线上,且根据题意,得到,由B为抛物线的最高点,可设抛物线的解析式为,滑道与水平面的交点D距的水平距离为8米,得到点D的坐标为,把代入得,,解得,即可得到抛物线的解析式;(2)依据前面的解析式求出A、C的横坐标,它们的差距即为所经过的水平距离;
(3)先判断的最小值,再根据已知求出最大值即可.
【详解】(1)解:B在双曲线上,且根据题意,∴,
∵B为抛物线的最高点,则设抛物线的解析式为,
∵滑道与水平面的交点D距的水平距离为8米,∴点D的坐标为,
把代入得,,解得,
∴滑道段y与x之间函数关系式为;
(2)令上式时,则,解得,(不合题意,舍去),
∴,将代入中得,∴,
∴,此时滑行者距滑道起点的水平距离为米;
(3)解: 根据上面所得,当时,,此时,
则D点不可往左,可往右,的最小值为8,
又∵,∴,∴.∴长度的取值范围为.
【点睛】本题主要考查了二次函数和反比例函数的实际应用,用到了待定系数法求二次函数解析式、求函数图象上点的坐标等知识,数形结合是解题的关键.
6.(2023·安徽滁州·校考二模)北京冬奥会的召开激起了人们对冰雪运动的极大热情,如图是某小型跳台滑雪训练场的横截面示意图,取某一位置的水平线为轴,过跳台终点做水平线的垂线为轴,建立平面直角坐标系,图中的抛物线近似表示滑雪场地上的一座小山坡,某滑雪爱好者小刘从点正上方点滑出,滑出后沿一段抛物线 运动.
(1)小山坡最高处的高度是   米;(2)小刘在某次训练中,滑到离处的水平距离为6米时,达到滑行的最大高度米(相对于水平线),在这次训练中,当小刘滑出后离的水平距离为多少米时,他滑行高度与小山坡的竖直距离为米?(3)小刘若想滑行到最大高度时恰好在坡顶正上方,且与坡顶距离不低于3米,求跳台滑出点的最小高度.
【答案】(1)7(2)运动员与小山坡的竖直距离为米(3)跳台滑出点的最小高度为2米
【分析】(1)由的顶点为,即可解得答案.(2)设运动员运动的水平距离为米时,运动员与小山坡的竖直距离为1米,依题意列出方程,解出即可;(3)先求出,再根据与坡顶距离不低于3米列出关于的不等式,即可解得答案.
【详解】(1)故答案为:7;
(2)小刘滑到离处的水平距离为6米时,其滑行高度最大为米,
的顶点为,,,解得,
设运动员运动的水平距离为米时,运动员与小山坡的竖直距离为米,
依题意得:,
整理得:,解得:,(舍去),
运动员运动的水平距离为9米时,运动员与小山坡的竖直距离为米;
(3)抛物线,
当时,运动员到达坡顶,,解得,,
与坡顶距离不低于3米,,解得:.跳台滑出点的最小高度为2米.
【点睛】本题考查二次函数的应用,解题的关键是读懂题意,熟练掌握二次函数的基本性质,并能将实际问题与二次函数模型相结合.
7.(2023·江苏泰州·校考二模)如图,已知抛物线与轴分别交于、两点,与轴交于点,且.(1)求抛物线的函数表达式:(2)如图,点是抛物线顶点,点是在第二象限抛物线上的一点,分别连接、、,若,求的值;(3)如图,若的角平分线交轴于点,过点的直线分别交射线、于点、(不与点A重合),则的值是否变化?若变化,请说明理由;若不变,请求出它的值.

【答案】(1);(2);(3)不变,.
【分析】(1)利用待定系数法求解二次函数的解析式即可;(2)如图,过作于,连接,先求顶点,证明,,则,再列方程求解即可;(3)过作轴交于,过作轴交于,过作轴交于,证明,,可得,同理可得:,从而可得答案.
【详解】(1)解:抛物线与、轴分别交于、两点
设抛物线为:,,,
把点代入,,解得
所以抛物线解析式为;
(2)解:如图,过作于,连接,

,顶点,
,,,
,,,,

,,,,,,
,经检验是方程的解且符合题意;即的值为;
(3)解:不变,求解过程如下:
过作轴交于,过作轴交于,过作轴,如图:

∵轴,轴,轴,,
∴,,,
,,
平分,,,
,同理可得:,
由(1)可知:,,,,
,为定值不变.
【点睛】本题考查了利用待定系数法求解二次函数的解析式,锐角三角函数的应用,勾股定理及其逆定理的应用,相似三角形的判定与性质,正确作出辅助线是解题的关键.
8.(2022·福建宁德·统考一模)如图1,抛物线与直线(是常数)交于A,B两点(点A在点B的左边),且是直角三角形.(1)求的值;(2)如图2,将抛物线向下平移,得到抛物线,若抛物线与直线交于C,D两点(点C在点D的左边),与x轴正半轴交于点E.求证:是直角三角形;(3)如图3,若抛物线()与直线交于M,N两点(点M在点N的左边),点K在抛物线上,当是直角三角形时,直接写出点K的坐标.(用含,的代数式表示)

【答案】(1)4;(2)见解析;(3)或.
【分析】(1)设与y轴的交点为P.可得是等腰直角三角形,进而可得点B的坐标为.将其代入即可求解;(2)分别过点C,D作轴于点H,轴于点Q.可通过证求证,也可通过勾股定理的逆定理求证;(3)设平移后得到.过点作x轴的平行线l3,分别过点M',N'作于点L,于点T.证即可求解.
【详解】(1)解:如图1,设与y轴的交点为P.
∵平行于x轴,的图象关于y轴对称,∴

∵是等腰直角三角形.∴.∴.∴点B的坐标为.
∵点B在抛物线上,∴.∵,∴.
(2)证明:如图2,分别过点C,D作轴于点H,轴于点Q.
联立 解得
∴点C的坐标为,点D的坐标为
将代入,解得,(舍去).
∴点E的坐标为∴,,,.
证法一:∵,∴.∴.
∵,∴.∴.
∵.∴.∴.∴是直角三角形.
证法二:在中,根据勾股定理,得.
同理可得 .∴.
∵∴.∴是直角三角形.
(3)解:点K的坐标为,或.
将抛物线向左平移h个单位得到抛物线.设平移后得到,
如图3.过点作x轴的平行线l3,分别过点M',N'作于点L,于点T.

联立 解得
∴点M'的坐标为(,),点N'的坐标为(,).
设的坐标为(,),.∴.
易证.∴.
即.∴.
∵,∴.∴点的纵坐标为,即点的纵坐标为.
解方程,得.∴点K的坐标为或.
【点睛】本题考查了二次函数的综合运用.需要学生熟练掌握二次函数的各项性质.
9.(2023·辽宁葫芦岛·统考一模)如图,抛物线与x轴交于点A和点,与y轴交于点,点D是抛物线上一动点.(1)求抛物线的解析式;(2)如图1,当点D在直线上方时,作轴于点F,交直线于点E,当时,求点D的坐标;(3)点P在抛物线的对称轴l上,点Q是平面直角坐标系内一点,当四边形为正方形时,请直接写出点Q的坐标.

【答案】(1)(2)(3),,,
【分析】(1)将B,C两点坐标代入抛物线解析式,利用待定系数法求解即可;
(2)根据题意可求出直线的解析式,由可证明,作于H,则,设点D的横坐标为t,分别表达和,建立方程即可得出结论;
(3)若四边形为正方形,则是等腰直角三角形,且,根据题意画出对应图形,利用全等三角形建立方程,即可得出结论.
【详解】(1)经过点,点
解得抛物线的函数解析式为:
(2)轴, 轴, ,,,,
设直线的解析式为,将,代入得其解析式得,
,解得,,∴直线的解析式为
作于H,如图,则

设点D的横坐标为t,则,,

解得(舍),
(3)∵,∴抛物线的对称轴为,
若四边形为正方形,则是等腰直角三角形,且,
设点D的横坐标为n,则,
如图2,过点D作于点M,设直线l与x轴交于点N,
则,,,∴,
∴,∴,∴,
∴,∴,解得或,
当时,点D与点A重合,如图3,,则或,则;
当时,则;

如图4,过点D作于点M,设直线l与x轴交于点N,
同理可证,,∴,
∴,∴,解得或,
当时,点D与点A重合,同上;当时,,则;
综上,点Q的坐标为:或或或
【点睛】本题属于二次函数综合题,涉及待定系数法,等腰三角形的性质与判定,正方形的性质与判定等相关知识,解题关键是利用转化思想对已知信息进行转化,将转化为,将正方形的存在性转化为等腰直角三角形的存在性.
10.(2023·广东茂名·统考二模)如图,在直角坐标系中有一直角三角形,为坐标原点,,,将此三角形绕原点逆时针旋转,得到,抛物线经过点、、.(1)求抛物线的解析式;(2)若点P是第二象限内抛物线上的动点,其横坐标为t,
①是否存在一点P,使的面积最大?若存在,求出的面积的最大值;若不存在,请说明理由.②设抛物线对称轴l与x轴交于一点E,连接,交于,直接写出当与相似时,点P的坐标.
【答案】(1)(2)①存在,最大值为,理由见解析;②或
【分析】(1)根据正切函数,可得,根据旋转的性质可得,据此求出A、B、C的坐标,再利用待定系数法即可求出函数解析式;
(2)①可求得直线的解析式,过作轴于点,交于点,可用表示出的长,当取最大值时,则的面积最大,可求得其最大值;②当时,,过点作轴于点,证明,得到,进而推出,则,解方程即可;当时,,此时,轴,则.
【详解】(1)解:在中,,,,
是由绕点逆时针旋转而得到的,.
,,的坐标分别为,,,
代入解析式得:,解得:,抛物线的解析式为;
(2)解:存在点使的面积最大,的面积有最大值为
理由如下:设直线解析式为,
把、两点坐标代入可得:,解得:,直线解析式为,
如图,过作轴,交轴于点,交直线于点,
点横坐标为,,,点在第二象限,点在点上方,

当时,有最大值,最大值为,

当有最大值时,的面积有最大值,,
综上可知,存在点使的面积最大,的面积有最大值为;
当时,,过点作轴于点,
∴,又∵,∴,
,,点的横坐标为,,
在第二象限,,,,
解得,,与在二象限,横坐标小于矛盾,舍去,
当时,,,
当时,,此时,轴,
当与相似时,点的坐标为或.
【点睛】本题考查了二次函数综合题,相似三角形的性质与判定,一次函数与几何综合,解直角三角形,旋转的性质等等,解(1)的关键是利用旋转的性质得出,的长,又利用了待定系数法;解(2)的关键是利用相似三角形的性质得出.
11.(2023·湖北武汉·校联考模拟预测)已知抛物线与轴交于、两点点在左侧.
(1),、分别交抛物线于、两点,的解析式为点在第一象限,的解析式为,直接写出的值点在第三象限;
(2)在(1)的条件下,若,求证:一定与定直线平行;
(3)若,、、都在抛物线上,且四边形为平行四边形,求证:必过一定点.

【答案】(1)(2)见解析(3)见解析
【分析】(1)令,得,可得,,设交轴于点,交轴于点,可证得,得出,由一次函数图象与轴的交点坐标为,,即可求得答案;(2)联立方程组得,则,同理可得:,结合(1)的结论可得,进而可得,设的解析式为,可得,再由,可求得,即直线与直线平行.(3)设解析式,联立得,设,,,,由平行四边形的性质可得,,可求得,再由点在抛物线上,可得,即,解得:,故直线过定点.
【详解】(1)解:,令,得,
解得:,,,,,
设交轴于点,交轴于点,如图,,,

又,,,的解析式为点在第一象限,的解析式为点在第三象限,,,
点在轴正半轴上,点在轴负半轴上,且,;
(2)证明:的解析式为,与抛物线的解析式联立得:,,则,同理可得:,
,由(1)知:,,
,,,,
设的解析式为,则,,
,,即,
,,解得:,
又,,即直线与直线平行,一定与定直线平行;
(3)证明:设解析式,与抛物线的解析式联立,得,
,设,,,,
,且四边形为平行四边形,,,
,,
,,,
点在抛物线上,,
,解得:,直线过定点.
【点睛】本题是二次函数综合题,考查了二次函数图象上点的坐标特征,全等三角形的判定与性质,平行四边形的性质,熟练掌握二次函数的性质是解题的关键.
备考指南
知识导图
知识清单
考点梳理
真题在线
专项练习
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
第三章 函数
第五节 二次函数的应用
考点分布 考查频率 命题趋势
考点1 二次函数的实际应用 ☆☆ 二次函数的应用在中考中较为常见,其中,二次函数在实际生活中的应用多为选填题,出题率不是特别高,一般需要根据题意自行建立二次函数模型;而利用二次函数图象解决实际问题和最值问题则多为解答题,此类问题需要多注意题意的理解,而且一般计算数据较大,还需根据实际情况判断所求结果是否合适,需要考生在做题过程中更为细心对待。
考点2 二次函数的几何问题 ☆☆☆
■考点一 二次函数的实际应用
1.用二次函数解决实际问题的一般步骤:
1)审:仔细 ,理清 ;
2)设:找出题中的变量和常量,分析它们之间的关系,与图形相关的问题要结合图形具体分析,设出适当的 ;
3)列:用二次函数表示出变量和常量之间的关系,建立二次函数模型,写出二次函数的 ;
4)解:依据已知条件,借助二次函数的解析式、图象和性质等求解实际问题;
5)检:检验结果,进行合理取舍,得出符合实际意义的结论.
2.利用二次函数解决利润最值的方法:巧设未知数,根据利润公式列出函数关系式,再利用二次函数的最值解决利润最大问题是否存在最大利润问题。
3.利用二次函数解决拱桥(门)/隧道/喷泉/球类运行轨迹类问题的方法:先建立适当的 ,再根据题意找出已知点的坐标,并求出抛物线的 ,最后根据图象信息解决实际问题。
4.利用二次函数解决面积最值的方法:先找好 ,再利用相关的图形面积公式,列出函数关系式,最后利用函数的最值解决面积最值问题。
5.利用二次函数解决动点问题的方法:首先要明确动点在哪条直线或抛物线上运动,运动速度是多少,结合直线或抛物线的表达式设出动点的 或表示出与动点有关的线段 ,最后结合题干中与动点有关的条件进行计算.
■考点二 二次函数的几何问题
二次函数与几何知识联系密切,互相渗透,以点的坐标和线段长度的关系为纽带,把二次函数常与全相似、最大(小)面积、周长等结合起来,解决这类问题时,先要对已知和未知条件进行综合分析,用点的等、坐标和线段长度的联系,从图形中建立 的模型,从而使问题得到解决,解这类问题的关键就是要善于利用几何图形和二次函数的有关性质和知识,并注意挖掘题目中的一些隐含条件,以达到解题目的。
1.二次函数与几何图形的长度(面积)问题
二次函数与几何图形的长度(面积)问题一般是利用距离或面积公式表示出图形长度(面积)的函数关系式(一般是二次函数的表达式),再利用函数的解析式的特点求长度(面积)的最值问题;此外还会涉及到长度(面积)相等、给出长度(面积)的值等问题,其核心处理方法都是表示出长度(面积)的表达式,再去研究相关的性质。
2.二次函数与特殊三角形
1)在二次函数的图象中研究等腰三角形的问题,需要注意分类讨论思想的应用,找准顶角与底角分类讨论的关键,借助等腰三角形的等边对等角、等角对等边、三线合一等性质来转化已知条件是常用的处理手段;
2)在二次函数的图象中研究直角三角形的问题,需要注意分类讨论思想的应用,找准直角顶点是分类讨论的关键,借助直角三角形的勾股定理,两锐角互补等性质来转化已知条件是常用的处理手段。
3.二次函数特殊平行四边形
在二次函数的图象中研究平行四边形的问题常会用到平行四边形的一些性质之间的转化,同时此类问题也会涉及到矩形、菱形、正方形的确定,其分析思想是互通的。
4.二次函数与线段和、差的最值问题
在二次函数的图象中研究线段的和、差最值问题,一般会用到将军饮马、胡不归、阿氏圆、瓜豆原理等来解决相关最值问题。
5.利用二次函数解决存在性问题的方法:一般先假设该点存在,根据该点所在的直线或抛物线的表达式,设出该点的 ;然后用该点的坐标表示出与该点有关的线段 或其他点的 等;最后结合题干中其他条件列出等式,求出该点的坐标,然后判别该点坐标是否符合题意,若符合题意,则该点存在,否则该点不存在.
■易错提示
1. 二次函数在实际问题中的应用通常是在一定的取值范围内,一定要注意是否包含顶点坐标,如果顶点坐标不在取值范围内,应按照对称轴一侧的增减性探讨问题结论.
■考点一 二次函数的实际应用
◇典例1:(2023年浙江省湖州市中考数学真题)某水产经销商以每千克30元的价格购进一批某品种淡水鱼,由销售经验可知,这种淡水鱼的日销售量y(千克)与销售价格x(元/千克)存在一次函数关系,部分数据如下表所示:
销售价格x(元/千克) 50 40
日销售量y(千克) 100 200
(1)试求出y关于x的函数表达式.(2)设该经销商销售这种淡水鱼的日销售利润为W元,如果不考虑其他因素,求当销售价格x为多少时,日销售利润W最大?最大的日销售利润是多少元?
◆变式训练
1.(2023年湖南省益阳市中考数学真题)某企业准备对A,B两个生产性项目进行投资,根据其生产成本、销售情况等因素进行分析得知:投资A项目一年后的收益(万元)与投入资金x(万元)的函数表达式为:,投资B项目一年后的收益(万元)与投入资金x(万元)的函数表达式为:.(1)若将10万元资金投入A项目,一年后获得的收益是多少?(2)若对A,B两个项目投入相同的资金m()万元,一年后两者获得的收益相等,则m的值是多少?(3)2023年,我国对小微企业施行所得税优惠政策.该企业将根据此政策获得的减免税款及其他结余资金共计32万元,全部投入到A,B两个项目中,当A,B两个项目分别投入多少万元时,一年后获得的收益之和最大?最大值是多少万元?
2.(2023年江苏省泰州市中考数学真题)某公司的化工产品成本为30元/千克.销售部门规定:一次性销售1000千克以内时,以50元/千克的价格销售;一次性销售不低于1000千克时,每增加1千克降价元.考虑到降价对利润的影响,一次性销售不低于1750千克时,均以某一固定价格销售.一次性销售利润y(元)与一次性销售量x(千克)的函数关系如图所示.

(1)当一次性销售800千克时利润为多少元?(2)求一次性销售量在之间时的最大利润;
(3)当一次性销售多少千克时利润为22100元?
◇典例2:(2023年河南省中考数学真题)小林同学不仅是一名羽毛球运动爱好者,还喜欢运用数学知识对羽毛球比赛进行技术分析,下面是他对击球线路的分析.
如图,在平面直角坐标系中,点A,C在x轴上,球网与y轴的水平距离,,击球点P在y轴上.若选择扣球,羽毛球的飞行高度与水平距离近似满足一次函数关系;若选择吊球,羽毛球的飞行高度与水平距离近似满足二次函数关系.(1)求点P的坐标和a的值.(2)小林分析发现,上面两种击球方式均能使球过网.要使球的落地点到C点的距离更近,请通过计算判断应选择哪种击球方式.

◆变式训练
1.(2023年浙江省嘉兴市中考数学真题)根据以下素材,探究完成任务.
如何把实心球掷得更远?
素材1
小林在练习投掷实心球,其示意图如图,第一次练习时,球从点A处被抛出,其路线是抛物线.点A距离地面,当球到OA的水平距离为时,达到最大高度为.
素材2
根据体育老师建议,第二次练习时,小林在正前方处(如图)架起距离地面高为的横线.球从点A处被抛出,恰好越过横线,测得投掷距离.
问题解决
任务1
计算投掷距离 建立合适的直角坐标系,求素材1中的投掷距离.
任务2
探求高度变化 求素材2和素材1中球的最大高度的变化量
任务3
提出训练建议 为了把球掷得更远,请给小林提出一条合理的训练建议.
◇典例3:(2023年山东省威海市中考数学真题)城建部门计划修建一条喷泉步行通道.图1是项目俯视示意图.步行通道的一侧是一排垂直于路面的柱形喷水装置,另一侧是方形水池.图2是主视示意图.喷水装置的高度是2米,水流从喷头A处喷出后呈抛物线路径落入水池内,当水流在与喷头水平距离为2米时达到最高点B,此时距路面的最大高度为3.6米.为避免溅起的水雾影响通道上的行人,计划安装一个透明的倾斜防水罩,防水罩的一端固定在喷水装置上的点处,另一端与路面的垂直高度为1.8米,且与喷泉水流的水平距离为0.3米.点到水池外壁的水平距离米,求步行通道的宽.(结果精确到0.1米)参考数据:

◆变式训练
1. (2023年吉林省长春市中考数学真题)年5月8日,商业首航完成——中国民商业运营国产大飞机正式起飞.时分航班抵达北京首都机场,穿过隆重的“水门礼”(寓意“接风洗尘”、是国际民航中高级别的礼仪).如图①,在一次“水门礼”的预演中,两辆消防车面向飞机喷射水柱,喷射的两条水柱近似看作形状相同的地物线的一部分.如图②,当两辆消防车喷水口A、B的水平距离为米时,两条水柱在物线的顶点H处相遇,此时相遇点H距地面米,喷水口A、B距地面均为4米.若两辆消防车同时后退米,两条水柱的形状及喷水口、到地面的距离均保持不变,则此时两条水柱相遇点距地面 米.

◇典例4:(2023年甘肃省兰州市中考数学真题)一名运动员在高的跳台进行跳水,身体(看成一点)在空中的运动轨迹是一条抛物线,运动员离水面的高度与离起跳点A的水平距离之间的函数关系如图所示,运动员离起跳点A的水平距离为时达到最高点,当运动员离起跳点A的水平距离为时离水面的距离为.
(1)求y关于x的函数表达式;(2)求运动员从起跳点到入水点的水平距离的长.

◆变式训练
1.(2023·广东深圳·校考模拟预测)已知某运动员在自由式滑雪大跳台比赛中取得优异成绩,为研究他从起跳至落在雪坡过程中的运动状态,如图,以起跳点为原点O,水平方向为x轴建立平面直角坐标系,我们研究发现他在空中飞行的高度y(米)与水平距离x(米)具有二次函数关系,记点A为该二次函数图象与x轴的交点,点B为该运动员的成绩达标点,轴于点C,相关数据如下:
水平距离x(米) 5 10 20 30
空中飞行的高度y(米) 4.5 6 0
(1)请求出第一次跳跃的高度y(米)与水平距离x(米)的二次函数解析式______;
(2)若该运动员第二次跳跃时高度y(米)与水平距离x(米)满足,则他第二次跳跃落地点与起跳点平面的水平距离为_____米,d_____30,成绩是否达标?_____.(填写是或否)

◇典例5:(2023年贵州省中考数学真题)如图①,是一座抛物线型拱桥,小星学习二次函数后,受到该图启示设计了一建筑物造型,它的截面图是抛物线的一部分(如图②所示),抛物线的顶点在处,对称轴与水平线垂直,,点在抛物线上,且点到对称轴的距离,点在抛物线上,点到对称轴的距离是1.(1)求抛物线的表达式;(2)如图②,为更加稳固,小星想在上找一点,加装拉杆,同时使拉杆的长度之和最短,请你帮小星找到点的位置并求出坐标;(3)为了造型更加美观,小星重新设计抛物线,其表达式为,当时,函数的值总大于等于9.求的取值范围.
◆变式训练
1. (2023·陕西·统考中考真题)某校想将新建图书楼的正门设计为一个抛物线型门,并要求所设计的拱门的跨度与拱高之积为,还要兼顾美观、大方,和谐、通畅等因素,设计部门按要求给出了两个设计方案.现把这两个方案中的拱门图形放入平面直角坐标系中,如图所示:
方案一,抛物线型拱门的跨度,拱高.其中,点N在x轴上,,.
方案二,抛物线型拱门的跨度,拱高.其中,点在x轴上,,.
要在拱门中设置高为的矩形框架,其面积越大越好(框架的粗细忽略不计).方案一中,矩形框架的面积记为,点A、D在抛物线上,边在上;方案二中,矩形框架的面积记为,点,在抛物线上,边在上.现知,小华已正确求出方案二中,当时,,请你根据以上提供的相关信息,解答下列问题:(1)求方案一中抛物线的函数表达式;(2)在方案一中,当时,求矩形框架的面积并比较,的大小.
◇典例6:(2023年黑龙江省大庆市中考数学真题)如图1,在平行四边形中,,已知点在边上,以1m/s的速度从点向点运动,点在边上,以的速度从点向点运动.若点,同时出发,当点到达点时,点恰好到达点处,此时两点都停止运动.图2是的面积与点的运动时间之间的函数关系图象(点为图象的最高点),则平行四边形的面积为( )

A. B. C. D.
◆变式训练
1. (2023年辽宁省锦州市中考数学真题)如图,在中,,,,在中,,,与在同一条直线上,点C与点E重合.以每秒1个单位长度的速度沿线段所在直线向右匀速运动,当点B运动到点F时,停止运动.设运动时间为t秒,与重叠部分的面积为S,则下列图象能大致反映S与t之间函数关系的是( )

A. B. C. D.
■考点二 二次函数综合问题
◇典例7:(2023年青海省西宁市中考数学真题)如图,在平面直角坐标系中,直线l与x轴交于点,与y轴交于点,抛物线经过点A,B,且对称轴是直线.
(1)求直线l的解析式;(2)求抛物线的解析式;(3)点P是直线l下方抛物线上的一动点,过点P作轴,垂足为C,交直线l于点D,过点P作,垂足为M.求的最大值及此时P点的坐标.

◆变式训练
1.(2023年辽宁省抚顺市、葫芦岛市中考数学真题)如图,抛物线与x轴交于点A和点,与y轴交于点,点P为第一象限内抛物线上的动点过点P作轴于点E,交于点F.(1)求抛物线的解析式;(2)当的周长是线段长度的2倍时,求点P的坐标;
(3)当点P运动到抛物线顶点时,点Q是y轴上的动点,连接,过点B作直线,连接并延长交直线于点M.当时,请直接写出点的坐标.

◇典例8:(2023年浙江省湖州市中考数学真题)如图1,在平面直角坐标系中,二次函数的图象与y轴的交点坐标为,图象的顶点为M.矩形的顶点D与原点O重合,顶点A,C分别在x轴,y轴上,顶点B的坐标为.
(1)求c的值及顶点M的坐标,(2)如图2,将矩形沿x轴正方向平移t个单位得到对应的矩形.已知边,分别与函数的图象交于点P,Q,连接,过点P作于点G.①当时,求的长;②当点G与点Q不重合时,是否存在这样的t,使得的面积为1?若存在,求出此时t的值;若不存在,请说明理由.

◆变式训练
1.(2023年山东省青岛市中考数学真题)许多数学问题源于生活.雨伞是生活中的常用物品,我们用数学的眼光观察撑开后的雨伞(如图①)、可以发现数学研究的对象——抛物线.在如图②所示的直角坐标系中,伞柄在y轴上,坐标原点O为伞骨,的交点.点C为抛物线的顶点,点A,B在抛物线上,,关于y轴对称.分米,点A到x轴的距离是分米,A,B两点之间的距离是4分米.(1)求抛物线的表达式;(2)分别延长,交抛物线于点F,E,求E,F两点之间的距离;(3)以抛物线与坐标轴的三个交点为顶点的三角形面积为,将抛物线向右平移个单位,得到一条新抛物线,以新抛物线与坐标轴的三个交点为顶点的三角形面积为.若,求m的值.

◇典例9:(2023年湖北省十堰市中考数学真题)已知抛物线过点和点,与轴交于点.(1)求抛物线的解析式;(2)如图1,连接,点在线段上(与点不重合),点是的中点,连接,过点作交于点,连接,当面积是面积的3倍时,求点的坐标;(3)如图2,点是抛物线上对称轴右侧的点,是轴正半轴上的动点,若线段上存在点(与点不重合),使得,求的取值范围.

◆变式训练
1.(2023年辽宁省鞍山市中考数学真题)如图1,抛物线经过点,与y轴交于点,点E为第一象限内抛物线上一动点.
(1)求抛物线的解析式.(2)直线与x轴交于点A,与y轴交于点D,过点E作直线轴,交于点F,连接.当时,求点E的横坐标.(3)如图2,点N为x轴正半轴上一点,与交于点M.若,,求点E的坐标.
  
◇典例10:(2023年青海省中考数学真题)如图,二次函数的图象与轴相交于点和点,交轴于点.(1)求此二次函数的解析式;(2)设二次函数图象的顶点为,对称轴与轴交于点,求四边形的面积(请在图1中探索);(3)二次函数图象的对称轴上是否存在点,使得是以为底边的等腰三角形?若存在,请求出满足条件的点的坐标;若不存在,请说明理由(请在图中探索).

◆变式训练
1.(2023年江苏省常州市中考数学真题)如图,二次函数的图像与x轴相交于点,其顶点是C.(1)_______;(2)D是第三象限抛物线上的一点,连接OD,;将原抛物线向左平移,使得平移后的抛物线经过点D,过点作x轴的垂线l.已知在l的左侧,平移前后的两条抛物线都下降,求k的取值范围;(3)将原抛物线平移,平移后的抛物线与原抛物线的对称轴相交于点Q,且其顶点P落在原抛物线上,连接PC、QC、PQ.已知是直角三角形,求点P的坐标.

2.(2023年湖南省娄底市中考数学真题)如图,抛物线过点、点,交y轴于点C.(1)求b,c的值.(2)点是抛物线上的动点①当取何值时,的面积最大?并求出面积的最大值;②过点P作轴,交于点E,再过点P作轴,交抛物线于点F,连接,问:是否存在点P,使为等腰直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.

◇典例11:(2023年西藏自治区中考数学真题)在平面直角坐标系中,抛物线与x轴交于,两点,与y轴交于点C.
(1)求抛物线的解析式;(2)如图甲,在y轴上找一点D,使为等腰三角形,请直接写出点D的坐标;(3)如图乙,点P为抛物线对称轴上一点,是否存在P、Q两点使以点A,C,P,Q为顶点的四边形是菱形?若存在,求出P、Q两点的坐标,若不存在,请说明理由.

◆变式训练
1.(2023年山东省淄博市中考数学真题)如图,一条抛物线经过的三个顶点,其中为坐标原点,点,点在第一象限内,对称轴是直线,且的面积为18
(1)求该抛物线对应的函数表达式;(2)求点的坐标;(3)设为线段的中点,为直线上的一个动点,连接,,将沿翻折,点的对应点为.问是否存在点,使得以,,,为顶点的四边形是平行四边形?若存在,求出所有符合条件的点的坐标;若不存在,请说明理由.

2.(2023年内蒙古中考数学真题)如图,在平面直角坐标系中,抛物线与轴的交点分别为和(点在点的左侧),与轴交于点,点是直线上方抛物线上一动点.(1)求抛物线的解析式;(2)如图1,过点作轴平行线交于点,过点作轴平行线交轴于点,求的最大值及点的坐标;(3)如图2,设点为抛物线对称轴上一动点,当点,点运动时,在坐标轴上确定点,使四边形为矩形,求出所有符合条件的点的坐标.
◇典例12:(2023年湖北省鄂州市中考数学真题)某数学兴趣小组运用《几何画板》软件探究型抛物线图象.发现:如图1所示,该类型图象上任意一点P到定点的距离,始终等于它到定直线l:的距离(该结论不需要证明).他们称:定点F为图象的焦点,定直线l为图象的准线,叫做抛物线的准线方程.准线l与y轴的交点为H.其中原点O为的中点,.例如,抛物线,其焦点坐标为,准线方程为l:,其中,.
【基础训练】(1)请分别直接写出抛物线的焦点坐标和准线l的方程:_________,_________;
【技能训练】(2)如图2,已知抛物线上一点到焦点F的距离是它到x轴距离的3倍,求点P的坐标;
【能力提升】(3)如图3,已知抛物线的焦点为F,准线方程为l.直线m:交y轴于点C,抛物线上动点P到x轴的距离为,到直线m的距离为,请直接写出的最小值;
【拓展延伸】该兴趣小组继续探究还发现:若将抛物线平移至.抛物线内有一定点,直线l过点且与x轴平行.当动点P在该抛物线上运动时,点P到直线l的距离始终等于点P到点F的距离(该结论不需要证明).例如:抛物线上的动点P到点的距离等于点P到直线l:的距离.
请阅读上面的材料,探究下题:(4)如图4,点是第二象限内一定点,点P是抛物线上一动点,当取最小值时,请求出的面积.

◆变式训练
1.(2023年宁夏回族自治区中考数学真题)如图,抛物线与轴交于,两点,与轴交于点.已知点的坐标是,抛物线的对称轴是直线.

(1)直接写出点的坐标;(2)在对称轴上找一点,使的值最小.求点的坐标和的最小值;(3)第一象限内的抛物线上有一动点,过点作轴,垂足为,连接交于点.依题意补全图形,当的值最大时,求点的坐标.
1.(2023年黑龙江省齐齐哈尔市中考数学真题)如图,在正方形中,,动点M,N分别从点A,B同时出发,沿射线,射线的方向匀速运动,且速度的大小相等,连接,,.设点M运动的路程为,的面积为,下列图像中能反映与之间函数关系的是( )

A. B. C. D.
2.(2023年湖北省襄阳市中考数学真题)如图,一位篮球运动员投篮时,球从点出手后沿抛物线行进,篮球出手后距离地面的高度与篮球距离出手点的水平距离之间的函数关系式是.下列说法正确的是 (填序号).
①篮球行进过程中距离地面的最大高度为;②篮球出手点距离地面的高度为.

3.(2023年浙江省绍兴市中考数学真题)在平面直角坐标系中,一个图形上的点都在一边平行于轴的矩形内部(包括边界),这些矩形中面积最小的矩形称为该图形的关联矩形.例如:如图,函数的图象(抛物线中的实线部分),它的关联矩形为矩形.若二次函数图象的关联矩形恰好也是矩形,则 .

4.(2023年黑龙江省大庆市中考数学真题)某建筑物的窗户如图所示,上半部分是等腰三角形,,,点、、分别是边、、的中点;下半部分四边形是矩形,,制造窗户框的材料总长为16米(图中所有黑线的长度和),设米,米.(1)求与之间的函数关系式,并求出自变量的取值范围;
(2)当为多少时,窗户透过的光线最多(窗户的面积最大),并计算窗户的最大面积.

5.(2023年湖北省黄石市中考数学真题)某工厂计划从现在开始,在每个生产周期内生产并销售完某型号设备,该设备的生产成本为万元/件.设第个生产周期设备的售价为万元/件,售价与之间的函数解析式是,其中是正整数.当时,;当时,.(1)求,的值;(2)设第个生产周期生产并销售完设备的数量为件,且y与x满足关系式.当时,工厂第几个生产周期获得的利润最大 最大的利润是多少万元
当时,若有且只有个生产周期的利润不小于万元,求实数的取值范围.
6.(2023年湖北省黄石市中考数学真题)如图,在平面直角坐标系中,抛物线与x轴交于两点,与y轴交于点.(1)求此抛物线的解析式;
(2)已知抛物线上有一点,其中,若,求的值;
(3)若点D,E分别是线段,上的动点,且,求的最小值.

7.(2023年辽宁省盘锦市中考数学真题)如图,抛物线与轴交于点,,与轴交于点.(1)求抛物线的解析式.(2)如图1,点是轴上方抛物线上一点,射线轴于点,若,且,请直接写出点的坐标.(3)如图2,点是第一象限内一点,连接交轴于点,的延长线交抛物线于点,点在线段上,且,连接,若,求面积.
8.(2023年山东省济南市中考数学真题)在平面直角坐标系中,正方形的顶点,在轴上,,.抛物线与轴交于点和点.
(1)如图1,若抛物线过点,求抛物线的表达式和点的坐标;(2)如图2,在(1)的条件下,连接,作直线,平移线段,使点的对应点落在直线上,点的对应点落在抛物线上,求点的坐标;(3)若抛物线与正方形恰有两个交点,求的取值范围.

9.(2023年四川省内江市中考数学真题)如图,在平面直角坐标系中,抛物线与x轴交于,两点.与y轴交于点.(1)求该抛物线的函数表达式;(2)若点P是直线下方抛物线上的一动点,过点P作x轴的平行线交于点K,过点P作y轴的平行线交x轴于点D,求与的最大值及此时点P的坐标;(3)在抛物线的对称轴上是否存在一点M,使得是以为一条直角边的直角三角形:若存在,请求出点M的坐标,若不存在,请说明理由.
10.(2023年湖南省湘潭市中考数学真题)如图,二次函数的图象与轴交于,两点,与轴交于点,其中,.(1)求这个二次函数的表达式;(2)在二次函数图象上是否存在点,使得?若存在,请求出点坐标;若不存在,请说明理由;(3)点是对称轴上一点,且点的纵坐标为,当是锐角三角形时,求的取值范围.

1.(2023·广东深圳·校考模拟预测)某池塘的截面如图所示,池底呈抛物线形,在图中建立平面直角坐标系,并标出相关数据(单位:).有下列结论:
①;②池底所在抛物线的解析式为;③池塘最深处到水面的距离为;
④若池塘中水面的宽度减少为原来的一半,则最深处到水面的距离减少为原来的.
其中结论正确的个数是( )
A.4个 B.3个 C.2个 D.1个
2.(2023·山西大同·校联考模拟预测)生物学研究表明,在一定的温度范围内,酶的活性会随温度的升高逐渐增强;在最适温度时,酶的活性最强;超过一定温度范围,酶的活性又随温度的升高逐渐减弱,甚至会失去活性现已知某种酶的活性值(单位:)与温度(单位:)的关系可以近似用二次函数来表示,则当温度为最适宜温度时,该种酶的活性值为 .

3.(2023·广东深圳·校考模拟预测)某公园内人工湖上有一座拱桥(横截面如图所示),跨度为4米.在距点A水平距离为d米的地点,拱桥距离水面的高度为h米.小红根据学习函数的经验,对d和h之间的关系进行了探究.

下面是小红的探究过程,请补充完整:
(1)经过测量,得出了d和h的几组对应值,如下表.
d/米 0 0.6 1 1.8 2.4 3 3.6 4
h/米 0.88 1.90 2.38 2.86 2.80 2.38 1.60 0.88
在d和h这两个变量中,______是自变量,______是这个变量的函数;
(2)在下面的平面直角坐标系中,画出(1)中所确定的函数的图象;
(3)结合表格数据和函数图象,解决问题:①求该函数的解析式:②公园欲开设游船项目,现有长为3.5米,宽为1.5米,露出水面高度为2米的游船.为安全起见,公园要在水面上的C,D两处设置警戒线,并且,要求游船能从C,D两点之间安全通过,则C处距桥墩的距离至少为多少米 (,精确到0.1米)

4.(2023·山东临沂·统考一模)如图,灌溉车为绿化带浇水,喷水口离地竖直高度为.可以把灌溉车喷出水的上、下边缘抽象为平面直角坐标系中两条抛物线的部分图象;把绿化带横截面抽象为矩形,其水平宽度,竖直高度.下边缘抛物线是由上边缘抛物线向左平移得到,上边抛物线最高点离喷水口的水平距离为、高出喷水口,灌溉车到绿化带的距离为(单位:)

(1)求上边缘抛物线的函数解析式,并求喷出水的最大射程;(2)求下边缘抛物线与x轴的正半轴交点的坐标;(3)要使灌溉车行驶时喷出的水能浇灌到整个绿化带,直接写出的取值范围
5.(2023·河南洛阳·校联考一模)如图,是某水上乐园为亲子游乐区新设滑梯的示意图,其中线段是竖直高度为6米的平台,滑道分为两部分,其中段是双曲线,段是抛物线的一部分,两滑道的连接点B为抛物线的顶点,B点的竖直高度为2米,滑道与水平面的交点D距的水平距离为8米,以点O为坐标原点建立平面直角坐标系,距直线的水平距离为x.
(1)请求出滑道段y与x之间的函数关系式;(2)当滑行者滑到C点时,距地面的距离为1米,求滑行者此时距滑道起点A的水平距离;(3)在建模实验中发现,为保证滑行者的安全,滑道落地点D与最高点B连线与水平面夹角应不大于,,求长度的取值范围.

6.(2023·安徽滁州·校考二模)北京冬奥会的召开激起了人们对冰雪运动的极大热情,如图是某小型跳台滑雪训练场的横截面示意图,取某一位置的水平线为轴,过跳台终点做水平线的垂线为轴,建立平面直角坐标系,图中的抛物线近似表示滑雪场地上的一座小山坡,某滑雪爱好者小刘从点正上方点滑出,滑出后沿一段抛物线 运动.
(1)小山坡最高处的高度是   米;(2)小刘在某次训练中,滑到离处的水平距离为6米时,达到滑行的最大高度米(相对于水平线),在这次训练中,当小刘滑出后离的水平距离为多少米时,他滑行高度与小山坡的竖直距离为米?(3)小刘若想滑行到最大高度时恰好在坡顶正上方,且与坡顶距离不低于3米,求跳台滑出点的最小高度.
7.(2023·江苏泰州·校考二模)如图,已知抛物线与轴分别交于、两点,与轴交于点,且.(1)求抛物线的函数表达式:(2)如图,点是抛物线顶点,点是在第二象限抛物线上的一点,分别连接、、,若,求的值;(3)如图,若的角平分线交轴于点,过点的直线分别交射线、于点、(不与点A重合),则的值是否变化?若变化,请说明理由;若不变,请求出它的值.

8.(2022·福建宁德·统考一模)如图1,抛物线与直线(是常数)交于A,B两点(点A在点B的左边),且是直角三角形.(1)求的值;(2)如图2,将抛物线向下平移,得到抛物线,若抛物线与直线交于C,D两点(点C在点D的左边),与x轴正半轴交于点E.求证:是直角三角形;(3)如图3,若抛物线()与直线交于M,N两点(点M在点N的左边),点K在抛物线上,当是直角三角形时,直接写出点K的坐标.(用含,的代数式表示)

9.(2023·辽宁葫芦岛·统考一模)如图,抛物线与x轴交于点A和点,与y轴交于点,点D是抛物线上一动点.(1)求抛物线的解析式;(2)如图1,当点D在直线上方时,作轴于点F,交直线于点E,当时,求点D的坐标;(3)点P在抛物线的对称轴l上,点Q是平面直角坐标系内一点,当四边形为正方形时,请直接写出点Q的坐标.

10.(2023·广东茂名·统考二模)如图,在直角坐标系中有一直角三角形,为坐标原点,,,将此三角形绕原点逆时针旋转,得到,抛物线经过点、、.(1)求抛物线的解析式;(2)若点P是第二象限内抛物线上的动点,其横坐标为t,
①是否存在一点P,使的面积最大?若存在,求出的面积的最大值;若不存在,请说明理由.②设抛物线对称轴l与x轴交于一点E,连接,交于,直接写出当与相似时,点P的坐标.
11.(2023·湖北武汉·校联考模拟预测)已知抛物线与轴交于、两点点在左侧.
(1),、分别交抛物线于、两点,的解析式为点在第一象限,的解析式为,直接写出的值点在第三象限;
(2)在(1)的条件下,若,求证:一定与定直线平行;
(3)若,、、都在抛物线上,且四边形为平行四边形,求证:必过一定点.

备考指南
知识导图
知识清单
考点梳理
真题在线
专项练习
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)

展开更多......

收起↑

资源列表