资源简介 第11讲 函数模型及其应用【练基础】1.在某种新型材料的研制中,实验人员获得了下列一组实验数据,现准备用下列四个函数中的一个近似地表示这些数据的规律,其中最接近的一个是( )x 1.992 3 4 5.15 6.126y 1.517 4.041 8 7.5 12 18.01A.y=2x-2 B.y=(x2-1)C.y=log2x D.y=logx2.据统计,每年到鄱阳湖国家湿地公园越冬的白鹤数量y(只)与时间x(年)近似地满足关系y=alog3(x+2),观察发现2020年(作为第1年)到该湿地公园越冬的白鹤数量为3000只,估计到2020年到该湿地公园越冬的白鹤的数量为( )A.4000只 B.5000只C.6000只 D.7000只3.一种放射性元素的质量按每年10%衰减,这种放射性元素的半衰期(剩余质量为最初质量的一半所需的时间叫作半衰期)是(精确到0.1,已知lg 2=0.301 0,lg 3=0.477 1)( )A.5.2 B.6.6C.7.1 D.8.34.汽车的“燃油效率”,是指汽车每消耗1升汽油行驶的里程.如图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况.下列叙述中正确的是( )A.消耗1升汽油,乙车最多可行驶5千米B.以相同速度行驶相同的路程,三辆汽车中,甲车消耗汽油量最多C.甲车以80千米/小时的速度行驶1小时,消耗10升汽油D.某城市机动车最高限速80千米/小时,相同条件下,在该城市用丙车比用乙车更省油5.已知甲、乙两种商品在过去一段时间内的价格走势如图所示.假设某商人持有资金120万元,他可以在t1至t4的任意时刻买卖这两种商品,且买卖能够立即成交(其他费用忽略不计).如果他在t4时刻卖出所有商品,那么他将获得的最大利润是( )A.40万元 B.60万元C.120万元 D.140万元6.某地区的绿化面积每年平均比上一年增长18%,经过x年后,绿化面积与原绿化面积之比为y,则y=f(x)的图象大致为( )7.某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况.加油时间 加油量(升) 加油时的累计里程(千米)2021年5月1日 12 35 0002021年5月15日 48 35 600注:“累计里程”指汽车从出厂开始累计行驶的路程.在这段时间内,该车每100千米平均耗油量为________升.8.某市生产总值连续两年持续增加,第一年的增长率为p,第二年的增长率为q,则该市这两年生产总值的年平均增长率为________.9.里氏震级M的计算公式为:M=lg A-lg A0,其中A是测震仪记录的地震曲线的最大振幅,A0是相应的标准地震的振幅.假设在一次地震中,测震仪记录的最大振幅是1 000,此时标准地震的振幅为0.001,则此次地震的震级为________级;9级地震的最大振幅是5级地震最大振幅的________倍.10.某地区居民生活用电分高峰和低谷两个时间段进行计价,该地区电网销售电价表如下:高峰时间段用电价格表 低谷时间段用电价格表高峰月用电量(单位:千瓦时) 高峰电价(单位:元/千瓦时) 低谷月用电量(单位:千瓦时) 低谷电价(单位:元/千瓦时)50及以下的部分 0.568 50及以下的部分 0.288超过50至200的部分 0.598 超过50至200的部分 0.318超过200的部分 0.668 超过200的部分 0.388若某家庭5月份的高峰时间段用电量为200千瓦时,低谷时间段用电量为100千瓦时,则按这种计费方式该家庭本月应付的电费为________元.(用数字作答)【练提升】1.某食品的保鲜时间y(单位:小时)与储藏温度x(单位:℃)满足函数关系y=ekx+b(e=2.718…为自然对数的底数,k,b为常数).若该食品在0 ℃的保鲜时间是192小时,在22 ℃的保鲜时间是48小时,则该食品在33 ℃的保鲜时间是( )A.16小时 B.20小时C.24小时 D.28小时2.国家规定个人稿费纳税办法为:不超过800元的不纳税;超过800元而不超过4000元的按超过部分的14%纳税;超过4000元的按全稿酬的11%纳税.若某人共纳税420元,则这个人的稿费为( )A.3000元 B.3800元C.3818元 D.5600元3.某类产品按工艺共分10个档次,最低档次产品每件利润为8元.每提高一个档次,每件利润增加2元.用同样工时,可以生产最低档次产品60件,每提高一个档次将少生产3件产品,则每天获得利润最大时生产产品的档次是( )A.7 B.8C.9 D.104.在标准温度和大气压下,人体血液中氢离子的物质的量的浓度(单位mol/L,记作[H+])和氢氧根离子的物质的量的浓度(单位mol/L,记作[OH-])的乘积等于常数10-14.已知pH值的定义为pH=-lg [H+],健康人体血液的pH值保持在7.35~7.45之间,那么健康人体血液中的可以为(参考数据:lg 2=0.30,lg 3=0.48)( )A. B.C. D.5.拟定甲、乙两地通话m分钟的电话费(单位:元)由f(m)=1.06(0.5[m]+1)给出,其中m>0,[m]是不超过m的最大整数(如[3]=3,[3.7]=3,[3.1]=3),则甲、乙两地通话6.5分钟的电话费为________元.6.物体在常温下的温度变化可以用牛顿冷却规律来描述:设物体的初始温度是T0,经过一定时间t(单位:min)后的温度是T,则T-Ta=(T0-Ta),其中Ta称为环境温度,h称为半衰期,现有一杯用85 ℃热水冲的速溶咖啡,放在21 ℃的房间中,如果咖啡降到37 ℃需要16 min,那么这杯咖啡要从37 ℃降到29 ℃,还需要________ min.7.某医药研究所开发的一种新药,如果成年人按规定的剂量服用,据监测,服药后每毫升血液中的含药量y(微克)与时间t(小时)之间近似满足如图所示的曲线.(1)写出第一次服药后y与t之间的函数关系式;(2)据进一步测定,每毫升血液中含药量不少于0.25微克时治疗疾病有效,求服药一次后治疗疾病有效的时间.8.食品安全问题越来越引起人们的重视,农药、化肥的滥用对人民群众的健康带来一定的危害,为了给消费者带来放心的蔬菜,某农村合作社每年投入200万元,搭建了甲、乙两个无公害蔬菜大棚,每个大棚至少要投入20万元,其中甲大棚种西红柿,乙大棚种黄瓜,根据以往的种菜经验,发现种西红柿的年收入P、种黄瓜的年收入Q与投入a(单位:万元)满足P=80+4,Q=a+120.设甲大棚的投入为x(单位:万元),每年两个大棚的总收入为f(x)(单位:万元).(1)求f(50)的值;(2)试问如何安排甲、乙两个大棚的投入,才能使总收入f(x)最大?9.食品安全问题越来越引起人们的重视,农药、化肥的滥用对人民群众的健康带来一定的危害,为了给消费者带来放心的蔬菜,某农村合作社每年投入200万元,搭建了甲、乙两个无公害蔬菜大棚,每个大棚至少要投入20万元,其中甲大棚种西红柿,乙大棚种黄瓜,根据以往的种菜经验,发现种西红柿的年收入P、种黄瓜的年收入Q与投入a(单位:万元)满足P=80+4,Q=a+120,设甲大棚的投入为x(单元:万元),每年两个大棚的总收益为f(x)(单位:万元).(1)求f(50)的值;(2)试问如何安排甲、乙两个大棚的投入,才能使总收益f(x)最大?10.某公司为了实现2020年销售利润1000万元的目标,准备制定一个激励销售人员的奖励方案:从销售利润达到10万元开始,按销售利润进行奖励,且奖金数额y(单位:万元)随销售利润x(单位:万元)的增加而增加,但奖金数额不超过5万元,同时奖金数额不超过销售利润的25%.现有三个奖励模型:y=0.025x,y=1.003x,y=ln x+1,问其中是否有模型能完全符合公司的要求?请说明理由.(参考数据:1.003538≈5,e=2.71828……,e8≈2981)第11讲 函数模型及其应用【练基础】1.在某种新型材料的研制中,实验人员获得了下列一组实验数据,现准备用下列四个函数中的一个近似地表示这些数据的规律,其中最接近的一个是( )x 1.992 3 4 5.15 6.126y 1.517 4.041 8 7.5 12 18.01A.y=2x-2 B.y=(x2-1)C.y=log2x D.y=logx【答案】B【解析】由题中表可知函数在(0,+∞)上是增函数,且y的变化随x的增大而增大得越来越快,分析选项可知B符合,故选B.2.据统计,每年到鄱阳湖国家湿地公园越冬的白鹤数量y(只)与时间x(年)近似地满足关系y=alog3(x+2),观察发现2020年(作为第1年)到该湿地公园越冬的白鹤数量为3000只,估计到2020年到该湿地公园越冬的白鹤的数量为( )A.4000只 B.5000只C.6000只 D.7000只【答案】C【解析】当x=1时,由3000=alog3(1+2),得a=3000,所以到2020年冬,即第7年,y=3000×log3(7+2)=6000,故选C.3.一种放射性元素的质量按每年10%衰减,这种放射性元素的半衰期(剩余质量为最初质量的一半所需的时间叫作半衰期)是(精确到0.1,已知lg 2=0.301 0,lg 3=0.477 1)( )A.5.2 B.6.6C.7.1 D.8.3【答案】B【解析】设这种放射性元素的半衰期是x年,则(1-10%)x=,化简得0.9x=,即x=log0.9===≈6.6(年).故选B.4.汽车的“燃油效率”,是指汽车每消耗1升汽油行驶的里程.如图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况.下列叙述中正确的是( )A.消耗1升汽油,乙车最多可行驶5千米B.以相同速度行驶相同的路程,三辆汽车中,甲车消耗汽油量最多C.甲车以80千米/小时的速度行驶1小时,消耗10升汽油D.某城市机动车最高限速80千米/小时,相同条件下,在该城市用丙车比用乙车更省油【答案】D【解析】根据图象知消耗1升汽油,乙车最多行驶里程大于5千米,故A错误;以相同速度行驶时,甲车燃油效率最高,因此以相同速度行驶相同路程时,甲车消耗汽油最少,故B错误;甲车以80千米/小时的速度行驶时燃油效率为10千米/升,行驶1小时,里程为80千米,消耗8升汽油,故C错误;最高限速80千米/小时,丙车的燃油效率比乙车高,因此相同条件下,在该市用丙车比用乙车更省油,故D正确.5.已知甲、乙两种商品在过去一段时间内的价格走势如图所示.假设某商人持有资金120万元,他可以在t1至t4的任意时刻买卖这两种商品,且买卖能够立即成交(其他费用忽略不计).如果他在t4时刻卖出所有商品,那么他将获得的最大利润是( )A.40万元 B.60万元C.120万元 D.140万元【答案】C【解析】甲6元时该商人全部买入甲商品,可以买120÷6=20(万份),在t2时刻全部卖出,此时获利20×2=40万元,乙4元时该商人买入乙商品,可以买(120+40)÷4=40(万份),在t4时刻全部卖出,此时获利40×2=80万元,共获利40+80=120万元,故选C.6.某地区的绿化面积每年平均比上一年增长18%,经过x年后,绿化面积与原绿化面积之比为y,则y=f(x)的图象大致为( )【答案】D【解析】设某地区起始年的绿化面积为a,因为该地区的绿化面积每年平均比上一年增长18%,所以经过x年后,绿化面积g(x)=a(1+18%)x,因为绿化面积与原绿化面积的比值为y,则y=f(x)==(1+18%)x=1.18x,因为y=1.18x为底数大于1的指数函数,故可排除A,C,当x=0时,y=1,可排除B,故选D.7.某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况.加油时间 加油量(升) 加油时的累计里程(千米)2021年5月1日 12 35 0002021年5月15日 48 35 600注:“累计里程”指汽车从出厂开始累计行驶的路程.在这段时间内,该车每100千米平均耗油量为________升.【解析】因为每次都把油箱加满,第二次加了48升油,说明这段时间总耗油量为48升,而行驶的路程为35 600-35 000=600(千米),故每100千米平均耗油量为48÷6=8(升).【答案】88.某市生产总值连续两年持续增加,第一年的增长率为p,第二年的增长率为q,则该市这两年生产总值的年平均增长率为________.【答案】-1【解析】设年平均增长率为x,则(1+x)2=(1+p)(1+q),∴x=-1.9.里氏震级M的计算公式为:M=lg A-lg A0,其中A是测震仪记录的地震曲线的最大振幅,A0是相应的标准地震的振幅.假设在一次地震中,测震仪记录的最大振幅是1 000,此时标准地震的振幅为0.001,则此次地震的震级为________级;9级地震的最大振幅是5级地震最大振幅的________倍.【解析】M=lg 1 000-lg 0.001=3-(-3)=6.设9级地震的最大振幅和5级地震的最大振幅分别为A1,A2,则9=lg A1-lg A0=lg ,则=109,5=lg A2-lg A0=lg ,则=105,所以=104.即9级地震的最大振幅是5级地震最大振幅的10 000倍.【答案】6 10 00010.某地区居民生活用电分高峰和低谷两个时间段进行计价,该地区电网销售电价表如下:高峰时间段用电价格表 低谷时间段用电价格表高峰月用电量(单位:千瓦时) 高峰电价(单位:元/千瓦时) 低谷月用电量(单位:千瓦时) 低谷电价(单位:元/千瓦时)50及以下的部分 0.568 50及以下的部分 0.288超过50至200的部分 0.598 超过50至200的部分 0.318超过200的部分 0.668 超过200的部分 0.388若某家庭5月份的高峰时间段用电量为200千瓦时,低谷时间段用电量为100千瓦时,则按这种计费方式该家庭本月应付的电费为________元.(用数字作答)【答案】148.4【解析】据题意有0.568×50+0.598×150+0.288×50+0.318×50=148.4(元).【练提升】1.某食品的保鲜时间y(单位:小时)与储藏温度x(单位:℃)满足函数关系y=ekx+b(e=2.718…为自然对数的底数,k,b为常数).若该食品在0 ℃的保鲜时间是192小时,在22 ℃的保鲜时间是48小时,则该食品在33 ℃的保鲜时间是( )A.16小时 B.20小时C.24小时 D.28小时【答案】C【解析】由已知得192=eb,①48=e22k+b=e22k·eb,②将①代入②得e22k=,则e11k=,当x=33时,y=e33k+b=e33k·eb=×192=24,所以该食品在33 ℃的保鲜时间是24小时.故选C.2.国家规定个人稿费纳税办法为:不超过800元的不纳税;超过800元而不超过4000元的按超过部分的14%纳税;超过4000元的按全稿酬的11%纳税.若某人共纳税420元,则这个人的稿费为( )A.3000元 B.3800元C.3818元 D.5600元【答案】B【解析】由题意可建立纳税额y关于稿费x的函数解析式为y=显然稿费应为8003.某类产品按工艺共分10个档次,最低档次产品每件利润为8元.每提高一个档次,每件利润增加2元.用同样工时,可以生产最低档次产品60件,每提高一个档次将少生产3件产品,则每天获得利润最大时生产产品的档次是( )A.7 B.8C.9 D.10【答案】C【解析】由题意,当生产第k档次的产品时,每天可获利润为y=[8+2(k-1)][60-3(k-1)]=-6k2+108k+378(1≤k≤10,k∈N*),配方可得y=-6(k-9)2+864,所以当k=9时,获得利润最大.选C.4.在标准温度和大气压下,人体血液中氢离子的物质的量的浓度(单位mol/L,记作[H+])和氢氧根离子的物质的量的浓度(单位mol/L,记作[OH-])的乘积等于常数10-14.已知pH值的定义为pH=-lg [H+],健康人体血液的pH值保持在7.35~7.45之间,那么健康人体血液中的可以为(参考数据:lg 2=0.30,lg 3=0.48)( )A. B.C. D.【答案】C【解析】∵[H+]·[OH-]=10-14,∴=[H+]2×1014,∵7.35<-lg [H+]<7.45,∴10-7.45<[H+]<10-7.35,∴10-0.9<=1014·[H+]2<10-0.7,10-0.9=>,lg (100.7)=0.7>lg 3>lg 2,∴100.7>3>2,10-0.7<<,∴<<.故选C.5.拟定甲、乙两地通话m分钟的电话费(单位:元)由f(m)=1.06(0.5[m]+1)给出,其中m>0,[m]是不超过m的最大整数(如[3]=3,[3.7]=3,[3.1]=3),则甲、乙两地通话6.5分钟的电话费为________元.【解析】因为m=6.5,所以[m]=6,则f(m)=1.06×(0.5×6+1)=4.24.【答案】4.246.物体在常温下的温度变化可以用牛顿冷却规律来描述:设物体的初始温度是T0,经过一定时间t(单位:min)后的温度是T,则T-Ta=(T0-Ta),其中Ta称为环境温度,h称为半衰期,现有一杯用85 ℃热水冲的速溶咖啡,放在21 ℃的房间中,如果咖啡降到37 ℃需要16 min,那么这杯咖啡要从37 ℃降到29 ℃,还需要________ min.【答案】8【解析】由题意知Ta=21 ℃.令T0=85 ℃,T=37 ℃,得37-21=(85-21)·,∴h=8.令T0=37 ℃,T=29 ℃,则29-21=(37-21)·,∴t=8.7.某医药研究所开发的一种新药,如果成年人按规定的剂量服用,据监测,服药后每毫升血液中的含药量y(微克)与时间t(小时)之间近似满足如图所示的曲线.(1)写出第一次服药后y与t之间的函数关系式;(2)据进一步测定,每毫升血液中含药量不少于0.25微克时治疗疾病有效,求服药一次后治疗疾病有效的时间.【解析】(1)由题图,设y=当t=1时,由y=4得k=4,由=4得a=3.所以y=(2)由y≥0.25得或解得≤t≤5.因此服药一次后治疗疾病有效的时间是5-=(小时).8.食品安全问题越来越引起人们的重视,农药、化肥的滥用对人民群众的健康带来一定的危害,为了给消费者带来放心的蔬菜,某农村合作社每年投入200万元,搭建了甲、乙两个无公害蔬菜大棚,每个大棚至少要投入20万元,其中甲大棚种西红柿,乙大棚种黄瓜,根据以往的种菜经验,发现种西红柿的年收入P、种黄瓜的年收入Q与投入a(单位:万元)满足P=80+4,Q=a+120.设甲大棚的投入为x(单位:万元),每年两个大棚的总收入为f(x)(单位:万元).(1)求f(50)的值;(2)试问如何安排甲、乙两个大棚的投入,才能使总收入f(x)最大?【解析】(1)若投入甲大棚50万元,则投入乙大棚150万元,所以f(50)=80+4+×150+120=277.5.(2)由题知,f(x)=80+4+(200-x)+120=-x+4+250,依题意得解得20≤x≤180,故f(x)=-x+4+250(20≤x≤180).令t=,则t2=x,t∈[2,6],y=-t2+4t+250=-(t-8)2+282,当t=8,即x=128时,y取得最大值282,所以投入甲大棚128万元,乙大棚72万元时,总收入最大,且最大收入为282万元.9.食品安全问题越来越引起人们的重视,农药、化肥的滥用对人民群众的健康带来一定的危害,为了给消费者带来放心的蔬菜,某农村合作社每年投入200万元,搭建了甲、乙两个无公害蔬菜大棚,每个大棚至少要投入20万元,其中甲大棚种西红柿,乙大棚种黄瓜,根据以往的种菜经验,发现种西红柿的年收入P、种黄瓜的年收入Q与投入a(单位:万元)满足P=80+4,Q=a+120,设甲大棚的投入为x(单元:万元),每年两个大棚的总收益为f(x)(单位:万元).(1)求f(50)的值;(2)试问如何安排甲、乙两个大棚的投入,才能使总收益f(x)最大?【解析】(1)由题意知甲大棚投入50万元,则乙大棚投入150万元,所以f(50)=80+4+×150+120=277.5(万元).(2)f(x)=80+4+(200-x)+120=-x+4+250,依题意得 20≤x≤180,故f(x)=-x+4+250(20≤x≤180).令t=,则t∈[2,6],y=-t2+4t+250=-(t-8)2+282,当t=8,即x=128时,f(x)取得最大值,f(x)max=282.所以甲大棚投入128万元,乙大棚投入72万元时,总收益最大,且最大总收益为282万元.10.某公司为了实现2020年销售利润1000万元的目标,准备制定一个激励销售人员的奖励方案:从销售利润达到10万元开始,按销售利润进行奖励,且奖金数额y(单位:万元)随销售利润x(单位:万元)的增加而增加,但奖金数额不超过5万元,同时奖金数额不超过销售利润的25%.现有三个奖励模型:y=0.025x,y=1.003x,y=ln x+1,问其中是否有模型能完全符合公司的要求?请说明理由.(参考数据:1.003538≈5,e=2.71828……,e8≈2981)【解析】由题意,符合公司要求的模型需同时满足:当x∈[10,1000]时,①函数为增函数;②函数的最大值不超过5;③y≤x·25%.(1)对于y=0.025x,易知满足①,但当x>200时,y>5,不满足公司的要求.(2)对于y=1.003x,易知满足①,但当x>538时,y>5,不满足公司的要求.(3)对于y=ln x+1,易知满足①.当x∈[10,1000]时,y≤ln 1000+1.下面证明ln 1000+1<5.因为ln 1000+1-5=ln 1000-4=(ln 1000-8)≈(ln 1000-ln 2981)<0,满足②.再证明ln x+1≤x·25%,即2ln x+4-x≤0.设F(x)=2ln x+4-x,则F′(x)=-1=<0,x∈[10,1000],所以F(x)在[10,1000]上为减函数,F(x)max=F(10)=2ln 10+4-10=2ln 10-6=2(ln 10-3)<0,满足③.综上,奖励模型y=ln x+1能完全符合公司的要求.第11讲 函数模型及其应用【学科素养】数学抽象、逻辑推理、数学运算【课标解读】1.了解指数函数、对数函数及幂函数的增长特征,掌握求解函数应用题的步骤.(重点)2.了解函数模型及拟合函数模型;在同一坐标系中能对不同函数的图象进行比较.3.建立函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的),要正确地确定实际背景下的定义域,将数学问题还原为实际问题.【备考策略】从近三年高考情况来看,本讲是高考中的一个冷考点.预测2022年高考将主要考查现实生活中的生产经营、工程建设、企业的赢利与亏损等热点问题中的增长或减少问题,以一次函数、二次函数、指数、对数型函数及对勾函数模型为主,考查考生建模能力和分析解决问题的能力.【核心知识】知识点一 指数、对数、幂函数模型性质比较函数性质 y=ax(a>1) y=logax(a>1) y=xn(n>0)在(0,+∞)上的增减性 单调递增 单调递增 单调递增增长速度 越来越快 越来越慢 相对平稳图象的变化 随x的增大逐渐表现为与y轴平行 随x的增大逐渐表现为与x轴平行 随n值变化而各有不同知识点二 种常见的函数模型函数模型 函数解析式一次函数模型 f(x)=ax+b(a、b为常数,a≠0)二次函数模型 f(x)=ax2+bx+c(a,b,c为常数,a≠0)与指数函数相关模型 f(x)=bax+c(a,b,c为常数,a>0且a≠1,b≠0)与对数函数相关模型 f(x)=blogax+c(a,b,c为常数,a>0且a≠1,b≠0)与幂函数相关模型 f(x)=axn+b(a,b,n为常数,a≠0)【特别提醒】1.“直线上升”是匀速增长,其增长量固定不变;“指数增长”先慢后快,其增长量成倍增加,常用“指数爆炸”来形容;“对数增长”先快后慢,其增长速度缓慢.2.充分理解题意,并熟练掌握几种常见函数的图象和性质是解题的关键.3.易忽视实际问题中自变量的取值范围,需合理确定函数的定义域,必须验证数学结果对实际问题的合理性.【高频考点】高频考点一 利用函数模型解决实际问题例1.【2019·北京卷】李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.①当x=10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x的最大值为__________.【方法技巧】(1)认清所给函数模型,弄清哪些量为待定系数.(2)根据已知利用待定系数法,确定模型中的待定系数.(3)利用该模型求解实际问题.【变式探究】某市家庭煤气的使用量x(单位:m3)和煤气费f (x)(单位:元)满足关系f (x)=已知某家庭2020年前三个月的煤气费如表:月份 用气量 煤气费一月份 4 m3 4元二月份 25 m3 14元三月份 35 m3 19元若四月份该家庭使用了20 m3的煤气,则其煤气费为( )A.11.5元 B.11元C.10.5元 D.10元【举一反三】某商场从生产厂家以每件20元的价格购进一批商品,若该商品零售价定为p元,销售量为Q件,销售量Q(单位:件)与零售价p(单位:元)有如下关系:Q=8 300-170p-p2,则最大毛利润为(毛利润=销售收入-进货支出)( )A.30元 B.60元 C.28 000元 D.23 000元高频考点二 构建一次函数、二次函数模型解决实际问题例2.某城市对一种售价为每件160元的商品征收附加税,税率为R%(即每销售100元征税R元),若年销售量为(30-R)万件,要使附加税不少于128万元,则R的取值范围是( )A.[4,8] B.[6,10]C.[4%,8%] D.[6%,10%]【方法突破】(1)二次函数的最值一般利用配方法与函数的单调性解决,但一定要密切注意函数的定义域,否则极易出错;(2)确定一次函数模型时,一般是借助两个点来确定,常用待定系数法;(3)解决函数应用问题时,最后要还原到实际问题.【变式探究】如图,已知边长为8米的正方形钢板有一个角被锈蚀,其中AE=4米,CD=6米.为了合理利用这块钢板,在五边形ABCDE内截取一个矩形BNPM,使点P在边DE上.(1)设MP=x米,PN=y米,将y表示成x的函数,并求该函数的解析式及定义域;(2)求矩形BNPM面积的最大值.高频考点三 构建指数函数、对数函数模型解决实际问题例3.【2020·全国Ⅰ卷】基本再生数R0与世代间隔T是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型I(t)=ert描述累计感染病例数I(t)随时间t(单位:天)的变化规律,指数增长率r与R0,T近似满足R0 =1+rT.有学者基于已有数据估计出R0=3.28,T=6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln 2≈0.69)( )A.1.2天 B.1.8天C.2.5天 D.3.5天【方法技巧】(1)要先学会合理选择模型,指数函数模型是增长速度越来越快(底数大于1)的一类函数模型,与增长率、银行利率有关的问题都属于指数函数模型.(2)在解决指数函数、对数函数模型问题时,一般先需要通过待定系数法确定函数解析式,再借助函数的图象求解最值问题. 【变式探究】某公司为激励创新,计划逐年加大研发资金投入.若该公司2015年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是( )(参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg 2≈0.30)A.2018年 B.2019年C.2020年 D.2021年【举一反三】某公司为激励创新,计划逐年加大研发资金投入.若该公司2015年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是( )(参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg 2≈0.30)A.2018年 B.2019年C.2020年 D.2021年高频考点四 构建分段函数模型解决实际问题例4.提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v(单位:千米/时)是车流密度x(单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/时.研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数.(1)当0≤x≤200时,求函数v(x)的表达式;(2)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/时)f(x)=x·v(x)可以达到最大,并求出最大值.(精确到1辆/时)【方法突破】(1)实际问题中有些变量间的关系不能用同一个关系式给出,而是由几个不同的关系式构成,如出租车票价与路程之间的关系,应构建分段函数模型求解;(2)构造分段函数时,要力求准确、简捷,做到分段合理、不重不漏;(3)分段函数的最值是各段的最大(最小)值的最大(最小)者. 【变式探究】某景区提供自行车出租,该景区有50辆自行车供游客租赁使用,管理这些自行车的费用是每日115元.根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超出6元,则每超过1元,租不出的自行车就增加3辆.为了便于结算,每辆自行车的日租金x(元)只取整数,并且要求租自行车一日的总收入必须高于这一日的管理费用,用y(元)表示出租自行车的日净收入(即一日中出租自行车的总收入减去管理费用后得到的部分).(1)求函数y=f(x)的解析式;(2)试问当每辆自行车的日租金为多少元时,才能使一日的净收入最多?第11讲 函数模型及其应用【学科素养】数学抽象、逻辑推理、数学运算【课标解读】1.了解指数函数、对数函数及幂函数的增长特征,掌握求解函数应用题的步骤.(重点)2.了解函数模型及拟合函数模型;在同一坐标系中能对不同函数的图象进行比较.3.建立函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的),要正确地确定实际背景下的定义域,将数学问题还原为实际问题.【备考策略】从近三年高考情况来看,本讲是高考中的一个冷考点.预测2022年高考将主要考查现实生活中的生产经营、工程建设、企业的赢利与亏损等热点问题中的增长或减少问题,以一次函数、二次函数、指数、对数型函数及对勾函数模型为主,考查考生建模能力和分析解决问题的能力.【核心知识】知识点一 指数、对数、幂函数模型性质比较函数性质 y=ax(a>1) y=logax(a>1) y=xn(n>0)在(0,+∞)上的增减性 单调递增 单调递增 单调递增增长速度 越来越快 越来越慢 相对平稳图象的变化 随x的增大逐渐表现为与y轴平行 随x的增大逐渐表现为与x轴平行 随n值变化而各有不同知识点二 种常见的函数模型函数模型 函数解析式一次函数模型 f(x)=ax+b(a、b为常数,a≠0)二次函数模型 f(x)=ax2+bx+c(a,b,c为常数,a≠0)与指数函数相关模型 f(x)=bax+c(a,b,c为常数,a>0且a≠1,b≠0)与对数函数相关模型 f(x)=blogax+c(a,b,c为常数,a>0且a≠1,b≠0)与幂函数相关模型 f(x)=axn+b(a,b,n为常数,a≠0)【特别提醒】1.“直线上升”是匀速增长,其增长量固定不变;“指数增长”先慢后快,其增长量成倍增加,常用“指数爆炸”来形容;“对数增长”先快后慢,其增长速度缓慢.2.充分理解题意,并熟练掌握几种常见函数的图象和性质是解题的关键.3.易忽视实际问题中自变量的取值范围,需合理确定函数的定义域,必须验证数学结果对实际问题的合理性.【高频考点】高频考点一 利用函数模型解决实际问题例1.【2019·北京卷】李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.①当x=10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x的最大值为__________.【答案】①130;②15【解析】①x=10时,顾客一次购买草莓和西瓜各一盒,需要支付元.②设顾客一次购买水果的促销前总价为元,当元时,李明得到的金额为,符合要求;当元时,有恒成立,即,因为,所以的最大值为.综上,①130;②15.【方法技巧】(1)认清所给函数模型,弄清哪些量为待定系数.(2)根据已知利用待定系数法,确定模型中的待定系数.(3)利用该模型求解实际问题.【变式探究】某市家庭煤气的使用量x(单位:m3)和煤气费f (x)(单位:元)满足关系f (x)=已知某家庭2020年前三个月的煤气费如表:月份 用气量 煤气费一月份 4 m3 4元二月份 25 m3 14元三月份 35 m3 19元若四月份该家庭使用了20 m3的煤气,则其煤气费为( )A.11.5元 B.11元C.10.5元 D.10元【答案】A 【解析】根据题意可知f (4)=C=4,f (25)=C+B(25-A)=14,f (35)=C+B(35-A)=19,解得A=5,B=,C=4,所以f (x)=所以f (20)=4+×(20-5)=11.5.【举一反三】某商场从生产厂家以每件20元的价格购进一批商品,若该商品零售价定为p元,销售量为Q件,销售量Q(单位:件)与零售价p(单位:元)有如下关系:Q=8 300-170p-p2,则最大毛利润为(毛利润=销售收入-进货支出)( )A.30元 B.60元 C.28 000元 D.23 000元【答案】D 【解析】设毛利润为L(p)元,则由题意知L(p)=pQ-20Q=Q(p-20)=(8 300-170p-p2)(p-20)=-p3-150p2+11 700p-166 000,所以L′(p)=-3p2-300p+11 700. 令L′(p)=0,解得p=30或p=-130(舍去).当p∈(0,30)时,L′(p)>0;当p∈(30,+∞)时,L′(p)<0.故L(p)在p=30时取得极大值,即最大值,且最大值为L(30)=23 000.高频考点二 构建一次函数、二次函数模型解决实际问题例2.某城市对一种售价为每件160元的商品征收附加税,税率为R%(即每销售100元征税R元),若年销售量为(30-R)万件,要使附加税不少于128万元,则R的取值范围是( )A.[4,8] B.[6,10]C.[4%,8%] D.[6%,10%]【答案】A【解析】根据题意,要使附加税不少于128万元,需×160×R%≥128,整理得R2-12R+32≤0,解得4≤R≤8,即R∈[4,8].【方法突破】(1)二次函数的最值一般利用配方法与函数的单调性解决,但一定要密切注意函数的定义域,否则极易出错;(2)确定一次函数模型时,一般是借助两个点来确定,常用待定系数法;(3)解决函数应用问题时,最后要还原到实际问题.【变式探究】如图,已知边长为8米的正方形钢板有一个角被锈蚀,其中AE=4米,CD=6米.为了合理利用这块钢板,在五边形ABCDE内截取一个矩形BNPM,使点P在边DE上.(1)设MP=x米,PN=y米,将y表示成x的函数,并求该函数的解析式及定义域;(2)求矩形BNPM面积的最大值.【解析】(1)如图,作PQ⊥AF于点Q,所以PQ=8-y,EQ=x-4,在△EDF中,=,所以=,所以y=-x+10,定义域为{x|4≤x≤8}.(2)设矩形BNPM的面积为S,则S(x)=xy=x=-(x-10)2+50,所以S(x)是关于x的二次函数,且其图象开口向下,对称轴为直线x=10,所以当x∈[4,8]时,S(x)单调递增,所以当x=8时,矩形BNPM的面积取得最大值,最大值为48平方米.高频考点三 构建指数函数、对数函数模型解决实际问题例3.【2020·全国Ⅰ卷】基本再生数R0与世代间隔T是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型I(t)=ert描述累计感染病例数I(t)随时间t(单位:天)的变化规律,指数增长率r与R0,T近似满足R0 =1+rT.有学者基于已有数据估计出R0=3.28,T=6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln 2≈0.69)( )A.1.2天 B.1.8天C.2.5天 D.3.5天【答案】B 【解析】因为R0=3.28,T=6,R0=1+rT,所以r==0.38,所以I(t)=ert=e0.38t.设在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间为t1天,则e=2e0.38t,所以e=2,所以0.38t1=ln 2,所以t1=≈≈1.8(天).故选B.【方法技巧】(1)要先学会合理选择模型,指数函数模型是增长速度越来越快(底数大于1)的一类函数模型,与增长率、银行利率有关的问题都属于指数函数模型.(2)在解决指数函数、对数函数模型问题时,一般先需要通过待定系数法确定函数解析式,再借助函数的图象求解最值问题. 【变式探究】某公司为激励创新,计划逐年加大研发资金投入.若该公司2015年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是( )(参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg 2≈0.30)A.2018年 B.2019年C.2020年 D.2021年【答案】B【解析】根据题意,知每年投入的研发资金增长的百分率相同,所以,从2015年起,每年投入的研发资金组成一个等比数列{an},其中,首项a1=130,公比q=1+12%=1.12,所以an=130×1.12n-1.由130×1.12n-1>200,两边同时取对数,得n-1>,又≈=3.8,则n>4.8,即a5开始超过200,所以2019年投入的研发资金开始超过200万元,故选B.【举一反三】某公司为激励创新,计划逐年加大研发资金投入.若该公司2015年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是( )(参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg 2≈0.30)A.2018年 B.2019年C.2020年 D.2021年【答案】B【解析】根据题意,知每年投入的研发资金增长的百分率相同,所以从2015年起,每年投入的研发资金组成一个等比数列{an},其中首项a1=130,公比q=1+12%=1.12,所以an=130×1.12n-1.由130×1.12n-1>200,两边同时取对数,得n-1>,又≈=3.8,则n>4.8,即a5开始超过200,所以2019年投入的研发资金开始超过200万元,故选B.高频考点四 构建分段函数模型解决实际问题例4.提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v(单位:千米/时)是车流密度x(单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/时.研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数.(1)当0≤x≤200时,求函数v(x)的表达式;(2)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/时)f(x)=x·v(x)可以达到最大,并求出最大值.(精确到1辆/时)【解析】(1)由题意,当0≤x≤20时,v(x)=60;当20再由已知得解得故函数v(x)的表达式为v(x)=(2)依题意并由(1)可得f(x)=当0≤x≤20时,f(x)为增函数,故当x=20时,其最大值为60×20=1 200;当20f(x)=x(200-x)≤=,当且仅当x=200-x,即x=100时,等号成立.所以当x=100时,f(x)在区间(20,200]上取得最大值.综上,当x=100时,f(x)在区间上取得最大值≈3 333,即当车流密度为100辆/千米时,车流量可以达到最大,最大值约为3 333辆/时.【方法突破】(1)实际问题中有些变量间的关系不能用同一个关系式给出,而是由几个不同的关系式构成,如出租车票价与路程之间的关系,应构建分段函数模型求解;(2)构造分段函数时,要力求准确、简捷,做到分段合理、不重不漏;(3)分段函数的最值是各段的最大(最小)值的最大(最小)者. 【变式探究】某景区提供自行车出租,该景区有50辆自行车供游客租赁使用,管理这些自行车的费用是每日115元.根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超出6元,则每超过1元,租不出的自行车就增加3辆.为了便于结算,每辆自行车的日租金x(元)只取整数,并且要求租自行车一日的总收入必须高于这一日的管理费用,用y(元)表示出租自行车的日净收入(即一日中出租自行车的总收入减去管理费用后得到的部分).(1)求函数y=f(x)的解析式;(2)试问当每辆自行车的日租金为多少元时,才能使一日的净收入最多?【解析】(1)当x≤6时,y=50x-115,令50x-115>0,解得x>2.3,∵x为整数,∴3≤x≤6,x∈Z.当x>6时,y=[50-3(x-6)]x-115=-3x2+68x-115.令-3x2+68x-115>0,有3x2-68x+115<0,结合x为整数得6∴y=(2)对于y=50x-115(3≤x≤6,x∈Z),显然当x=6时,ymax=185;对于y=-3x2+68x-115=-32+(6当x=11时,ymax=270.∵270>185,∴当每辆自行车的日租金定为11元时,才能使一日的净收入最多. 展开更多...... 收起↑ 资源列表 (课标全国版)高考数学第一轮复习讲练测 第11讲 函数模型及其应用 (练)原卷版+解析.docx (课标全国版)高考数学第一轮复习讲练测 第11讲 函数模型及其应用 (讲)原卷版+解析.docx