第六章 相关和回归分析 课件(共37张PPT)-《统计学概论(第七版)》同步教学(高教版)

资源下载
  1. 二一教育资源

第六章 相关和回归分析 课件(共37张PPT)-《统计学概论(第七版)》同步教学(高教版)

资源简介

(共37张PPT)
统计学概论
第六章 相关与回归分析
第六章 相关与回归分析
【学习目标】
★知识点
掌握用最小二乘法确定一元线性回归方程参数a、b的公式;掌握相关的意义、种类、相关表、相关图,掌握积差法相关系数、斯皮尔曼等级差相关系数、肯德尔一致性相关系数,掌握简单线性回归分析方法、多元线性回归分析方法。
★能力点
能够编制相关表、绘制相关图,能用积差法公式计算相关系数,能用等级相关法计算斯皮尔量相关系数、肯德尔相关系数,能根据有关直线回归资料配合回归直线方程。
第六章 相关回归分析
01
第一节 相关的意义和种类
02
第二节 相关表相关图和相关系数
03
第三节 简单线性回归分析
04
第四节 多元线性回归分析
第六章 相关回归分析
一、相关的意义
第一节 相关的意义和种类
(一)明确下列关系。
函数关系是一 一对应的确定性关系。
例S = R2
1.函数关系
相关关系是变量之间确实存在着的数量上的相互依存关系,但关系值是不固定的。
2.相关关系
对现象之间相互关系密切程度的研究称为相关分析。
3.相关分析
第六章 相关回归分析
第一节 相关的意义和种类
111(二)相关关系的特点:
1.现象之间确实存在数量上的依存关系。
2.现象之间数量上的依存有关系是不确定的
、相关关系
一、相关的意义
总体均值、比例、方差
关系
第六章 相关回归分析
第一节 相关的意义和种类
(三)相关关系示图:
、相关关系
一、相关的意义
总体均值、比例、方差
关系









x
y
第六章 相关回归分析
二、相关的种类
第一节 相关分析的意义和种类
完全
相关
(一)按相关强度不同分
可分为

相关
不完全
相关
第六章 相关回归分析
二、相关的种类
第一节 相关分析的意义和种类

相关
(二)按相关方向不同分
可分为

相关
第六章 相关回归分析
二、相关的种类
第一节 相关分析的意义和种类
线性
相关
(三)按相关形式分
可分为
非线性
相关
第六章 相关回归分析
二、相关的种类
第一节 相关分析的意义和种类
简单
相关
(单相关)
(四)按影响因素多少(变量多少)分
可分为
多元
相关
(复相关)
第六章 相关回归分析
一、相关表
第二节 相关表、相关图和相关系数
(一)简单相关表
P126表6-1
第六章 相关回归分析
一、相关表
第二节 相关表、相关图和相关系数
(二)分组相关表
1.单变量分组相关表
P127表6-2
2.双变量分组相关表
P127表6-3
第六章 相关回归分析
二、相关图
第二节 相关表、相关图和相关系数
相关图又称散布图或散点图
P129图6-4
第六章 相关回归分析
三、相关系数
第二节 相关表、相关图和相关系数
(一)相关系数的意义
1.概念
相关系数是直线相关条件下说明两个变量之间相关密切程度的统计分析指标,用“r”表示。
第六章 相关回归分析
一、相关系数
第二节 相关表、相关图和相关系数
(一)相关系数的意义
2.判断相关系数密切程度的标准
当|r|=0,x和y完全不相关
当0<|r|≤0.3,x和y不相关
当0.3<|r|≤0.5,x和y低度相关
当0.5<|r|≤0.8,x和y显著相关
当0.8<|r|<1,x和y高度相关
第六章 相关回归分析
三、相关系数
第二节 相关表、相关图和相关系数
(二)相关系数的计算
1.积差法---公式
第六章 相关回归分析
三、相关系数
第二节 相关表、相关图和相关系数
(二)相关系数的计算
2.积差法---公式简化
第六章 相关回归分析
三、相关系数
第二节 相关表、相关图和相关系数
(二)相关系数的计算
2.积差法—公式简化
例1--根据未分组资料计算相关系数
P130例1某地区2016-2020年各年的居民收入和商品销售额资料如下表所示。计算相关系数。
第六章 相关回归分析
三、相关系数
第二节 相关表、相关图和相关系数
(二)相关系数的计算
2.积差法—公式简化
例2--根据单变量分组资料计算相关系数
P131例2
第六章 相关回归分析
一、回归分析的意义及分类
第三节 简单线性回归分析
(一)回归分析的意义
研究变量间联系的密切程度称相关分析。
直线相关---用相关系数来表示;
曲线相关---用相关指数来表示。
相关系数还可表明变量变动的方向
1.相关分析
研究变量间的变动关系,并用数学方程式表示,称回归分析。
2.回归分析
第六章 相关回归分析
一、回归分析的意义及分类
第三节 简单线性回归分析
(二)回归分析的分类
一个自变量
两个及两个以上自变量
回归分析
多元回归
一元回归
线性回归
非线性回归
线性回归
非线性回归
第六章 相关回归分析
二、一元线性回归分析(简单线性回归分析)
第三节 简单线性回归分析
(一)一元线性回归分析概念
用直线方程来表明两变量间的变动关系,并进行估计推算的分析方法称为一元线性回归分析。
回归分析中,只有一个自变量。
第六章 相关回归分析
二、一元线性回归分析(简单线性回归分析)
第三节 简单线性回归分析
(二)一元线性回归分析模型
假设有两个现象分别表现为自变量x和因变量y,已知一组x、y的对应值:
x1,x2,x3,…..,xn
y1,y2,y3,……,yn
根据散点图,给x,y配合一元线性回归方程:
yc=a+bx
式中:yc代表y的估计推算值;
a代表回归直线的截距;
b代表回归系数,即回归直线的斜率
要确定回归直线方程,必须先求出参数a和b
用最小二乘法确定参数a和b
第六章 相关回归分析
二、一元线性回归分析(简单线性回归分析)
第三节 简单线性回归分析
(二)一元线性回归分析模型
用最小二乘法确定参数a和b
通过最小二乘法,得联立方程如下:
∑y
∑xy=a∑x+b∑
整理得:
第六章 相关回归分析
二、一元线性回归分析(简单线性回归分析)
第三节 简单线性回归分析
(二)一元线性回归分析模型
a b确定后,回归直线方程yc=a+bx就确定下来了。
给定x值,可估计推算y的值
例6某行业20家企业广告费和销售资料如下表所示。P135
例6:画 散点图,给x,y配合直线方程
计算数据如上表,
代入方程组,得:
∑y
∑xy=a∑x+b∑
742
4916.8=114.7a+823.85b
解得:b=3.98342623 a=14.25505057
方程为:
第六章 相关回归分析
三、估计标准误差
第三节 简单线性回归分析
(一)估计标准误差概念
估计标准误差是y的实际值与y的估计推算值离差的一般水平。
当估计标准误差值越小,说明因变量的实际值与其估计推算值间的差异小,估计推算值的代表性就大;
估计标准误差值越大,说明因变量的实际值与其估计推算值间的差异大,估计推算值的代表性就小。
第六章 相关回归分析
三、估计标准误差
第三节 简单线性回归分析
(二)估计标准误差计算公式
=
式中:n-2代表自由度
由于方程有两个参数,故失去两个自由度
例7 P137

第六章 相关回归分析
一、多元线性回归分析
第四节 多元线性回归分析
(一)多元线性回归分析概念
用直线方程来表明两个以上变量间的变动关系,并进行估计推算的分析方法称为多元线性回归分析。
多元回归分析中,有两个以上自变量。
第六章 相关回归分析
二、多元线性回归模型的建立
第四节 简单线性回归分析
(二)多元线性回归分析模型
设因变量为y,因变量y与自变量 x1,x2,x3,…..,xn之间存在线性关系,
配合多元线性回归方程:
yc=a+b1x1+b2x2+b3x3+……+bnxn
式中:a、b1、b2、b3、……..bn为多元线性回归方程的参数
要确定多元线性回归方程,必须先求出参数.
观察二元线性回归方程:
要确定二元线性回归方程,必须确定参数
用最小二乘法得联立方程组:
第六章 相关回归分析
二、多元线性回归模型的建立
第四节 简单线性回归分析
(二)多元线性回归分析模型
根据方程组,确定三个参数
方程以确定了
给定就可以估计推算y的值
例8 某地区2014-2020年一种空气净化器销售额、广告费和利润额资料如下表所示。 P139

有方程组
将上表数据代入方程组。
a=-5.6259

展开更多......

收起↑

资源预览