资源简介 第47讲 随机抽样与用样本估计总体【练基础】1.利用简单随机抽样,从n个个体中抽取一个容量为10的样本.若第二次抽取时,余下的每个个体被抽到的概率为,则在整个抽样过程中,每个个体被抽到的概率为( )A. B.C. D.2.为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别为x1,x2,…,xn,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是( )A.x1,x2,…,xn的平均数 B.x1,x2,…,xn的标准差C.x1,x2,…,xn的最大值 D.x1,x2,…,xn的中位数3.2020年全球“新冠”疫情暴发,严重影响了人们的常态生活.某市据统计得到5月份居民消费的各类商品及服务价格环比(与4月份相比)变动情况如图:则下列叙述不正确的是( )A.八大消费价格环比呈现四涨四平B.其他用品服务价格环比涨幅最大C.生活用品及服务和医疗保健价格环比涨幅相同D.5月份居民消费平均价格环比持平4.某公司生产A,B,C三种不同型号的轿车,其产量之比为2∶3∶4,为检验该公司的产品质量,用分层抽样的方法抽取一个容量为n的样本,若样本中A种型号的轿车比B种型号的轿车少8辆,则n=( )A.96 B.72C.48 D.365.甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则( )A.甲的成绩的平均数小于乙的成绩的平均数B.甲的成绩的中位数等于乙的成绩的中位数C.甲的成绩的方差小于乙的成绩的方差D.甲的成绩的极差小于乙的成绩的极差6.在第二次高考模拟市统测结束后,某校高三年级一个班级为预估本班学生的高考成绩水平,登记了全班同学的卷面成绩.经查询得知班上所有同学的学业水平考试成绩22分加分均已取得,则学业水平考试加分22分前后相比,不变的数字特征是( )A.平均数 B.方差C.中位数 D.众数7.为了改善市民的生活环境,某沿江城市决定对本市的1 000家中小型化工企业进行污染情况摸排,并把污染情况综合折算成标准分100分,如图为该市被调查的化工企业的污染情况标准分的频率分布直方图,根据该图可估计本市标准分不低于50分的企业数为( )A.400 B.500C.600 D.8008.某校对高三年级1 600名男女学生的视力状况进行调查,现用分层抽样的方法抽取一个容量是200的样本,已知样本中女生比男生少10人,则该校高三年级的女生人数是________.9.高三某宿舍共8人,在一次体检中测得其中7个人的体重分别为60,55,60,55,65,50,50(单位:千克),其中一人因故未测,已知该同学的体重在50~60千克之间,则此次体检中该宿舍成员体重的中位数为55的概率为________.10.从一批零件中抽取80个,测量其直径(单位:mm),将所得数据分为9组:[5.31,5.33),[5.33,5.35),…,[5.45,5.47),[5.47,5.49],并整理得到如下频率分布直方图,则在被抽取的零件中,直径落在区间[5.43,5.47]内的个数为________.【练提升】1.要完成下列两项调查:①从某社区125户高收入家庭、280户中等收入家庭、95户低收入家庭中选出100户调查社会购买力的某项指标;②从某中学的15名艺术特长生中选出3名调查学习负担情况,宜采用的抽样方法依次为( )A.①随机抽样法,②系统抽样法B.①分层抽样法,②随机抽样法C.①系统抽样法,②分层抽样法D.①②都用分层抽样法2.一个总体中有600个个体,随机编号为001,002,…,600,利用系统抽样方法抽取容量为24的一个样本,总体分组后在第一组随机抽得的编号为006,则在编号为051~125之间抽得的编号为( )A.056,080,104 B.054,078,102C.054,079,104 D.056,081,1063.对一批产品的长度(单位:mm)进行抽样检测,下图为检测结果的频率分布直方图.根据标准,产品长度在区间[20,25)上的为一等品,在区间[15,20)和区间[25,30)上的为二等品,在区间[10,15)和[30,35]上的为三等品.用频率估计概率,现从该批产品中随机抽取一件,则其为二等品的概率为( )A.0.09 B.0.20C.0.25 D.0.454.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为( )A.0.5 B.0.6C.0.7 D.0.85.如图为某市国庆节7天假期的楼房认购量与成交量的折线图,小明同学根据折线图对这7天的认购量(单位:套)与成交量(单位:套)作出如下判断:①日成交量的中位数是16;②日成交量超过日平均成交量的有2天;③认购量与日期正相关;④10月7日认购量的增长率小于10月7日成交量的增长率.则上述判断正确的个数为( )A.0 B.1C.2 D.36.Keep是一款具有社交属性的健身APP,致力于提供健身教学、跑步、骑行、交友及健身饮食指导、装备购买等一站式运动解决方案.Keep可以让你随时随地进行锻炼,记录你每天的训练进程.不仅如此,它还可以根据不同人的体质,制定不同的健身计划.小明根据Keep记录的2020年1月至2020年11月期间每月跑步的里程(单位:十公里)数据整理并绘制了下面的折线图.根据该折线图,下列结论不正确的是( )A.月跑步里程最小值出现在2月B.月跑步里程逐月增加C.月跑步里程的中位数为5月份对应的里程数D.1月至5月的月跑步里程相对于6月至11月波动性更小7.已知某地区中小学生人数和近视情况分别如图甲和图乙所示.为了了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为________、________.8.为了了解某校高三美术生的身体状况,抽查了部分美术生的体重,将所得数据整理后,作出了如图所示的频率分布直方图.已知图中从左到右的前3个小组的频率之比为1∶3∶5,第2个小组的频数为15,则被抽查的美术生的人数是________.9.某校1 200名高三年级学生参加了一次数学测验(满分为100分),为了分析这次数学测验的成绩,从这1 200人的数学成绩中随机抽取200人的成绩绘制成如下的统计表,请根据表中提供的信息解决下列问题:成绩分组 频数 频率 平均分[0,20) 3 0.015 16[20,40) a b 32.1[40,60) 25 0.125 55[60,80) c 0.5 74[80,100] 62 0.31 88(1)求a,b,c的值;(2)如果从这1 200名学生中随机抽取一人,试估计这名学生该次数学测验及格的概率P(注:60分及60分以上为及格);(3)试估计这次数学测验的年级平均分.10.为了了解甲、乙两个工厂生产的轮胎的宽度是否达标,从两厂各随机选取了10个轮胎,将每个轮胎的宽度(单位:mm)记录下来并绘制出如下的折线图:(1)分别计算甲、乙两厂提供的10个轮胎宽度的平均值;(2)若轮胎的宽度在[194,196]内,则称这个轮胎是标准轮胎.试比较甲、乙两厂分别提供的10个轮胎中所有标准轮胎宽度的方差的大小,根据两厂的标准轮胎宽度的平均水平及其波动情况,判断这两个工厂哪个的轮胎相对更好.第47讲 随机抽样与用样本估计总体【练基础】1.利用简单随机抽样,从n个个体中抽取一个容量为10的样本.若第二次抽取时,余下的每个个体被抽到的概率为,则在整个抽样过程中,每个个体被抽到的概率为( )A. B.C. D.【答案】C 【解析】根据题意,=,解得n=28.故在整个抽样过程中每个个体被抽到的概率为=.2.为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别为x1,x2,…,xn,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是( )A.x1,x2,…,xn的平均数 B.x1,x2,…,xn的标准差C.x1,x2,…,xn的最大值 D.x1,x2,…,xn的中位数【答案】B 【解析】统计问题中,衡量数据的稳定程度的指标为数据的方差或标准差.故选B.3.2020年全球“新冠”疫情暴发,严重影响了人们的常态生活.某市据统计得到5月份居民消费的各类商品及服务价格环比(与4月份相比)变动情况如图:则下列叙述不正确的是( )A.八大消费价格环比呈现四涨四平B.其他用品服务价格环比涨幅最大C.生活用品及服务和医疗保健价格环比涨幅相同D.5月份居民消费平均价格环比持平【答案】D 【解析】对于A选项,由图可知,饮食烟酒、衣着、居住、交通和通信持平,生活用品及服务、教育文化娱乐、医疗保健、其他用品服务价格环比上涨,所以A选项叙述正确.对于B选项,由图可知,八大消费价格中,其他用品服务价格环比涨幅最大,所以B选项叙述正确.对于C选项,由图可知,生活用品及服务和医疗保健价格环比涨幅相同,所以C选项叙述正确.对于D选项,由于八大消费价格环比呈现四涨四平,所以5月份居民消费平均价格环比上涨,所以D选项叙述不正确.故选D.4.某公司生产A,B,C三种不同型号的轿车,其产量之比为2∶3∶4,为检验该公司的产品质量,用分层抽样的方法抽取一个容量为n的样本,若样本中A种型号的轿车比B种型号的轿车少8辆,则n=( )A.96 B.72C.48 D.36【答案】B 【解析】由题意得n-n=8,所以n=72.故选B.5.甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则( )A.甲的成绩的平均数小于乙的成绩的平均数B.甲的成绩的中位数等于乙的成绩的中位数C.甲的成绩的方差小于乙的成绩的方差D.甲的成绩的极差小于乙的成绩的极差【答案】C 【解析】甲的平均数是=6,中位数是6,极差是4,方差是=2;乙的平均数是=6,中位数是5,极差是4,方差是=,比较可得选项C正确.6.在第二次高考模拟市统测结束后,某校高三年级一个班级为预估本班学生的高考成绩水平,登记了全班同学的卷面成绩.经查询得知班上所有同学的学业水平考试成绩22分加分均已取得,则学业水平考试加分22分前后相比,不变的数字特征是( )A.平均数 B.方差C.中位数 D.众数【答案】B 【解析】学业水平考试加分22分前后相比,平均数、中位数、众数都在原来的基础上加上了22,而全班的成绩波动性未发生变化,即方差不变.7.为了改善市民的生活环境,某沿江城市决定对本市的1 000家中小型化工企业进行污染情况摸排,并把污染情况综合折算成标准分100分,如图为该市被调查的化工企业的污染情况标准分的频率分布直方图,根据该图可估计本市标准分不低于50分的企业数为( )A.400 B.500C.600 D.800【答案】B【解析】根据频率分布直方图计算得50分以上的频率为1-(0.005×20+0.012 5×20+0.015×10)=0.50,所以本市标准分不低于50分的企业数为500.8.某校对高三年级1 600名男女学生的视力状况进行调查,现用分层抽样的方法抽取一个容量是200的样本,已知样本中女生比男生少10人,则该校高三年级的女生人数是________.【解析】设样本中女生有x人,则男生有x+10人,所以x+x+10=200,得x=95,设该校高三年级的女生有y人,则由分层抽样的定义可知=,解得y=760.【答案】7609.高三某宿舍共8人,在一次体检中测得其中7个人的体重分别为60,55,60,55,65,50,50(单位:千克),其中一人因故未测,已知该同学的体重在50~60千克之间,则此次体检中该宿舍成员体重的中位数为55的概率为________.【解析】将七个人的体重按顺序排列如下:50,50,55,55,60,60,65,若此次体检中该宿舍成员体重的中位数为55,只需未测体重的同学体重要小于等于55,又该同学的体重在50~60千克之间,所以此次体检中该宿舍成员体重的中位数为55的概率为P==.【答案】10.从一批零件中抽取80个,测量其直径(单位:mm),将所得数据分为9组:[5.31,5.33),[5.33,5.35),…,[5.45,5.47),[5.47,5.49],并整理得到如下频率分布直方图,则在被抽取的零件中,直径落在区间[5.43,5.47]内的个数为________.【解析】由题知[5.43,5.45)与[5.45,5.47]所对应的小矩形的高分别为6.25,5.00,所以[5.43,5.47]的频率为(6.25+5.00)×0.02=0.225,所以直径落在区间[5.43,5.47]内的个数为80×0.225=18.【答案】18【练提升】1.要完成下列两项调查:①从某社区125户高收入家庭、280户中等收入家庭、95户低收入家庭中选出100户调查社会购买力的某项指标;②从某中学的15名艺术特长生中选出3名调查学习负担情况,宜采用的抽样方法依次为( )A.①随机抽样法,②系统抽样法B.①分层抽样法,②随机抽样法C.①系统抽样法,②分层抽样法D.①②都用分层抽样法【答案】B 【解析】∵社会购买力的某项指标,受到家庭收入的影响,而社区中各个家庭收入差别明显,①用分层抽样法;而从某中学的15名艺术特长生,要从中选出3人调查学习负担情况的调查中个体之间差别不大,且总体和样本容量较小,∴②用随机抽样法.2.一个总体中有600个个体,随机编号为001,002,…,600,利用系统抽样方法抽取容量为24的一个样本,总体分组后在第一组随机抽得的编号为006,则在编号为051~125之间抽得的编号为( )A.056,080,104 B.054,078,102C.054,079,104 D.056,081,106【答案】D 【解析】因为系统抽样的间隔为=25,所以编号为051~125之间抽得的编号为006+2×25=056,006+3×25=081,006+4×25=106.3.对一批产品的长度(单位:mm)进行抽样检测,下图为检测结果的频率分布直方图.根据标准,产品长度在区间[20,25)上的为一等品,在区间[15,20)和区间[25,30)上的为二等品,在区间[10,15)和[30,35]上的为三等品.用频率估计概率,现从该批产品中随机抽取一件,则其为二等品的概率为( )A.0.09 B.0.20C.0.25 D.0.45【答案】D 【解析】由图可知,二等品的概率为1-(0.02+0.06+0.03)×5=0.45.所以从该批产品中随机抽取1件,则其是二等品的概率为0.45.4.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为( )A.0.5 B.0.6C.0.7 D.0.8【答案】C 【解析】设调查的100位学生中阅读过《西游记》的学生人数为x,则x+80-60=90,解得x=70,所以该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为=0.7.5.如图为某市国庆节7天假期的楼房认购量与成交量的折线图,小明同学根据折线图对这7天的认购量(单位:套)与成交量(单位:套)作出如下判断:①日成交量的中位数是16;②日成交量超过日平均成交量的有2天;③认购量与日期正相关;④10月7日认购量的增长率小于10月7日成交量的增长率.则上述判断正确的个数为( )A.0 B.1C.2 D.3【答案】B 【解析】7天假期的楼房认购量按由小到大顺序为:91,100,105,107,112,223,276;成交量按由小到大顺序为:8,13,16,26,32,38,166.对于①,日成交量的中位数是26,故错误;对于②,日平均成交量为:≈42.7,有1天日成交量超过日平均成交量,故错误;对于③,根据图形可得认购量与日期不是正相关,故错误;对于④,10月7日认购量的增长率小于10月7日成交量的增长率,故正确.6.Keep是一款具有社交属性的健身APP,致力于提供健身教学、跑步、骑行、交友及健身饮食指导、装备购买等一站式运动解决方案.Keep可以让你随时随地进行锻炼,记录你每天的训练进程.不仅如此,它还可以根据不同人的体质,制定不同的健身计划.小明根据Keep记录的2020年1月至2020年11月期间每月跑步的里程(单位:十公里)数据整理并绘制了下面的折线图.根据该折线图,下列结论不正确的是( )A.月跑步里程最小值出现在2月B.月跑步里程逐月增加C.月跑步里程的中位数为5月份对应的里程数D.1月至5月的月跑步里程相对于6月至11月波动性更小【答案】B【解析】由折线图可知,月跑步里程的最小值出现在2月,故A正确;月跑步里程不是逐月增加的,故B不正确;月跑步里程数从小到大排列分别是:2月,8月,3月,4月,1月,5月,7月,6月,11月,9月,10月对应的里程数,故5月份对应的里程数为中位数,故C正确;由图可知,1月至5月的月跑步里程相对于6月至11月波动性更小,变化比较平稳,故D正确.7.已知某地区中小学生人数和近视情况分别如图甲和图乙所示.为了了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为________、________.【解析】由题图甲可知学生总人数是10 000,样本容量为10 000×2%=200,抽取的高中生人数是2 000×2%=40,由题图乙可知高中生的近视率为50%,所以抽取的高中生的近视人数为40×50%=20.【答案】200 208.为了了解某校高三美术生的身体状况,抽查了部分美术生的体重,将所得数据整理后,作出了如图所示的频率分布直方图.已知图中从左到右的前3个小组的频率之比为1∶3∶5,第2个小组的频数为15,则被抽查的美术生的人数是________.【解析】设被抽查的美术生的人数为n,因为后2个小组的频率之和为(0.037 5+0.012 5)×5=0.25,所以前3个小组的频率之和为0.75.又前3个小组的频率之比为1∶3∶5,第2个小组的频数为15,所以前3个小组的频数分别为5,15,25,所以n==60.【答案】609.某校1 200名高三年级学生参加了一次数学测验(满分为100分),为了分析这次数学测验的成绩,从这1 200人的数学成绩中随机抽取200人的成绩绘制成如下的统计表,请根据表中提供的信息解决下列问题:成绩分组 频数 频率 平均分[0,20) 3 0.015 16[20,40) a b 32.1[40,60) 25 0.125 55[60,80) c 0.5 74[80,100] 62 0.31 88(1)求a,b,c的值;(2)如果从这1 200名学生中随机抽取一人,试估计这名学生该次数学测验及格的概率P(注:60分及60分以上为及格);(3)试估计这次数学测验的年级平均分.【解析】(1)由题意可得,b=1-(0.015+0.125+0.5+0.31)=0.05,a=200×0.05=10,c=200×0.5=100.(2)根据已知,在抽出的200人的数学成绩中,及格的有162人.∴P===0.81.(3)这次数学测验样本的平均分为==73,∴这次数学测验的年级平均分大约为73分.10.为了了解甲、乙两个工厂生产的轮胎的宽度是否达标,从两厂各随机选取了10个轮胎,将每个轮胎的宽度(单位:mm)记录下来并绘制出如下的折线图:(1)分别计算甲、乙两厂提供的10个轮胎宽度的平均值;(2)若轮胎的宽度在[194,196]内,则称这个轮胎是标准轮胎.试比较甲、乙两厂分别提供的10个轮胎中所有标准轮胎宽度的方差的大小,根据两厂的标准轮胎宽度的平均水平及其波动情况,判断这两个工厂哪个的轮胎相对更好.【解析】(1)甲厂10个轮胎宽度的平均值:甲=×(195+194+196+193+194+197+196+195+193+197)=195(mm),乙厂10个轮胎宽度的平均值:乙=×(195+196+193+192+195+194+195+192+195+193)=194(mm).(2)甲厂10个轮胎中宽度在[194,196]内的数据为195,194,196,194,196,195,平均数:1=×(195+194+196+194+196+195)=195,方差:s=×[(195-195)2+(194-195)2+(196-195)2+(194-195)2+(196-195)2+(195-195)2]=,乙厂10个轮胎中宽度在[194,196]内的数据为195,196,195,194,195,195,平均数:2=×(195+196+195+194+195+195)=195,方差:s=×[(195-195)2+(196-195)2+(195-195)2+(194-195)2+(195-195)2+(195-195)2]=,∵两厂标准轮胎宽度的平均数相等,但乙厂的方差更小,∴乙厂的轮胎相对更好.第47讲 随机抽样与用样本估计总体【学科素养】1.会用简单随机抽样方法从总体中抽取样本,凸显数据分析的核心素养.2.借助频率分布表画频率分布直方图、频率折线图,提升读图、数据分析的能力,凸显直观想象、数据分析的核心素养.3.能从样本数据中提取样本的数字特征(如平均数、标准差),并做出合理的解释,凸显数学运算的核心素养.4.会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征.理解用样本估计总体的思想,会用样本估计总体的思想解决一些简单的实际问题,凸显数学建模的核心素养.【课标解读】1.理解随机抽样的必要性和重要性.会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样方法.2.了解分布的意义和作用,能根据频率分布表画频率分布直方图、频率折线图、茎叶图,体会它们各自的特点.3.理解样本数据标准差的意义和作用,会计算数据标准差.4.能从样本数据中提取基本的数字特征平均数、标准差,并作出合理的解释.5.会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想.6.会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题.【备考策略】从近三年高考情况来看,本讲内容为高考中的冷考点。预测2022年高考对本讲将会以实际应用为背景命题考查分层抽样或系统抽样,用样本估计总体,主要体现在利用频率分布直方图或茎叶图估计总体,利用样本数字特征估计总体.题型以客观题呈现,试题难度不大,属中、低档题型。频率分布直方图与茎叶图也可能出现于解答题中,与概率等知识综合命题。【核心知识】1.简单随机抽样(1)抽取方式:逐个不放回地抽取.(2)特点:每个个体被抽到的概率相等.(3)常用方法:抽签法和随机数法.2.分层抽样(1)在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法叫做分层抽样.(2)分层抽样的应用范围当总体是由差异明显的几个部分组成时,往往选用分层抽样.3.作频率分布直方图的步骤(1)求极差(即一组数据中最大值与最小值的差);(2)决定组距与组数;(3)将数据分组;(4)列频率分布表;(5)画频率分布直方图.4.频率分布折线图和总体密度曲线(1)频率分布折线图:连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图.(2)总体密度曲线:随着样本容量的增加,作图时所分的组数增加,组距减小,相应的频率折线图会越来越接近于一条光滑曲线,统计中称这条光滑曲线为总体密度曲线.5.样本的数字特征(1)众数:一组数据中出现次数最多的那个数据,叫做这组数据的众数.(2)中位数:把n个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数.(3)平均数:把称为a1,a2,…,an这n个数的平均数.(4)标准差与方差:设一组数据x1,x2,x3,…,xn的平均数为,则这组数据的标准差和方差分别是s= ,s2=.【高频考点】高频考点一 抽样方法【例1】(1)某公司决定利用随机数表对今年新招聘的800名员工进行抽样调查他们对目前工作的满意程度,先将这800名员工进行编号,编号分别为001,002,…,799,800,从中抽取80名进行调查,下面提供随机数表的第4行到第6行:32 21 18 34 29 78 64 54 07 32 52 42 06 44 38 12 23 43 56 77 35 78 90 56 4284 42 12 53 31 34 57 86 07 36 25 30 07 32 86 23 45 78 89 07 23 68 96 08 0432 56 78 08 43 67 89 53 55 77 34 89 94 83 75 22 53 55 78 32 43 77 89 23 45若从表中第5行第6列开始向右依次读取3个数据,则抽到的第5名员工的编号是( )A.007 B.253C.328 D.736(2)某市小学,初中,高中在校学生人数分别为7.5万,4.5万,3万.为了调查全市中小学生的体质健康状况,拟随机抽取1 000人进行体质健康检测,则应抽取的初中生人数为( )A.750 B.500C.450 D.300【方法技巧】1.应用随机数法的两个关键点(1)确定以表中的哪个数(哪行哪列)为起点,以哪个方向为读数的方向;(2)读数时注意结合编号特点进行读取.若编号为两位数字,则两位两位地读取;若编号为三位数字,则三位三位地读取,有超过总体号码或出现重复号码的数字舍去,这样继续下去,直到获取整个样本.2.解决分层抽样的常用公式先确定抽样比,然后把各层个体数乘以抽样比,即得各层要抽取的个体数.(1)抽样比==;(2)层1的容量∶层2的容量∶层3的容量=样本中层1的容量∶样本中层2的容量∶样本中层3的容量. 【变式探究】利用简单随机抽样,从n个个体中抽取一个容量为10的样本.若第二次抽取时,余下的每个个体被抽到的概率为,则在整个抽样过程中,每个个体被抽到的概率为( )A. B.C. D.高频考点二 统计图表及应用【例2】(1)某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图、90后从事互联网行业者岗位分布条形图,则下列结论中正确的是( )注:90后指1990年及以后出生,80后指1980~1989年之间出生,80前指1979年及以前出生.A.互联网行业从业人员中90后占一半以上B.互联网行业中从事技术岗位的人数超过总人数的20%C.互联网行业中从事运营岗位的人数90后比80前多D.互联网行业中从事技术岗位的人数90后比80后多(2)空气质量指数AQI是反映空气状况的指数,AQI指数值越小,表明空气质量越好,其对应关系如下表:AQI指数 0~50 51~100 101~150 151~200 201~300 >300空气质量 优 良 轻度污染 中度污染 重度污染 严重污染下图是某市10月1日~20日AQI指数变化趋势,则下列叙述正确的是( )A.这20天中AQI指数值的中位数略高于100B.这20天中的中度污染及以上的天数占C.该市10月的前半个月的空气质量越来越好D.总体来说,该市10月上旬的空气质量比中旬的好【变式探究】我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准x(吨),一位居民的月用水量不超过x的部分按平价收费,超出x的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5]分成9组,制成了如图所示的频率分布直方图.(1)求直方图中a的值;(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由;(3)若该市政府希望使85%的居民每月的用水量不超过标准x(吨),估计x的值,并说明理由.高频考点三 用样本的数字特征估计总体的数字特征【例3】(2023·全国高考真题)有一组样本数据,,…,,由这组数据得到新样本数据,,…,,其中(为非零常数,则( )A.两组样本数据的样本平均数相同B.两组样本数据的样本中位数相同C.两组样本数据的样本标准差相同D.两组样数据的样本极差相同【变式探究】(2020·全国卷Ⅰ)某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为A,B,C,D四个等级.加工业务约定:对于A级品、B级品、C级品,厂家每件分别收取加工费90元,50元,20元;对于D级品,厂家每件要赔偿原料损失费50元.该厂有甲、乙两个分厂可承接加工业务.甲分厂加工成本费为25元/件,乙分厂加工成本费为20元/件.厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整理如下:甲分厂产品等级的频数分布表等级 A B C D频数 40 20 20 20乙分厂产品等级的频数分布表等级 A B C D频数 28 17 34 21(1)分别估计甲、乙两分厂加工出来的一件产品为A级品的概率;(2)分别求甲、乙两分厂加工出来的100件产品的平均利润,以平均利润为依据,厂家应选哪个分厂承接加工业务?【方法技巧】利用样本的数字特征解决优化决策问题的依据(1)平均数反映了数据取值的平均水平;标准差、方差描述了一组数据围绕平均数波动的大小.标准差、方差越大,数据的离散程度越大,越不稳定;标准差、方差越小,数据的离散程度越小,越稳定.(2)用样本估计总体就是利用样本的数字特征来描述总体的数字特征. 高频考点四 频率分布直方图的应用例4.(2023·天津高考真题)从一批零件中抽取80个,测量其直径(单位:),将所得数据分为9组:,并整理得到如下频率分布直方图,则在被抽取的零件中,直径落在区间内的个数为( )A.10 B.18 C.20 D.36【变式探究】某大学艺术专业的400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据按[20,30),[30,40),…,[80,90]分成7组,并整理得到如图所示的频率分布直方图.(1)估计总体的众数;(2)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数;(3)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女学生人数相等.试估计总体中男生和女生人数的比例.第47讲 随机抽样与用样本估计总体【学科素养】1.会用简单随机抽样方法从总体中抽取样本,凸显数据分析的核心素养.2.借助频率分布表画频率分布直方图、频率折线图,提升读图、数据分析的能力,凸显直观想象、数据分析的核心素养.3.能从样本数据中提取样本的数字特征(如平均数、标准差),并做出合理的解释,凸显数学运算的核心素养.4.会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征.理解用样本估计总体的思想,会用样本估计总体的思想解决一些简单的实际问题,凸显数学建模的核心素养.【课标解读】1.理解随机抽样的必要性和重要性.会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样方法.2.了解分布的意义和作用,能根据频率分布表画频率分布直方图、频率折线图、茎叶图,体会它们各自的特点.3.理解样本数据标准差的意义和作用,会计算数据标准差.4.能从样本数据中提取基本的数字特征平均数、标准差,并作出合理的解释.5.会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想.6.会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题.【备考策略】从近三年高考情况来看,本讲内容为高考中的冷考点。预测2022年高考对本讲将会以实际应用为背景命题考查分层抽样或系统抽样,用样本估计总体,主要体现在利用频率分布直方图或茎叶图估计总体,利用样本数字特征估计总体.题型以客观题呈现,试题难度不大,属中、低档题型。频率分布直方图与茎叶图也可能出现于解答题中,与概率等知识综合命题。【核心知识】1.简单随机抽样(1)抽取方式:逐个不放回地抽取.(2)特点:每个个体被抽到的概率相等.(3)常用方法:抽签法和随机数法.2.分层抽样(1)在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法叫做分层抽样.(2)分层抽样的应用范围当总体是由差异明显的几个部分组成时,往往选用分层抽样.3.作频率分布直方图的步骤(1)求极差(即一组数据中最大值与最小值的差);(2)决定组距与组数;(3)将数据分组;(4)列频率分布表;(5)画频率分布直方图.4.频率分布折线图和总体密度曲线(1)频率分布折线图:连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图.(2)总体密度曲线:随着样本容量的增加,作图时所分的组数增加,组距减小,相应的频率折线图会越来越接近于一条光滑曲线,统计中称这条光滑曲线为总体密度曲线.5.样本的数字特征(1)众数:一组数据中出现次数最多的那个数据,叫做这组数据的众数.(2)中位数:把n个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数.(3)平均数:把称为a1,a2,…,an这n个数的平均数.(4)标准差与方差:设一组数据x1,x2,x3,…,xn的平均数为,则这组数据的标准差和方差分别是s= ,s2=.【高频考点】高频考点一 抽样方法【例1】(1)某公司决定利用随机数表对今年新招聘的800名员工进行抽样调查他们对目前工作的满意程度,先将这800名员工进行编号,编号分别为001,002,…,799,800,从中抽取80名进行调查,下面提供随机数表的第4行到第6行:32 21 18 34 29 78 64 54 07 32 52 42 06 44 38 12 23 43 56 77 35 78 90 56 4284 42 12 53 31 34 57 86 07 36 25 30 07 32 86 23 45 78 89 07 23 68 96 08 0432 56 78 08 43 67 89 53 55 77 34 89 94 83 75 22 53 55 78 32 43 77 89 23 45若从表中第5行第6列开始向右依次读取3个数据,则抽到的第5名员工的编号是( )A.007 B.253C.328 D.736(2)某市小学,初中,高中在校学生人数分别为7.5万,4.5万,3万.为了调查全市中小学生的体质健康状况,拟随机抽取1 000人进行体质健康检测,则应抽取的初中生人数为( )A.750 B.500C.450 D.300【解析】(1)由题意知,前五名员工的编号依次为253,313,457,736,007.故选A.(2)初中生抽取的人数为×4.5=300,故选D.【答案】(1)A (2)D【方法技巧】1.应用随机数法的两个关键点(1)确定以表中的哪个数(哪行哪列)为起点,以哪个方向为读数的方向;(2)读数时注意结合编号特点进行读取.若编号为两位数字,则两位两位地读取;若编号为三位数字,则三位三位地读取,有超过总体号码或出现重复号码的数字舍去,这样继续下去,直到获取整个样本.2.解决分层抽样的常用公式先确定抽样比,然后把各层个体数乘以抽样比,即得各层要抽取的个体数.(1)抽样比==;(2)层1的容量∶层2的容量∶层3的容量=样本中层1的容量∶样本中层2的容量∶样本中层3的容量. 【变式探究】利用简单随机抽样,从n个个体中抽取一个容量为10的样本.若第二次抽取时,余下的每个个体被抽到的概率为,则在整个抽样过程中,每个个体被抽到的概率为( )A. B.C. D.【答案】C 【解析】根据题意,=,解得n=28.故在整个抽样过程中每个个体被抽到的概率为=.高频考点二 统计图表及应用【例2】(1)某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图、90后从事互联网行业者岗位分布条形图,则下列结论中正确的是( )注:90后指1990年及以后出生,80后指1980~1989年之间出生,80前指1979年及以前出生.A.互联网行业从业人员中90后占一半以上B.互联网行业中从事技术岗位的人数超过总人数的20%C.互联网行业中从事运营岗位的人数90后比80前多D.互联网行业中从事技术岗位的人数90后比80后多(2)空气质量指数AQI是反映空气状况的指数,AQI指数值越小,表明空气质量越好,其对应关系如下表:AQI指数 0~50 51~100 101~150 151~200 201~300 >300空气质量 优 良 轻度污染 中度污染 重度污染 严重污染下图是某市10月1日~20日AQI指数变化趋势,则下列叙述正确的是( )A.这20天中AQI指数值的中位数略高于100B.这20天中的中度污染及以上的天数占C.该市10月的前半个月的空气质量越来越好D.总体来说,该市10月上旬的空气质量比中旬的好【解析】(1)由饼状图可知互联网从业人员中90后占56%,一半以上,故A项正确;由条形图知,90后从事技术岗位的人数占互联网行业为39.6%×56%=22.176%>20%,所以互联网行业中从事技术岗位的人数占总人数的百分比大于等于22.176%,B项正确;由条形图知,90后从事运营岗位的人数占互联网行业为17%×56%=9.52%,大于80前互联网从业人数,C项正确;因为技术所占比例80后未知,且90后从事技术岗位的人数比22.176%<41%,所以D项不一定正确.(2)A项,由题图知排序后第10个数据、第11个数据的平均数大于100,即中位数略高于100;B项,中度污染及以上的天数为5天,占;由题图知C错误;D项,总体来说,该市10月上旬的空气质量比中旬的空气质量好.【答案】(1)ABC (2)ABD【变式探究】我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准x(吨),一位居民的月用水量不超过x的部分按平价收费,超出x的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5]分成9组,制成了如图所示的频率分布直方图.(1)求直方图中a的值;(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由;(3)若该市政府希望使85%的居民每月的用水量不超过标准x(吨),估计x的值,并说明理由.【解析】(1)由频率分布直方图知,月均用水量在[0,0.5)中的频率为0.08×0.5=0.04,同理,在[0.5,1),[1.5,2),[2,2.5),[3,3.5),[3.5,4),[4,4.5]中的频率分别为0.08,0.20,0.26,0.06,0.04,0.02.由0.04+0.08+0.5×a+0.20+0.26+0.5×a+0.06+0.04+0.02=1,解得a=0.30.(2)由(1)可知,100位居民中每人月均用水量不低于3吨的频率为0.06+0.04+0.02=0.12.根据样本中的频率,可以估计全市30万居民中月均用水量不低于3吨的人数为 300 000×0.12=36 000.(3)因为前6组的频率之和为0.04+0.08+0.15+0.20+0.26+0.15=0.88>0.85,前5组的频率之和为0.04+0.08+0.15+0.20+0.26=0.73<0.85,所以2.5≤x<3.由0.30×(x-2.5)=0.85-0.73,解得x=2.9.所以估计月用水量标准为2.9吨时,85%的居民每月的用水量不超过该标准.高频考点三 用样本的数字特征估计总体的数字特征【例3】(2023·全国高考真题)有一组样本数据,,…,,由这组数据得到新样本数据,,…,,其中(为非零常数,则( )A.两组样本数据的样本平均数相同B.两组样本数据的样本中位数相同C.两组样本数据的样本标准差相同D.两组样数据的样本极差相同【答案】CD【解析】A、C利用两组数据的线性关系有、,即可判断正误;根据中位数、极差的定义,结合已知线性关系可判断B、D的正误.【详解】A:且,故平均数不相同,错误;B:若第一组中位数为,则第二组的中位数为,显然不相同,错误;C:,故方差相同,正确;D:由极差的定义知:若第一组的极差为,则第二组的极差为,故极差相同,正确;故选:CD【变式探究】(2020·全国卷Ⅰ)某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为A,B,C,D四个等级.加工业务约定:对于A级品、B级品、C级品,厂家每件分别收取加工费90元,50元,20元;对于D级品,厂家每件要赔偿原料损失费50元.该厂有甲、乙两个分厂可承接加工业务.甲分厂加工成本费为25元/件,乙分厂加工成本费为20元/件.厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整理如下:甲分厂产品等级的频数分布表等级 A B C D频数 40 20 20 20乙分厂产品等级的频数分布表等级 A B C D频数 28 17 34 21(1)分别估计甲、乙两分厂加工出来的一件产品为A级品的概率;(2)分别求甲、乙两分厂加工出来的100件产品的平均利润,以平均利润为依据,厂家应选哪个分厂承接加工业务?【解析】(1)由试加工产品等级的频数分布表知,甲分厂加工出来的一件产品为A级品的概率的估计值为=0.4;乙分厂加工出来的一件产品为A级品的概率的估计值为=0.28.(2)由数据知甲分厂加工出来的100件产品利润的频数分布表为利润 65 25 -5 -75频数 40 20 20 20因此甲分厂加工出来的100件产品的平均利润为=15.由数据知乙分厂加工出来的100件产品利润的频数分布表为利润 70 30 0 -70频数 28 17 34 21因此乙分厂加工出来的100件产品的平均利润为=10.比较甲、乙两分厂加工的产品的平均利润,应选甲分厂承接加工业务.【方法技巧】利用样本的数字特征解决优化决策问题的依据(1)平均数反映了数据取值的平均水平;标准差、方差描述了一组数据围绕平均数波动的大小.标准差、方差越大,数据的离散程度越大,越不稳定;标准差、方差越小,数据的离散程度越小,越稳定.(2)用样本估计总体就是利用样本的数字特征来描述总体的数字特征. 高频考点四 频率分布直方图的应用例4.(2023·天津高考真题)从一批零件中抽取80个,测量其直径(单位:),将所得数据分为9组:,并整理得到如下频率分布直方图,则在被抽取的零件中,直径落在区间内的个数为( )A.10 B.18 C.20 D.36【答案】B【解析】根据直方图,直径落在区间之间的零件频率为:,则区间内零件的个数为:.故选:B.【变式探究】某大学艺术专业的400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据按[20,30),[30,40),…,[80,90]分成7组,并整理得到如图所示的频率分布直方图.(1)估计总体的众数;(2)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数;(3)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女学生人数相等.试估计总体中男生和女生人数的比例.【解析】(1)由频率分布直方图可估计总体的众数为=75.(2)由频率分布直方图可知,样本中分数在区间[50,90)内的人数为(0.01+0.02+0.04+0.02)×10×100=90.因为样本中分数小于40的学生有5人,所以样本中分数在区间[40,50)内的人数为100-90-5=5.设总体中分数在区间[40,50)内的人数为x,则=,解得x=20,故估计总体中分数在区间[40,50)内的人数为20.(3)由频率分布直方图可知,样本中分数不小于70的人数为(0.04+0.02)×10×100=60.因为样本中分数不小于70的男女学生人数相等,所以样本中分数不小于70的男生人数为30.因为样本中有一半男生的分数不小于70,所以样本中男生的人数为60,女生的人数为40.由样本估计总体,得总体中男生和女生人数的比例约为3∶2. 展开更多...... 收起↑ 资源列表 (课标全国版)高考数学第一轮复习讲练测 第47讲 随机抽样与用样本估计总体(练)原卷版+解析.docx (课标全国版)高考数学第一轮复习讲练测 第47讲 随机抽样与用样本估计总体(讲)原卷版+解析.docx