资源简介 第49讲 计数原理 排列与组合【练基础】1.从甲地到乙地,一天中有5次火车,12次客车,3次飞机航班,还有6次轮船,某人某天要从甲地到乙地,共有不同走法的种数是( )A.26 B.60C.18 D.1 0802.将3张不同的武汉军运会门票分给10名同学中的3人,每人1张,则不同分法的种数是( )A.2 160 B.720C.240 D.1203.从集合{0,1,2,3,4,5}中任取两个互不相等的数a,b组成复数a+bi,其中虚数有( )A.36个 B.30个C.25个 D.20个4.从4名男同学和3名女同学中选出3名参加某项活动,则男女生都有的选法种数是( )A.18 B.24C.30 D.365.三个人踢毽子,互相传递,每人每次只能踢一下,由甲开始踢,经过4次传递后,毽子又被踢回给甲,则不同的传递方式共有( )A.4种 B.6种C.10种 D.16种6.A,B,C,D,E五人并排站成一排,如果B必须在A的右侧(A,B可以不相邻),那么不同的排法共有( )A.24种 B.60种C.90种 D.120种7.5 400的正约数有( )A.48个 B.46个C.36个 D.38个8.某市汽车牌照号码可以上网自编,但规定从左到右第二个号码只能从字母B,C,D中选择,其他四个号码可以从0~9这十个数字中选择(数字可以重复),有车主第一个号码(从左到右)只想在数字3,5,6,8,9中选择,其他号码只想在1,3,6,9中选择,则他的车牌号码可选的所有可能情况有( )A.180种 B.360种C.720种 D.960种9.某市汽车牌照号码可以上网自编,但规定从左到右第二个号码只能从字母B,C,D中选择,其他四个号码可以从0~9这十个数字中选择(数字可以重复).有车主第一个号码(从左到右)只想在数字3,5,6,8,9中选择,其他号码只想在1,3,6,9中选择,则他的车牌号码可选的所有可能情况有( )A.180种 B.360种C.720种 D.960种10.从集合{1,2,3,4,…,10}中选出5个数组成该集合的子集,使得这5个数中任意两个数的和都不等于11,则这样的子集有( )A.32个 B.34个C.36个 D.38个【练提升】1.某班有9名运动员,其中5人会打篮球,6人会踢足球,现从中选出2人分别参加篮球赛和足球赛,则不同的选派方案有( )A.28种 B.30种C.27种 D.29种2.将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( )A.12种 B.10种C.9种 D.8种3.用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为( )A.24 B.48C.60 D.724.某学校获得5个高校自主招生推荐名额,其中甲大学2个,乙大学2个,丙大学1个,并且甲大学和乙大学都要求必须有男生参加,学校通过选拔定下3男2女共5个推荐对象,则不同的推荐方法共有( )A.36种 B.24种C.22种 D.20种5.如图为我国数学家赵爽(约3世纪初)在为《周髀算经》作注时验证勾股定理的示意图,现在提供5种颜色给其中5个小区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不相同,则不同的涂色方案共有( )A.120种 B.260种C.340种 D.420种6.某地实行高考改革,考生除参加语文、数学、英语统一考试外,还需从物理、化学、生物、政治、历史、地理六科中选考三科.学生甲要想报考某高校的法学专业,就必须要从物理、政治、历史三科中至少选考一科,则学生甲的选考方法种数为( )A.6 B.12C.18 D.197.中国有十二生肖,又叫十二属相,每一个人的出生年份对应了十二种动物(鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪)中的一种.现有十二生肖的吉祥物各一个,已知甲同学喜欢牛、马和猴,乙同学喜欢牛、狗和羊,丙同学所有的吉祥物都喜欢,让甲、乙、丙三位同学依次从中选一个作为礼物珍藏,若各人所选取的礼物都是自己喜欢的,则不同的选法有( )A.50种 B.60种C.80种 D.90种8.中国古代儒家要求学生掌握六种基本才能(六艺):礼、乐、射、御、书、数,某校国学社团周末开展“六艺”课程讲座活动,一天连排六节,每艺一节,排课有如下要求:“射”不能排在第一,“数”不能排在最后,则“六艺”讲座不同的排课顺序共有________种.9.从4名男同学中选出2人,6名女同学中选出3人,并将选出的5人排成一排.(1)共有多少种不同的排法?(2)若选出的2名男同学不相邻,共有多少种不同的排法?(用数字表示)10.用0,1,2,3,4这五个数字,可以组成多少个满足下列条件的没有重复数字的五位数?(1)比21 034大的偶数;(2)左起第二、四位是奇数的偶数.第49讲 计数原理 排列与组合【练基础】1.从甲地到乙地,一天中有5次火车,12次客车,3次飞机航班,还有6次轮船,某人某天要从甲地到乙地,共有不同走法的种数是( )A.26 B.60C.18 D.1 080【答案】A【解析】由分类加法计数原理知有5+12+3+6=26(种)不同走法.2.将3张不同的武汉军运会门票分给10名同学中的3人,每人1张,则不同分法的种数是( )A.2 160 B.720C.240 D.120【答案】B【解析】分步来完成此事.第1张有10种分法;第2张有9种分法;第3张有8种分法,共有10×9×8=720种分法.3.从集合{0,1,2,3,4,5}中任取两个互不相等的数a,b组成复数a+bi,其中虚数有( )A.36个 B.30个C.25个 D.20个【答案】C【解析】因为a,b互不相等且a+bi为虚数,所以b只能从{1,2,3,4,5}中选,有5种选法,a从剩余的5个数中选,有5种选法,所以共有虚数5×5=25(个),故选C.4.从4名男同学和3名女同学中选出3名参加某项活动,则男女生都有的选法种数是( )A.18 B.24C.30 D.36【答案】C【解析】法一:选出的3人中有2名男同学1名女同学的方法有CC=18种,选出的3人中有1名男同学2名女同学的方法有CC=12种,故3名学生中男女生都有的选法有CC+CC=30种.故选C.法二:从7名同学中任选3名的方法数,再减去所选3名同学全是男生或全是女生的方法数,即C-C-C=30.故选C.5.三个人踢毽子,互相传递,每人每次只能踢一下,由甲开始踢,经过4次传递后,毽子又被踢回给甲,则不同的传递方式共有( )A.4种 B.6种C.10种 D.16种【答案】B【解析】分两类:甲第一次踢给乙时,满足条件的有3种传递方式(如图);同理,甲先传给丙时,满足条件的也有3种传递方式.由分类加法计数原理可知,共有3+3=6(种)传递方式.6.A,B,C,D,E五人并排站成一排,如果B必须在A的右侧(A,B可以不相邻),那么不同的排法共有( )A.24种 B.60种C.90种 D.120种【答案】B【解析】可先排C,D,E三人,共有A种,剩余A,B两人只有一种排法,故满足条件的排法共有A×1=60(种).7.5 400的正约数有( )A.48个 B.46个C.36个 D.38个【答案】A【解析】5 400=23×33×52,5 400的正约数一定是由2的幂与3的幂和5的幂相乘的结果,所以正约数个数为(3+1)×(3+1)×(2+1)=48.故选A.8.某市汽车牌照号码可以上网自编,但规定从左到右第二个号码只能从字母B,C,D中选择,其他四个号码可以从0~9这十个数字中选择(数字可以重复),有车主第一个号码(从左到右)只想在数字3,5,6,8,9中选择,其他号码只想在1,3,6,9中选择,则他的车牌号码可选的所有可能情况有( )A.180种 B.360种C.720种 D.960种【答案】D【解析】按照车主的要求,从左到右第一个号码有5种选法,第二个号码有3种选法,其余三个号码各有4种选法.因此车牌号码可选的所有可能情况有5×3×4×4×4=960(种).9.某市汽车牌照号码可以上网自编,但规定从左到右第二个号码只能从字母B,C,D中选择,其他四个号码可以从0~9这十个数字中选择(数字可以重复).有车主第一个号码(从左到右)只想在数字3,5,6,8,9中选择,其他号码只想在1,3,6,9中选择,则他的车牌号码可选的所有可能情况有( )A.180种 B.360种C.720种 D.960种【答案】D【解析】按照车主的要求,从左到右第一个号码有5种选法,第二个号码有3种选法,其余三个号码各有4种选法.因此车牌号码可选的所有可能情况有5×3×4×4×4=960(种).10.从集合{1,2,3,4,…,10}中选出5个数组成该集合的子集,使得这5个数中任意两个数的和都不等于11,则这样的子集有( )A.32个 B.34个C.36个 D.38个【答案】A【解析】先把数字分成5组:{1,10},{2,9},{3,8},{4,7},{5,6},由于选出的5个数中,任意两个数的和都不等于11,所以从每组中任选一个数字即可,故共有2×2×2×2×2=32(个)这样的子集.【练提升】1.某班有9名运动员,其中5人会打篮球,6人会踢足球,现从中选出2人分别参加篮球赛和足球赛,则不同的选派方案有( )A.28种 B.30种C.27种 D.29种【答案】A【解析】有9名运动员,其中5人会打篮球,6人会踢足球,则有2人既会踢足球又会打篮球,有3人只会打篮球,有4人只会踢足球,所以选派的方案有四类:选派两种球都会的运动员有2种方案;选派两种球都会的运动员中一名踢足球,只会打篮球的运动员打篮球,有2×3=6(种)方案;选派两种球都会的运动员中一名打篮球,只会踢足球的运动员踢足球,有2×4=8(种)方案;选派只会打篮球和踢足球的运动员分别打篮球和踢足球,有3×4=12(种)方案.综上可知,共有2+6+8+12=28(种)方案,故选A.2.将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( )A.12种 B.10种C.9种 D.8种【答案】A【解析】将4名学生均分为2个小组共有=3(种)分法;将2个小组的同学分给2名教师共有A=2(种)分法;最后将2个小组的人员分配到甲、乙两地有A=2(种)分法.故不同的安排方案共有3×2×2=12(种).3.用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为( )A.24 B.48C.60 D.72【答案】D【解析】由题意,要组成没有重复数字的五位奇数,则个位数应该为1或3或5,其他位置共有A种排法,所以奇数的个数为3A=72,故选D.4.某学校获得5个高校自主招生推荐名额,其中甲大学2个,乙大学2个,丙大学1个,并且甲大学和乙大学都要求必须有男生参加,学校通过选拔定下3男2女共5个推荐对象,则不同的推荐方法共有( )A.36种 B.24种C.22种 D.20种【答案】B【解析】根据题意,分两种情况讨论:第一种,3名男生每个大学各推荐1人,2名女生分别推荐给甲大学和乙大学,共有AA=12种推荐方法;第二种,将3名男生分成两组分别推荐给甲大学和乙大学,共有CAA=12种推荐方法.故共有24种推荐方法.5.如图为我国数学家赵爽(约3世纪初)在为《周髀算经》作注时验证勾股定理的示意图,现在提供5种颜色给其中5个小区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不相同,则不同的涂色方案共有( )A.120种 B.260种C.340种 D.420种【答案】D【解析】由题意可知上下两块区域可以相同,也可以不同,则共有5×4×3×1×3+5×4×3×2×2=180+240=420(种)涂色方案.故选D.6.某地实行高考改革,考生除参加语文、数学、英语统一考试外,还需从物理、化学、生物、政治、历史、地理六科中选考三科.学生甲要想报考某高校的法学专业,就必须要从物理、政治、历史三科中至少选考一科,则学生甲的选考方法种数为( )A.6 B.12C.18 D.19【答案】D【解析】从六科中选考三科的选法有C种,其中不选物理、政治、历史中任意一科的选法有1种,因此学生甲的选考方法共有C-1=19种.7.中国有十二生肖,又叫十二属相,每一个人的出生年份对应了十二种动物(鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪)中的一种.现有十二生肖的吉祥物各一个,已知甲同学喜欢牛、马和猴,乙同学喜欢牛、狗和羊,丙同学所有的吉祥物都喜欢,让甲、乙、丙三位同学依次从中选一个作为礼物珍藏,若各人所选取的礼物都是自己喜欢的,则不同的选法有( )A.50种 B.60种C.80种 D.90种【答案】C【解析】根据题意,按甲的选择不同分成2种情况讨论:若甲选择牛,此时乙的选法有2种,丙的选法有10种,共有2×10=20种不同的选法;若甲选择马或猴,此时甲的选法有2种,乙的选法有3种,丙的选法有10种,共有2×3×10=60种不同的选法.综上,一共有20+60=80种选法.8.中国古代儒家要求学生掌握六种基本才能(六艺):礼、乐、射、御、书、数,某校国学社团周末开展“六艺”课程讲座活动,一天连排六节,每艺一节,排课有如下要求:“射”不能排在第一,“数”不能排在最后,则“六艺”讲座不同的排课顺序共有________种.【解析】根据题意,分2种情况讨论:①“数”排在第一,则剩下的“五艺”全排列,安排在剩下的5节,有A=120(种)情况.②“数”不排在第一,则“数”的排法有4种,“射”的排法有4种,剩下的“四艺”全排列,安排在剩下的4节,有A=24(种)情况,则此时共有4×4×24=384(种)情况.综上,共有120+384=504(种)排课顺序.【答案】5049.从4名男同学中选出2人,6名女同学中选出3人,并将选出的5人排成一排.(1)共有多少种不同的排法?(2)若选出的2名男同学不相邻,共有多少种不同的排法?(用数字表示)【解析】(1)从4名男生中选出2人,有C种选法,从6名女生中选出3人,有C种选法,根据分步乘法计数原理知选出5人,再把这5个人进行排列,共有CCA=14 400(种).(2)在选出的5个人中,若2名男生不相邻,则第一步先排3名女生,第二步再让男生插空,根据分步乘法计数原理知共有CCAA=8 640(种).10.用0,1,2,3,4这五个数字,可以组成多少个满足下列条件的没有重复数字的五位数?(1)比21 034大的偶数;(2)左起第二、四位是奇数的偶数.【解析】(1)可分五类,当末位数字是0,而首位数字是2时,有6个五位数;当末位数字是0,而首位数字是3或4时,有CA=12个五位数;当末位数字是2,而首位数字是3或4时,有CA=12个五位数;当末位数字是4,而首位数字是2时,有3个五位数;当末位数字是4,而首位数字是3时,有A=6个五位数.故共有6+12+12+3+6=39个满足条件的五位数.(2)可分为两类:末位数是0,个数有A·A=4;末位数是2或4,个数有A·C=4.故共有4+4=8个满足条件的五位数.第49讲 计数原理 排列与组合【学科素养】1.结合“分类”“分步”完成一件事,考查对分类加法计数原理和分步乘法计数原理的理解及简单应用,凸显数学建模的核心素养.2.结合排列、组合的概念及两个计数原理,考查常见排列、组合问题的解法,凸显数学运算、逻辑推理的核心素养.3.结合排列数、组合数公式,考查常见排列数、组合数问题的化简及计算,凸显数学运算的核心素养.【课标解读】1.理解分类加法计数原理和分步乘法计数原理,能正确区分“类”和“步”,并能利用两个原理解决一些简单的实际问题.2.理解排列的概念及排列数公式,并能利用公式解决一些简单的实际问题.3.理解组合的概念及组合数公式,并能利用公式解决一些简单的实际问题.【备考策略】从近三年高考情况来看,预测2022年高考将会综合考查两个计数原理与排列组合知识、有条件限制的排列、组合问题、排列、组合与其他知识的综合问题。试题以客观题的形式呈现,难度不大,属中、低档题型。【核心知识】1.两个计数原理分类加法计数原理 分步乘法计数原理条件 完成一件事有两类不同方案.在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法 完成一件事需要两个步骤.做第1步有m种不同的方法,做第2步有n种不同的方法结论 完成这件事共有N=m+n种不同的方法 完成这件事共有N=m·n种不同的方法2.排列与组合的概念名称 定义排列 从n个不同元素中取出m(m≤n)个元素 按照一定的顺序排成一列组合 合成一组3.排列数与组合数(1)排列数的定义:从n个不同元素中取出m(m≤n)个元素的所有不同排列的个数,叫做从n个不同元素中取出m个元素的排列数,用A表示.(2)组合数的定义:从n个不同元素中取出m(m≤n)个元素的所有不同组合的个数,叫做从n个不同元素中取出m个元素的组合数,用C表示.(3)全排列:把n个不同元素全部取出来按照一定的顺序排列起来,叫做n个不同元素的全排列.用A表示n个不同元素的全排列数.4.排列数、组合数的公式及性质公式 (1)A=n(n-1)(n-2)…(n-m+1)=;(2)C===性质 (1)0!=;A=;(2)C=;C=【高频考点】高频考点一 分类加法计数原理例1.哈六中开展劳动教育,决定在5月12日植树节派小明、小李等5名学生去附近的两个植树点去植树,若小明和小李必须在同一植树点,且各个植树点至少去两名学生,则不同的分配方案种数为( )A.8 B.10C.12 D.14【变式探究】甲、乙、丙、丁四位同学高考之后计划去A,B,C三个不同社区进行帮扶活动,每人只能去一个社区,每个社区至少一人.其中甲必须去A社区,乙不去B社区,则不同的安排方法种数为( )A.8 B.7C.6 D.5命题点二 分步乘法计数原理例2.已知某教学大楼共有四层,每层都有东、西两个楼梯,则从一层到四层不同的走法种数为( )A.32 B.23C.43 D.242.有不同的语文书9本,不同的数学书7本,不同的英语书5本,从中选出不属于同一学科的书2本,则不同的选法有( )A.21种 B.315种C.153种 D.143种高频考点三 两个计数原理的综合应用例3.(1)将数字“124467”重新排列后得到不同的偶数的个数为( )A.72 B.120C.192 D.240(2)现有5种不同的颜色,给如图所示的几何体的五个顶点P,A,B,C,D涂色,要求同一条棱上的两个顶点颜色不能相同,则不同的涂色方法有( )A.240种 B.360种C.420种 D.480种【方法技巧】(1)涂色问题一般是综合利用两个计数原理求解,但也有几种常用方法:按区域的不同,以区域为主分步计数,用分步乘法计数原理分析;以颜色为主分类讨论,适用于区域、点、线段等问题,用分类加法计数原理分析;将空间问题平面化,转化成平面区域的涂色问题.(2)分类加法计数原理中,完成一件事的方法属于其中一类并且只属于其中一类;分步乘法计数原理中,各个步骤相互依存,只有完成每一步,整件事才算完成.若综合利用两个计数原理,一般先分类再分步. 【变式探究】中国古代十进制的算筹计数法,在数学史上是一个伟大的创造,算筹实际上是一根根同长短的小木棍.如图,是利用算筹表示1~9的一种方法,则据此,3可表示为“≡”,26可表示为“=⊥”.现有6根算筹.据此表示方法,若算筹不能剩余,则可以表示的两位数的个数为( )A.9 B.13C.16 D.18高频考点四 排列问题例4.3名男生,4名女生,按照不同的要求排队,求不同的排队方案的方法种数.(1)选其中5人排成一排;(2)排成前后两排,前排3人,后排4人;(3)全体站成一排,男、女各站在一起;(4)全体站成一排,男生不能站在一起.【方法技巧】求解排列应用问题的5种主要方法适用于没有限制条件的问题优先安排特殊元素或特殊位置把相邻元素看作一个整体与其他元素一起排列,同时注意捆绑元素的内部排列对不相邻问题,先考虑不受限制的元素的排列,再将不相邻的元素插在前面元素排列的间隔中正难则反,等价转化的方法【变式探究】某国际会议结束后,中、美、俄等21国领导人合影留念,他们站成两排,前排11人,后排10人,中国领导人站在前排正中间位置,美、俄两国领导人也站前排并与中国领导人相邻,如果对其他国家领导人所站位置不做要求,那么不同的站法共有( )A.A种 B.A种C.AAA种 D.AA种高频考点五 组合问题例5.(2023·山东省高考真题)某值日小组共有5名同窗,假设任意安排3名同窗负责教室内的地面卫生,其余2名同窗负责教室外的走廊卫生,那么不同的安排方式种数是( )A.10 B.20 C.60 D.100【变式探究】(2020·新高考全国卷Ⅰ)6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有( )A.120种 B.90种C.60种 D.30种【变式探究】已知男运动员6名,女运动员4名,其中男、女队长各1人.选派5人外出比赛.在下列情形中各有多少种选派方法?(1)男运动员3名,女运动员2名;(2)至少有1名女运动员;(3)队长中至少有1人参加;(4)既要有队长,又要有女运动员.【方法技巧】组合问题的2种题型及解法题型 解法“含有”或“不含有”某些元素的组合 “含”,则先将这些元素取出,再由另外元素补足;“不含”,则先将这些元素剔除,再从剩下的元素中去选取“至少”或“至多”含有几个元素的组合 解这类题必须十分重视“至少”与“至多”这两个关键词的含义,谨防重复与漏解.用直接法和间接法都可以求解,通常用直接法分类复杂时,考虑逆向思维,用间接法处理【变式探究】在新高考方案中,选择性考试科目有:物理、化学、生物、政治、历史、地理6门.学生根据高校的要求,结合自身特长兴趣,首先在物理、历史2门科目中选择1门,再从政治、地理、化学、生物4门科目中选择2门,考试成绩计入考生总分,作为统一高考招生录取的依据.某学生想在物理、化学、生物、政治、历史、地理这6门课程中选三门作为选考科目,下列说法正确的是( )A.若任意选科,选法总数为CB.若化学必选,选法总数为CCC.若政治和地理至少选一门,选法总数为CCCD.若物理必选,化学、生物至少选一门,选法总数为CC+1高频考点六 排列与组合的综合应用例6.(2023·全国高考)将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有( )A.60种 B.120种 C.240种 D.480种【变式探究】由数字1,2,3,4,5组成无重复数字的五位数.(1)共可以组成多少个五位数?(2)其中奇数有多少个?(3)如果将所有的五位数按从小到大的顺序排列,43125是第几个数?说明理由.第49讲 计数原理 排列与组合【学科素养】1.结合“分类”“分步”完成一件事,考查对分类加法计数原理和分步乘法计数原理的理解及简单应用,凸显数学建模的核心素养.2.结合排列、组合的概念及两个计数原理,考查常见排列、组合问题的解法,凸显数学运算、逻辑推理的核心素养.3.结合排列数、组合数公式,考查常见排列数、组合数问题的化简及计算,凸显数学运算的核心素养.【课标解读】1.理解分类加法计数原理和分步乘法计数原理,能正确区分“类”和“步”,并能利用两个原理解决一些简单的实际问题.2.理解排列的概念及排列数公式,并能利用公式解决一些简单的实际问题.3.理解组合的概念及组合数公式,并能利用公式解决一些简单的实际问题.【备考策略】从近三年高考情况来看,预测2022年高考将会综合考查两个计数原理与排列组合知识、有条件限制的排列、组合问题、排列、组合与其他知识的综合问题。试题以客观题的形式呈现,难度不大,属中、低档题型。【核心知识】1.两个计数原理分类加法计数原理 分步乘法计数原理条件 完成一件事有两类不同方案.在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法 完成一件事需要两个步骤.做第1步有m种不同的方法,做第2步有n种不同的方法结论 完成这件事共有N=m+n种不同的方法 完成这件事共有N=m·n种不同的方法2.排列与组合的概念名称 定义排列 从n个不同元素中取出m(m≤n)个元素 按照一定的顺序排成一列组合 合成一组3.排列数与组合数(1)排列数的定义:从n个不同元素中取出m(m≤n)个元素的所有不同排列的个数,叫做从n个不同元素中取出m个元素的排列数,用A表示.(2)组合数的定义:从n个不同元素中取出m(m≤n)个元素的所有不同组合的个数,叫做从n个不同元素中取出m个元素的组合数,用C表示.(3)全排列:把n个不同元素全部取出来按照一定的顺序排列起来,叫做n个不同元素的全排列.用A表示n个不同元素的全排列数.4.排列数、组合数的公式及性质公式 (1)A=n(n-1)(n-2)…(n-m+1)=;(2)C===性质 (1)0!=;A=;(2)C=;C=【高频考点】高频考点一 分类加法计数原理例1.哈六中开展劳动教育,决定在5月12日植树节派小明、小李等5名学生去附近的两个植树点去植树,若小明和小李必须在同一植树点,且各个植树点至少去两名学生,则不同的分配方案种数为( )A.8 B.10C.12 D.14【答案】A 【解析】当小明和小李单独去一个植树点时,有2种不同的分配方案;当小明和小李与另外一人去一个植树点时,有2×3=6种不同的分配方案,则共有6+2=8种不同的分配方案,故选A.【变式探究】甲、乙、丙、丁四位同学高考之后计划去A,B,C三个不同社区进行帮扶活动,每人只能去一个社区,每个社区至少一人.其中甲必须去A社区,乙不去B社区,则不同的安排方法种数为( )A.8 B.7C.6 D.5【答案】B 【解析】根据题意,分两种情况讨论:①乙和甲一起去A社区,此时将丙、丁二人安排到B,C社区即可,有2种情况.②乙不去A社区,则乙必须去C社区,若丙、丁都去B社区,有1种情况;若丙、丁中有1人去B社区,则先在丙、丁中选出1人,安排到B社区,剩下1人安排到A或C社区,有2×2=4种情况.故不同的安排方法有2+1+4=7种.命题点二 分步乘法计数原理例2.已知某教学大楼共有四层,每层都有东、西两个楼梯,则从一层到四层不同的走法种数为( )A.32 B.23C.43 D.24【答案】B 【解析】根据题意,教学大楼共有四层,每层都有东、西两个楼梯,则从一层到二层,有2种走法,同理从二层到三层、从三层到四层也各有2种走法,则从一层到四层共有2×2×2=23种走法.2.有不同的语文书9本,不同的数学书7本,不同的英语书5本,从中选出不属于同一学科的书2本,则不同的选法有( )A.21种 B.315种C.153种 D.143种【答案】D 【解析】由题意,选一本语文书一本数学书有9×7=63种,选一本数学书一本英语书有7×5=35种,选一本语文书一本英语书有9×5=45种,∴共有63+35+45=143种选法.故选D.高频考点三 两个计数原理的综合应用例3.(1)将数字“124467”重新排列后得到不同的偶数的个数为( )A.72 B.120C.192 D.240(2)现有5种不同的颜色,给如图所示的几何体的五个顶点P,A,B,C,D涂色,要求同一条棱上的两个顶点颜色不能相同,则不同的涂色方法有( )A.240种 B.360种C.420种 D.480种【解析】(1)将数字“124467”重新排列后所得数字为偶数,则末位数应为偶数,若末位数字为2,因为含有2个4,所以有=60(种)情况;若末位数字为6,同理有60种情况;若末位数字为4,则有5×4×3×2×1=120(种)情况.综上,共有60+60+120=240(种)情况.(2)当顶点A,C同色时,顶点P有5种颜色可供选择,顶点A有4种颜色可供选择,顶点B有3种颜色可供选择,此时顶点C与顶点A同色,只有1种颜色可选,顶点D有3种颜色可选,不同的方法共有5×4×3×1×3=180种;当顶点A,C不同色时,顶点P有5种颜色可供选择,顶点A有4种颜色可供选择,顶点B有3种颜色可供选择,此时顶点C与顶点A不同色,有2种颜色可选,顶点D有2种颜色可选,不同的方法共有5×4×3×2×2=240种.综上,不同的方法共有180+240=420种,故选C.【答案】(1)D (2)C【方法技巧】(1)涂色问题一般是综合利用两个计数原理求解,但也有几种常用方法:按区域的不同,以区域为主分步计数,用分步乘法计数原理分析;以颜色为主分类讨论,适用于区域、点、线段等问题,用分类加法计数原理分析;将空间问题平面化,转化成平面区域的涂色问题.(2)分类加法计数原理中,完成一件事的方法属于其中一类并且只属于其中一类;分步乘法计数原理中,各个步骤相互依存,只有完成每一步,整件事才算完成.若综合利用两个计数原理,一般先分类再分步. 【变式探究】中国古代十进制的算筹计数法,在数学史上是一个伟大的创造,算筹实际上是一根根同长短的小木棍.如图,是利用算筹表示1~9的一种方法,则据此,3可表示为“≡”,26可表示为“=⊥”.现有6根算筹.据此表示方法,若算筹不能剩余,则可以表示的两位数的个数为( )A.9 B.13C.16 D.18【答案】C 【解析】根据题意,6根算筹可以表示的数字组合为(1,5),(1,9),(2,4),(2,8),(6,4),(6,8),(3,3),(3,7),(7,7).数字组合(1,5),(1,9),(2,4),(2,8),(6,4),(6,8),(3,7)中,每组可以表示2个两位数,则可以表示2×7=14个两位数;数字组合(3,3),(7,7)中,每组可以表示1个两位数,则可以表示2×1=2个两位数.综上,共可以表示14+2=16个两位数.故选C.高频考点四 排列问题例4.3名男生,4名女生,按照不同的要求排队,求不同的排队方案的方法种数.(1)选其中5人排成一排;(2)排成前后两排,前排3人,后排4人;(3)全体站成一排,男、女各站在一起;(4)全体站成一排,男生不能站在一起.【解析】(1)问题即为从7个元素中选出5个全排列,有A=2 520种排法.(2)前排3人,后排4人,相当于排成一排,共有A=5 040种排法.(3)相邻问题(捆绑法):男生必须站在一起,是男生的全排列,有A种排法;女生必须站在一起,是女生的全排列,有A种排法;全体男生、女生各视为一个元素,有A种排法,由分步乘法计数原理知,共有N=A·A·A=288(种).(4)不相邻问题(插空法):先安排女生共有A种排法,男生在4个女生隔成的五个空中安排共有A种排法,故N=A·A=1 440(种).【方法技巧】求解排列应用问题的5种主要方法适用于没有限制条件的问题优先安排特殊元素或特殊位置把相邻元素看作一个整体与其他元素一起排列,同时注意捆绑元素的内部排列对不相邻问题,先考虑不受限制的元素的排列,再将不相邻的元素插在前面元素排列的间隔中正难则反,等价转化的方法【变式探究】某国际会议结束后,中、美、俄等21国领导人合影留念,他们站成两排,前排11人,后排10人,中国领导人站在前排正中间位置,美、俄两国领导人也站前排并与中国领导人相邻,如果对其他国家领导人所站位置不做要求,那么不同的站法共有( )A.A种 B.A种C.AAA种 D.AA种【答案】D 【解析】中国领导人站在前排正中间位置,美、俄两国领导人站前排并与中国领导人相邻,有A种站法;其他18国领导人可以任意站,因此有A种站法.根据分步乘法计数原理可知,共有AA种站法.故选D.高频考点五 组合问题例5.(2023·山东省高考真题)某值日小组共有5名同窗,假设任意安排3名同窗负责教室内的地面卫生,其余2名同窗负责教室外的走廊卫生,那么不同的安排方式种数是( )A.10 B.20 C.60 D.100【答案】A【解析】从5人当选取3人负责教室内的地面卫生,共有种安排方式.(选取3人后剩下2名同窗干的活就定了),故选A。【变式探究】(2020·新高考全国卷Ⅰ)6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有( )A.120种 B.90种C.60种 D.30种【答案】C 【解析】先从6名同学中选1名安排到甲场馆,有C种选法,再从剩余的5名同学中选2名安排到乙场馆,有C种选法,最后将剩下的3名同学安排到丙场馆,有C种选法,由分步乘法计数原理知,共有C·C·C=60(种)不同的安排方法.故选C.【变式探究】已知男运动员6名,女运动员4名,其中男、女队长各1人.选派5人外出比赛.在下列情形中各有多少种选派方法?(1)男运动员3名,女运动员2名;(2)至少有1名女运动员;(3)队长中至少有1人参加;(4)既要有队长,又要有女运动员.【解析】(1)第1步,选3名男运动员,有C种选法;第2步,选2名女运动员,有C种选法,共有C·C=120(种)选法.(2)法一:至少有1名女运动员包括以下几种情况:1女4男,2女3男,3女2男,4女1男.由分类加法计数原理可得总选法数为CC+CC+CC+CC=246(种).法二:“至少有1名女运动员”的反面为“全是男运动员”,可用间接法求解.从10人中任选5人有C种选法,其中全是男运动员的选法有C种.所以“至少有1名女运动员”的选法为C-C=246(种).(3)法一:直接法可分类求解:“只有男队长”的选法为C;“只有女队长”的选法为C;“男、女队长都入选”的选法为C;所以共有2C+C=196(种)选法.法二:间接法从10人中任选5人有C种选法.其中不选队长的方法有C种.所以“至少有1名队长”的选法为C-C=196(种).(4)当有女队长时,其他人任意选,共有C种选法.不选女队长时,必选男队长,共有C种选法,其中不含女运动员的选法有C种,所以不选女队长时的选法共有C-C种.所以既有队长又有女运动员的选法共有C+C-C=191(种).【方法技巧】组合问题的2种题型及解法题型 解法“含有”或“不含有”某些元素的组合 “含”,则先将这些元素取出,再由另外元素补足;“不含”,则先将这些元素剔除,再从剩下的元素中去选取“至少”或“至多”含有几个元素的组合 解这类题必须十分重视“至少”与“至多”这两个关键词的含义,谨防重复与漏解.用直接法和间接法都可以求解,通常用直接法分类复杂时,考虑逆向思维,用间接法处理【变式探究】在新高考方案中,选择性考试科目有:物理、化学、生物、政治、历史、地理6门.学生根据高校的要求,结合自身特长兴趣,首先在物理、历史2门科目中选择1门,再从政治、地理、化学、生物4门科目中选择2门,考试成绩计入考生总分,作为统一高考招生录取的依据.某学生想在物理、化学、生物、政治、历史、地理这6门课程中选三门作为选考科目,下列说法正确的是( )A.若任意选科,选法总数为CB.若化学必选,选法总数为CCC.若政治和地理至少选一门,选法总数为CCCD.若物理必选,化学、生物至少选一门,选法总数为CC+1【答案】BD 【解析】若任意选科,选法总数为CC,A错误;若化学必选,选法总数为CC,B正确;若政治和地理至少选一门,选法总数为C(CC+1),C错误;若物理必选,化学、生物至少选一门,选法总数为CC+1,D正确.高频考点六 排列与组合的综合应用例6.(2023·全国高考)将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有( )A.60种 B.120种 C.240种 D.480种【答案】C【解析】根据题意,有一个项目中分配2名志愿者,其余各项目中分配1名志愿者,可以先从5名志愿者中任选2人,组成一个小组,有种选法;然后连同其余三人,看成四个元素,四个项目看成四个不同的位置,四个不同的元素在四个不同的位置的排列方法数有4!种,根据乘法原理,完成这件事,共有种不同的分配方案,故选C.【变式探究】由数字1,2,3,4,5组成无重复数字的五位数.(1)共可以组成多少个五位数?(2)其中奇数有多少个?(3)如果将所有的五位数按从小到大的顺序排列,43125是第几个数?说明理由.【答案】(1) 120 (2) 72 (3) 85【解析】(1)由数字1,2,3,4,5组成无重复数字的五位数,共可以组成A55=120个五位数(2)∵由1、2、3、4、5组成的无重复数字的五位数的奇数,∴第五个数字必须从1、3、5中选出,共有C31种结果,其余四个位置可以用四个元素在四个位置进行全排列,共有A44种结果,根据分步计数原理得到共有C31A44=72;(3)根据题意,用1、2、3、4、5这五个数字组成无重复数字的五位数,有A55=120种情况,即一共有120个五位数,再考虑大于43125的数,分为以下四类讨论:1、5在首位,将其他4个数字全排列即可,有A44=24个,2、4在首位,5在千位,将其他3个数字全排列即可,有A33=6个,3、4在首位,3在千位,5在百位,将其他2个数字全排列即可,有A22=2个,4、43215,43251,43152,共3个故不大于43125的五位数有120﹣(24+6+2+3)=85个,即43125是第85项。 展开更多...... 收起↑ 资源列表 (课标全国版)高考数学第一轮复习讲练测 第49讲 计数原理 排列与组合(练)原卷版+解析.docx (课标全国版)高考数学第一轮复习讲练测 第49讲 计数原理 排列与组合(讲)原卷版+解析.docx