高中必修第6-10章错解分析 (书稿)

资源下载
  1. 二一教育资源

高中必修第6-10章错解分析 (书稿)

资源简介

第六章 立体几何初步
§6.1 两条直线之间的位置关系
一、知识导学
平面的基本性质.公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内.公理2:如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线.公理3:经过不在同一条直线上的三点,有且只有一个平面.推论1:经过一条直线和这条直线外的一点,,有且只有一个平面.推论2:经过两条相交直线,有且只有一个平面.推论3:经过两条平行直线,有且只有一个平面.
空间两条直线的位置关系,包括:相交、平行、异面.
公理4:平行于同一条直线的两条直线平行.定理4:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等.推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等.
异面直线.异面直线所成的角;两条异面直线互相垂直的概念;异面直线的公垂线及距离.
反证法.会用反证法证明一些简单的问题.
二、疑难知识导析
1.异面直线是指不同在任何一个平面内,没有公共点.强调任何一个平面.
2.异面直线所成的角是指经过空间任意一点作两条分别和异面的两条直线平行的直线所成的锐角(或直角).一般通过平移后转化到三角形中求角,注意角的范围.
3.异面直线的公垂线要求和两条异面直线垂直并且相交,
4.异面直线的距离是指夹在两异面直线之间公垂线段的长度.求两条异面直线的距离关键是找到它们的公垂线.
5.异面直线的证明一般用反证法、异面直线的判定方法:如图,如果b,A且A,a,则a与b异面.
三、经典例题导讲
[例1]在正方体ABCD-ABCD中,O是底面ABCD的中心,M、N分别是棱DD、DC的中点,则直线OM( ).
A .是AC和MN的公垂线. B .垂直于AC但不垂直于MN.
C .垂直于MN,但不垂直于AC. D .与AC、MN都不垂直.
错解:B.
错因:学生观察能力较差,找不出三垂线定理中的射影.
正解:A.
[例2]如图,已知在空间四边形ABCD中,E,F分别是AB,AD的中点,G,H分别是BC,CD上的点,且,求证:直线EG,FH,AC相交于一点.
错解:证明:、F分别是AB,AD的中点,
∥BD,EF=BD,
又, GH∥BD,GH=BD,
四边形EFGH是梯形,设两腰EG,FH相交于一点T,
,F分别是AD.AC与FH交于一点.
直线EG,FH,AC相交于一点
正解:证明:、F分别是AB,AD的中点,
∥BD,EF=BD,
又,
GH∥BD,GH=BD,
四边形EFGH是梯形,设两腰EG,FH相交于一点T,
平面ABC,FH平面ACD,
T面ABC,且T面ACD,又平面ABC平面ACD=AC,
,直线EG,FH,AC相交于一点T.
[例3]判断:若a,b是两条异面直线,P为空间任意一点,则过P点有且仅有一个平面与a,b都平行.
错解:认为正确.
错因:空间想像力不够.忽略P在其中一条线上,或a与P确定平面恰好与b平行,此时就不能过P作平面与a平行.
正解:假命题.
[例4] 如图,在四边形ABCD中,已知AB∥CD,直线AB,BC,AD,DC分别与平面α相交于点E,G,H,F.求证:E,F,G,H四点必定共线(在同一条直线上). ??分析:先确定一个平面,然后证明相关直线在这个平面内,最后证明四点共线. ??证明 ∵ AB//CD, AB,CD确定一个平面β. ?又∵AB ∩α=E,ABβ, Eα,Eβ, ??即 E为平面α与β的一个公共点. 同理可证F,G,H均为平面α与β的公共点.
∵ 两个平面有公共点,它们有且只有一条通过公共点的公共直线, ∴ E,F,G,H四点必定共线. ?点?评:在立体几何的问题中,证明若干点共线时,先证明这些点都是某两平面的公共点,而后得出这些点都在二平面的交线上的结论.
[例5]如图,已知平面α,β,且α∩β=.设梯形ABCD中,AD∥BC,且ABα,CDβ,求证:AB,CD,共点(相交于一点). ? 分析:AB,CD是梯形ABCD的两条腰,必定相交于一点M,只要证明M在上,而是两个平面α,β的交线,因此,只要证明M∈α,且M∈β即可.
证明: ∵ 梯形ABCD中,AD∥BC, ?∴AB,CD是梯形ABCD的两条腰. ?∴ AB,CD必定相交于一点, ?设 AB ∩CD=M. ?又∵ ABα,CDβ,∴ M∈α,且M∈β. ?∴ M∈α∩β. ?又∵ α∩β=,∴ M∈, ?即 AB,CD,共点.
?点?评:证明多条直线共点时,与证明多点共线是一样的.
[例6]已知:a,b,c,d是不共点且两两相交的四条直线,求证:a,b,c,d共面. ? 分析:弄清楚四条直线不共点且两两相交的含义:四条直线不共点,包括有三条直线共点的情况;两两相交是指任何两条直线都相交.在此基础上,根据平面的性质,确定一个平面,再证明所有的直线都在这个平面内.
证明 1o若当四条直线中有三条相交于一点,不妨设a,b,c相交于一点?A?? ∴ 直线d和A确定一个平面α.
又设直线d与a,b,c分别相交于E,F,G, 则 A,E,F,G∈α. ∵ A,E∈α,A,E∈a, ∴ aα. 同理可证 bα,cα. ∴ a,b,c,d在同一平面α内. 2o当四条直线中任何三条都不共点时,如图. ∵ 这四条直线两两相交, 则设相交直线a,b确定一个平面α. 设直线c与a,b分别交于点H,K, 则 H,K∈α. 又∵ H,K∈c,∴ cα. 同理可证 dα. ∴ a,b,c,d四条直线在同一平面α内.
点?评:证明若干条线(或若干个点)共面的一般步骤是:首先由题给条件中的部分线(或点)确定一个平面,然后再证明其余的线(或点)均在这个平面内.本题最容易忽视“三线共点”这一种情况.因此,在分析题意时,应仔细推敲问题中每一句话的含义.
[例7] 在立方体ABCD-A1B1C1D1中,   (1)找出平面AC的斜线BD1在平面AC内的射影;   (2)直线BD1和直线AC的位置关系如何?   (3)直线BD1和直线AC所成的角是多少度?
解:(1)连结BD, 交AC于点O .
(2)BD1和AC是异面直线.
(3)过O作BD1的平行线交DD1于点M,连结MA、MC,则∠MOA或其补角即为异面直线AC和BD1所成的角.
不难得到MA=MC,而O为AC的中点,因此MO⊥AC,即∠MOA=90°, ∴异面直线BD1与AC所成的角为90°.
[例8] 已知:在直角三角形ABC中,A为直角,PA⊥平面ABC,BD⊥PC,垂足为D,求证:AD⊥PC 证明:∵ PA ⊥平面ABC∴ PA⊥BA   又∵ BA⊥AC ∴ BA⊥平面PAC   ∴ AD是BD在平面PAC内的射影   又∵ BD⊥PC ∴ AD⊥PC.(三垂线定理的逆定理) 四、典型习题导练
1.如图, P是△ABC所在平面外一点,连结PA、PB、PC后,在包括AB、BC、CA的六条棱所在的直线中,异面直线的对数为( )
A.2对 B.3对 C.4对 D.6对
2. 两个正方形ABCD、ABEF所在的平面互相垂直,则异面直线AC和BF所成角的大小为  .
3. 在棱长为a的正方体ABCD-A1B1C1D1中,体对角线DB1与面对角线BC1所成的角是 ,它们的距离是 .
4.长方体中,
则所成角的大小为_ ___.
5.关于直角AOB在定平面α内的射影有如下判断:①可能是0°的角;②可能是锐角;③可能是直角;④可能是钝角;⑤可能是180°的角. 其中正确判断的序号是_____.(注:把你认为正确的序号都填上).
6.在空间四边形ABCD中,AB⊥CD,AH⊥平面BCD,
求证:BH⊥CD
7.如图正四面体中,D、E是棱PC上不重合的两点;F、H分别是棱PA、PB上的点,且与P点不重合.
求证:EF和DH是异面直线.
§6.2直线与平面之间的位置关系
一、知识导学
掌握空间直线与平面的三种位置关系(直线在平面内、相交、平行).
直线和平面所成的角,当直线与平面平行或在平面内时所成的角是,当直线与平面垂直时所成的角是9,当直线与平面斜交时所成的角是直线与它在平面内的射影所成的锐角.
掌握直线与平面平行判定定理(如果平面外的一条直线和平面内的一条直线平行,那么这条直线和平面平行)和性质定理(如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行).
直线与平面垂直的定义是:如果一条直线和一个平面内所有直线垂直,那么这条直线和这个平面垂直;掌握直线与平面垂直的判定定理(如果一条直线和平面内的两条相交直线都垂直,那么这条直线垂直于这个平面)和性质定理(如果两条直线同垂直于一个平面,那么这两条直线平行).
直线与平面的距离(一条直线和一个平面平行时,这条直线上任意一点到这个平面的距离,叫做这条直线和这个平面的距离).
三垂线定理(在平面内的一条直线,如果和这个平面的一条斜线在这个平面内的射影垂直,那么它也和这条斜线垂直)、逆定理(在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线在这个平面内的射影垂直).
从平面外一点向这个平面所引的垂线段和斜线段中:①射影相等的两条斜线段相等,射影较长的斜线段也较长;②相等的斜线段的射影相等,较长的斜线段的射影也较长;③垂线段比任何一条斜线段都短.
二、疑难知识导析
1.斜线与平面所成的角关键在于找射影,斜线与平面所成的角,是这条斜线和这个平面内的直线所成的一切角中最小的角.
2.在证明平行时注意线线平行、线面平行及面面平行判定定理和性质定理的反复运用.
3.在证明垂直时注意线线垂直、线面垂直及面面垂直判定定理和性质定理的反复运用,同时还要注意三垂线定理及其逆定理的运用.要注意线面垂直的判定定理中的“两条相交直线”,如果用“无数”或“两条”都是错误的.
4.直线与平面的距离一般是利用直线上某一点到平面的距离.“如果在平面的同一侧有两点到平面的距离(大于0)相等,则经过这两点的直线与这个平面平行.”要注意“同一侧”、“距离相等”.
三、经典例题导讲
[例1]已知平面∥平面,直线平面,点P直线,平面、间的距离为8,则在内到点P的距离为10,且到的距离为9的点的轨迹是( )
A.一个圆 B.四个点 C.两条直线 D .两个点
错解:A.
错因:学生对点线距离、线线距离、面面距离的关系掌握不牢.
正解:B.
[例2] a和b为异面直线,则过a与b垂直的平面( ).
A.有且只有一个 B.一个面或无数个
C.可能不存在 D.可能有无数个
错解:A.
错因:过a与b垂直的平面条件不清.
正解:C.
[例3]由平面外一点P引平面的三条相等的斜线段,斜足分别为A,B,C,O为⊿ABC的外心,求证:.
错解:因为O为⊿ABC的外心,所以OA=OB=OC,又因为PA=PB=PC,PO公用,所以⊿POA,⊿POB,⊿POC都全等,所以POA=POB=POC=,所以.
错因:上述解法中POA=POB=POC=RT,是对的,但它们为什么是直角呢?这里缺少必要的证明.
正解:取BC的中点D,连PD、OD,
[例4]如图,在正三棱柱ABC-A1B1C1中,AB=3,AA1=4,M为AA1的中点,P是BC上一点,且由P沿棱柱侧面经过棱CC1到M点的最短路线长为,设这条最短路线与C1C的交点为N,
求: (1)该三棱柱的侧面展开图的对角线长;
(2)PC和NC的长;
(3)平面NMP和平面ABC所成二面角(锐角)的大小(用反三角函数表示)
错因:(1)不知道利用侧面BCC1 B1展开图求解,不会找 的线段在哪里;(2)不会找二面角的平面角.
正解:(1)正三棱柱ABC-A1B1C1的侧面展开图是一个长为9,宽为4的矩形,其对角线长为
(2)如图,将侧面BC1旋转使其与侧面AC1在同一平面上,点P运动到点P1的位置,连接MP1 ,则MP1就是由点P沿棱柱侧面经过CC1到点M的最短路线.
设PC=,则P1C=,

(3)连接PP1(如图),则PP1就是平面NMP与平面ABC的交线,作NH于H,又CC1平面ABC,连结CH,由三垂线定理的逆定理得,.
[例5] P是平行四边形ABCD 所在平面外一点,Q 是PA 的中点,求证:PC∥ 平面BDQ .
  分析:要证明平面外的一条直线和该平面平行,只要在该平面内找到一条直线和已知直线平行就可以了.
证明:如图所示,连结AC ,交BD 于点O ,
∵四边形ABCD 是平行四边形.
∴AO=CO ,连结OQ ,则OQ 在平面BDQ 内,且OQ 是 的中位线,∴PC∥OQ .
∵PC 在平面BDQ 外,∴PC∥平面BDQ .
点?评:应用线面平行的判定定理证明线面平行时,关键是在平面内找一条直线与已知直线平行.
[例6] 在正方体A1B1C1D1-ABCD中,E、F分别是棱AB、BC的中点,O是底面ABCD的中点.求证:EF垂直平面BB1O.
证明?: 如图,连接AC、BD,则O为AC和BD的交点.
∵E、F分别是AB、BC的中点,
∴EF是△ABC的中位线,∴EF∥AC.
∵B1B⊥平面ABCD,AC平面ABCD
∴AC⊥B1B,由正方形ABCD知:AC⊥BO,
又BO与BB1是平面BB1O上的两条相交直线,
∴AC⊥平面BB1O(线面垂直判定定理)
∵AC∥EF,
∴ EF⊥平面BB1O.
[例7]如图,在正方体ABCD-A1B1C1D1 中,E 是BB1 的中点,O 是底面正方形ABCD 的中心,求证:OE 平面ACD1 .
分析:本题考查的是线面垂直的判定方法.根据线面垂直的判定方法,要证明OE 平面ACD1 ,只要在平面ACD1 内找两条相交直线与OE 垂直.
证明:连结B1D 、A!D 、BD ,在△B1BD 中,
  ∵E,O 分别是B1B 和DB 的中点,
  ∴EO∥B1D .
  ∵B1A1 面AA1D1D ,
  ∴DA1 为DB1 在面AA1D1D 内的射影.
  又∵AD1A1D ,
  ∴AD1DB1 .
  同理可证B1DD1C .
  又∵AD1,AD1,D1C 面ACD1 ,
  ∴B1D 平面ACD1 .
  ∵B1D∥OE ,
  ∴OE 平面ACD1 .
  点?评:要证线面垂直可找线线垂直,这是立体几何证明线面垂直时常用的转化方法.在证明线线垂直时既要注意三垂线定理及其逆定理的应用,也要注意有时是从数量关系方面找垂直,即勾股定理或余弦定理的应用.
[例8].如图,正方体ABCD-A1B1C1D1中,点N在BD上, 点M在B1C上,且CM=DN,求证:MN∥平面AA1B1B.
证明:
证法一.如图,作ME∥BC,交BB1于E,作NF∥AD,交AB于F,连EF则EF平面AA1B1B.
ME=NF
又ME∥BC∥AD∥NF,MEFN为平行四边形,
MN∥EF. MN∥平面AA1B1B.
证法二.如图,连接并延长CN交BA延长线于点P,连B1P,则B1P平面AA1B1B.
∽,
又CM=DN,B1C=BD,
∥B1P.
B1P平面AA1B1B, MN∥平面AA1B1B.
证法三.如图,作MP∥BB1,交BC于点P,连NP.
MP∥BB1,
BD=B1C,DN=CM,
NP∥CD∥AB.面MNP∥面AA1B1B.
MN∥平面AA1B1B.
?四、典型习题导练
1.设a ,b 是空间两条垂直的直线,且b∥平面 .则在“a∥平面 ”、“a ”、“a与相交”这三种情况中,能够出现的情况有(???? ).
 A.0个  B.1  C.2个  D.3个
2.一个面截空间四边形的四边得到四个交点,如果该空间四边形仅有一条对角线与这个截面平行,那么此四个交点围成的四边形是(???).
 A.梯形  B.任意四边形  C.平行四边形  D.菱形
3.若一直线和一个平面平行,夹在直线和平面间的两条线段相等,那么这两条线段的位置关系是(??? ).
  A.平行  B.相交  C.异面  D.平行、相交或异面
4.空间四边形的边AB 、BC 、CD 、DA 的中点分别是E 、F 、G 、H ,若两条对角线BD 、AC 的长分别为2和4,则EG2+HF2 的值(???? ).
A.5  B.10?????? C.20?????? D.40
5.点P 、Q 、R 、S 分别是空间四边形ABCD 四边的中点,则:当AC 时,四边形PQRS 是______形;当AC=BD 时,四边形PQRS 是____形.
6.已知两个全等的矩形ABCD 和ABEF 不在同一平面内,M 、N 分别在它们的对角线AC ,BF 上,且CM=BN ,
求证:MN∥ 平面BCE .
7.如图,已知平行六面体ABCD-A1B1C1D1的底面ABCD是菱形,且
证明C1C;
当的值为多少时,能使A1C平面C1BD?请给出证明.
§6.3平面与平面之间的位置关系
一、基础知识导学
1.空间两个平面的位置关系(有交点的是相交;没交点的是平行).
2.理解并掌握空间两个平面平行的定义;掌握空间两个平面平行判定定理(如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行)和性质定理(如果两个平行平面同时和第三个平面相交,那么它们的交线平行).
3.理解并掌握空间两个平面垂直的定义(一般地,两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面垂直);判定定理(如果一个平面经过另一个平面的一条垂线,那么这两个平面垂直)和性质定理(如果两个平面垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面).
4.二面角的有关概念(从一条直线出发的两个半平面所组成的图形叫做二面角)与运算; 二面角的平面角(以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角),二面角的平面角的常见作法(定义法、三垂线定理及逆定理法、垂面法等).
二、疑难知识导析
1.两个平面的位置关系关系的判定关键看有没有公共点.
2.面面平行也是推导线面平行的重要手段;还要注意平行与垂直的相互联系,如:如果两个平面都垂直于同一条直线,则这两个平面平行;如果两条直线都垂直于一个平面,则这两条直线平行等.在证明平行时注意线线平行、线面平行及面面平行的判定定理和性质定理的反复运用.
3.对于命题“三个平面两两相交,有三条交线,则这三条交线互相平行或者相交于同一点.”要会证明.
4.在证明垂直时注意线线垂直、线面垂直及面面垂直的判定定理和性质定理的反复运用.
5.注意二面角的范围是,找二面角的平面角时要注意与棱的垂直直线,这往往是二面角的平面角的关键所在.求二面角的大小还有公式,用的时候要进行交代.在二面角棱没有给出的情况下求二面角大小方法一:补充棱;方法二:利用“如果”;方法三:公式等,求二面角中解三角形时注意垂直(直角)、数据在不同的面上转换.
三、经典例题导讲
[例1]一直线与直二面角的两个面所成的角分别为α,β,则α+β满足( ).
A.α+β<900 B.α+β≤900 C.α+β>900 D.α+β≥900
错解:A.
错因:忽视直线与二面角棱垂直的情况.
正解:B.
[例2].如图,△ABC是简易遮阳棚,A,B是南北方向上两个定点,正东方向射出的太阳光线与地面成40°角,为了使遮阴影面ABD面积最大,遮阳棚ABC与地面所成的角应为( ).
A.90°  B.60°    C.50°  D.45°
错解:A.
正解:C
[例3]已知正三棱柱ABC-A1B1C1底面边长是10,高是12,过底面一边AB,作与底面ABC成角的截面面积是_____.
错解:.用面积射影公式求解:S底=S截=.
错因:没有弄清截面的形状不是三角形而是等腰梯形.
正解:.
[例4]点是边长为4的正方形的中心,点,分别是,的中点.沿对角线把正方形折成直二面角D-AC-B.
(1)求的大小;
(2)求二面角的大小.
错解:不能认识折叠后变量与不变量.不会找二面角的平面角.
正解:(1)如图,过点E作EG⊥AC,垂足为G,过点F作FH⊥AC,垂足为H,则,.
因为二面角D-AC-B为直二面角,

又在中,,


(2)过点G作GM垂直于FO的延长线于点M,连EM.
∵二面角D-AC-B为直二面角,∴平面DAC⊥平面BAC,交线为AC,又∵EG⊥AC,∴EG⊥平面BAC.∵GM⊥OF,由三垂线定理,得EM⊥OF.
∴就是二面角的平面角.
在RtEGM中,,,,
∴.∴.
所以,二面角的大小为
[例5]如图,平面α∥平面β∥平面γ,且β在α、γ之间,若α和β的距离是5,β和γ的距离是3,直线和α、β、γ分别交于A、B、C,AC=12,则AB= ,BC= .
解:作′⊥α,
∵ α∥β∥γ,∴ ′与β、γ也垂直,
′与α、β、γ分别交于A1、B1、C1.
因此,A1B1是α与β平面间的距离,B1C1是β与γ平 面间的距离,A1C1是α与γ之间的距离.  
∴ A1B1=5,B1C1=3,A1C1=8,又知AC=12
AB= , ,BC= .
答:AB= ,BC= .
[例6] 如图,线段PQ分别交两个平行平面α、β于A、B两点,线段PD分别交α、β于C、D两点,线段QF分别交α、β于F、E两点,若PA=9,AB=12,BQ=12,△ACF的面积为72,求△BDE的面积.
解:∵平面QAF∩α=AF,平面QAF∩β=BE
又∵α∥β,∴ AF∥BE
同理可证:AC∥BD.∴∠FAC与∠EBD相等成互补
由FA∥BE,得:BE:AF=QB:QA=12:24=1:2,∴BE= 
由BD∥AC,得:AC:BD=PA:PB=9:21=3:7,∴BD= 
又∵△ACF的面积为72,即 =72
S=
=,
答:△BDE的面积为84平方单位.
[例7]如图,B为ACD所在平面外一点,M、N、G分别为ABC、ABD、BCD的重心.
(1)求证:平面MNG∥平面ACD
(2)求S:S
解:(1)连结BM、BN、BG并延长交AC、AD、CD分别于P、F、H
∵ M、N、G分别为△ABC、△ABD、△BCD的重心,
则有:
连结PF、FH、PH有MN∥PF
又PF 平面ACD
∴ MN∥平面ACD
同理:MG∥平面ACD,MG∩MN=M
∴ 平面MNG∥平面ACD.
(2)由(1)可知:
∴MG=,又PH=
∴MG=  ,
同理:NG= ,
∴ △MNG∽△ACD,其相似比为1:3
∴S:S= 1:9
[例8]如图,平面EFGH分别平行于CD、AB,E、F、G、H分别在BD、BC、AC、AD上,且CD=a,AB=b,CD⊥AB.
(1)求证:EFGH是矩形.
(2)求当点E在什么位置时,EFGH的面积最大.
(1)证明:∵CD∥面EFGH,而面EFGH∩面BCD=EF.∴CD∥EF
同理HG∥CD.∴EF∥HG
同理HE∥GF.∴四边形EFGH为平行四边形
由CD∥EF,HE∥AB
∴∠HEF为CD和AB所成的角或其补角,
又∵CD⊥AB.∴HE⊥EF.∴四边形EFGH为矩形.
(2)解:由(1)可知在△BCD中EF∥CD,其中DE=m,EB=n

由HE∥AB

又∵四边形EFGH为矩形
∴S矩形EFGH=HE·EF=·b·a=ab
∵m+n≥2,∴(m+n)2≥4mn
∴≤,当且仅当m=n时取等号,即E为BD的中点时,
S矩形EFGH=ab≤ab,
矩形EFGH的面积最大为ab.
点评:求最值时经常转化为函数求最值、不等式求最值、导数求最值、线性规划求最值等.
四、典型习题导练
1. 山坡面α与水平面成30°的角,坡面上有一条公路AB与坡角线BC成45°的角,沿公路向上去1公里时,路基升高_____米.
2. 过正方形ABCD的顶点A作线段PA⊥平面ABCD,且PA=AB,则平面ABP与平面CDP所成二面角(小于或等于90°)的度数是_____.
3. 在60°二面角的棱上,有两个点A、B,AC、BD分别是在这个二面角的两个面内垂直于AB的线段.已知:AB=4cm,AC=6cm,BD=8cm,求CD长.
4.如图,过S引三条长度相等但不共面的线段SA、SB、SC,
且∠ASB=∠ASC=60°,∠BSC=90°.
? 求证:平面ABC⊥平面BSC. ???????????
5. 已知:如图,SA⊥平面ABC,AB⊥BC,DE垂直平分SC,且分别交AC、SC于D、E,又SA=AB,SB=BC,求二面角E-BD-C的度数.
§6.4空间角和距离
一、知识导学
1.掌握两条异面直线所成的角、直线与平面所成的角及二面角,掌握上述三类空间角的作法及运算.
2.掌握给出公垂线的两条异面直线的距离、点到直线(或平面)的距离、直线与平面的距离及两平行平面间距离的求法.
二、疑难知识导析
1.求空间角的大小时,一般将其转化为平面上的角来求,具体地将其转化为某三角形的一个内角.
2.求二面角大小时,关键是找二面角的平面角,可充分利用定义法或垂面法等.
3.空间距离的计算一般将其转化为两点间的距离.求点到平面距离时,可先找出点在平面内的射影(可用两个平面垂直的性质),也可用等体积转换法求之.另外要注意垂直的作用.球心到截面圆心的距离由勾股定理得
4.球面上两点间的距离是指经过这两点的球的大圆的劣弧的长,关键在于画出经过两点的大圆以及小圆.
5.要注意距离和角在空间求值中的相互作用,以及在求面积和体积中的作用.
三、经典例题导讲
[例1] 平面外有两点A,B,它们与平面的距离分别为a,b,线段AB上有一点P,且AP:PB=m:n,则点P到平面的距离为_________________.
错解:.
错因:只考虑AB在平面同侧的情形,忽略AB在平面两测的情况.
正解: .
[例2]与空间四边形ABCD四个顶点距离相等的平面共有______个.
错解:4个.
错因:只分1个点与3个点在平面两侧.没有考虑2个点与2个点在平面两侧.
正解:7个.
[例3]一个盛满水的三棱锥形容器,不久发现三条侧棱上各有一个小洞D、E、F,且知SD:DA=SE:EB=CF:FS=2:1,若仍用这个容器盛水,则最多可盛原来水的( )
A.    B.    C.     D.
错解:A、B、C.由过D或E作面ABC的平行面,所截体计算而得.
正解:D.
当平面EFD处于水平位置时,容器盛水最多
最多可盛原来水得1-
[例4]斜三棱柱ABC-A1B1C1的底面是边长为a的正三角形,侧棱长等于b,一条侧棱AA1与底面相邻两边AB、AC都成450角,求这个三棱柱的侧面积.
错解:一是不给出任何证明,直接计算得结果;二是作直截面的方法不当,即“过BC作平面与AA1垂直于M”;三是由条件“∠A1AB=∠A1AC∠AA1在底面ABC上的射影是∠BAC的平分线”不给出论证.
正解:过点B作BM⊥AA1于M,连结CM,在△ABM和△ACM中,∵AB=AC,∠MAB=∠MAC=450,MA为公共边,∴△ABM≌△ACM,∴∠AMC=∠AMB=900,∴AA1⊥面BHC,即平面BMC为直截面,又BM=CM=ABsin450=a,∴BMC周长为2xa+a=(1+)a,且棱长为b,∴S侧=(1+)ab
[例5]已知CA⊥平面α,垂足为A;AB α,BD⊥AB,且BD与α成30°角;AC=BD=b,AB=a.求C,D两点间的距离.
解?: 本题应分两种情况讨论:
(1)如下左图.C,D在α同侧:过D作DF⊥α,垂足为F.连BF,则于是.
根据三垂线定理BD⊥AB得BF⊥AB.
在Rt△ABF中,AF=
过D作DEAC于E,则DE=AF,AE=DF=.所以EC=AC-AE= b-=.故
CD=
(2)如上右图.C,D在α两侧时:同法可求得CD=
点?评: 本题是通过把已知量与未知量归结到一个直角三角形中,应用勾股定理来求解.
[例6] (06年湖北卷)如图,在棱长为1的正方体中,是侧棱上的一点,.
(1)试确定,使得直线与平面所成角的正切值为;
(2)在线段上是否存在一个定点,使得对任意的,在平面上的射影垂直于.
并证明你的结论.
解:解法一(1)连AC,设AC与BD相交于点O,AP与平面相交于点,,连结OG,因为
PC∥平面,平面∩平面APC=OG,
故OG∥PC,所以,OG=PC=.
又AO⊥BD,AO⊥BB1,所以AO⊥平面,
故∠AGO是AP与平面所成的角.
在Rt△AOG中,tanAGO=,即m=.
所以,当m=时,直线AP与平面所成的角的正切值为.
(2)可以推测,点Q应当是AICI的中点O1,因为
D1O1⊥A1C1, 且 D1O1⊥A1A ,所以 D1O1⊥平面ACC1A1,
又AP平面ACC1A1,故 D1O1⊥AP.
那么根据三垂线定理知,D1O1在平面APD1的射影与AP垂直。
解法二:(1)建立如图所示的空间直角坐标系,则A(1,0,0),B(1,1,0),P(0,1,m),C(0,1,0),D(0,0,0),B1(1,1,1),D1(0,0,1)
所以
又由知,为平面的一个法向量。
设AP与平面所成的角为,则。依题意有解得。故当时,直线AP与平面所成的角的正切值为。
(2)若在A1C1上存在这样的点Q,设此点的横坐标为,则Q(x,1-,1),。依题意,对任意的m要使D1Q在平面APD1上的射影垂直于AP,等价于D1Q⊥AP即Q为A1C1的中点时,满足题设要求。
[例7]在梯形ABCD中,∠ADC=90°,AB∥DC,AB=1,DC=2,,P为平面ABCD外一点,PAD是正三角形,且PA⊥AB,
求:(1)平面PBC和平面PAD所成二面角的大小;
(2)D点到平面PBC的距离.
解: (1)设AD∩BC=E,可知PE是平面PBC和平面PAD的交线,依题设条件得PA=AD=AE,则∠EPD=90°,PD⊥PE
又PA⊥AB,DA⊥AB,故AB⊥平面PAD.
∵ DC∥AB,∴ DC⊥平面PAD.
由PE⊥PC得PE⊥PD,∠DPC是平面PBC与平面PAD所成二面角的平面角.,DC=2,tan,.
(2)由于PE⊥PD,PE⊥PC,故PE⊥平面PDC,
因此平面PDC⊥平面PBC,
作DH⊥PC,H是垂足,则DH是D到平面PBC的距离.
在Rt△PDC中,,DC=2,,.
平面PBC与平面PAD成二面角的大小为arctan,D到平面PBC的距离为.
[例8] 半径为1的球面上有A、B、C三点,A与B和A与C的
球面距离都是,B与C的球面距离是,求过A、B、C三点的截面到球心O距离.
分析?: 转化为以球心O为顶点,△ABC为底面的三棱锥问题解决.
由题设知△OBC是边长为1的正三角形,△AOB和△AOC是腰长为1的全等的等腰三角形.
取BC中点D,连AD、OD,易得BC⊥面AOD,进而得面AOD⊥面ABC,过O作OH⊥AD于H,则OH⊥面ABC,OH的长即为
所求,在Rt中,AD=,故在Rt,OH=
点评: 本题若注意到H是△ABC的外心,可通过解△ABC和△AHO得OH.或利用体积法.
四、典型习题导练
1.在平面角为600的二面角内有一点P,P到α、β的距离分别为PC=2cm,PD=3cm,则P到棱的距离为____________.
2.异面直线a , b所成的角为,过空间一定点P,作直线,使与a ,b 所成的角均为,这样的直线有 条.
3.在棱长为1的正方体ABCD-A1B1C1D1中,E,F分别是AB和AD的中点,则点A1到平面EFB1D1的距离为
4.二面角--内一点P,分别作两个面的垂线PA、PB,A、B为垂足.已知PA=3,PB=2,∠APB=60°求--的大小及P到的距离.
5.ABCD是边长为4的正方形,CG⊥面ABCD,CG = 2.E、F分别是AD、AB的中点.求点B到面EFG的距离.
6.如图:二面角α--β为锐角,P为二面角内一点,P到α的 距离为,到面β的距离为4,到棱的距离为,求二面角α- -β的大小.
7.如图,已知三棱柱A1B1C1-ABC的底面是边长为2的正三角形,侧棱A1A与AB、AC均成45°角,且A1E⊥B1B于E,A1F⊥CC1于F.
(1)求点A到平面B1BCC1的距离;
(2)当AA1多长时,点A1到平面ABC与平面B1BCC1的距离相等.
§6.5空间几何体及投影
一、知识导学
了解投影(投影线通过物体,向选定的面透射,并在该面上得到图形的方法)、中心投影(投射线交于一点的投影称为中心投影)、平行投影(投影线互相平行的投影称为平行投影)、斜投影(平行投影投射方向不是正对着投影面的投影)、正投影(平行投影投射方向正对着投影面的投影)的概念.
了解三视图的有关概念(视图是指将物体按正投影向投影面投 射所得到的图形.光线自物体的前面向后面投射所得的投影称之为主视图或正视图,自上而下的称为俯视图,自左向右的称为左视图,用这三种视图刻画空间物体的结构,称之为三视图);了解三视图画法规则,能作出物体的三视图.
注意投影和射影的关系,以及在解题中的作用.
二、疑难知识导析
1.三视图间基本投影关系的三条规律:主视图与俯视图长对正,主视图与左视图高平齐,俯视图与左视图宽相等.概括为“长对正,高平齐,宽相等”;看不见的画虚线.
2.主视图的上、下、左、右对应物体的上、下、左、右;俯视图的上、下、左、右对应物体的后、前、左、右;左视图的上、下、左、右对应物体的上、下、后、前.
三、经典例题导讲
[例1]如图,该物体的俯视图是( ).
错解:B.
错因:投影方向不对.
正解:C.
[例2] 如图所示的正方体中,E、F分别是AA1,D1C1的中点,G是正方形BDB1D1的中心,则空间四边形AGEF在该正方体面上的投影不可能是( )
A B C D
错解:C.
正解:D
[例3]水平放置的△ABC有一边在水平线上,它的直观图是正△A1B1C1,则△ABC是( )
A. 锐角三角形  B. 直角三角形   C. 钝角三角形  D. 任意三角形
错解:B.
错因:不熟悉斜二侧画法的规则.
正解:C.
[例4] 正方体的全面积是a2,它的顶点都在球面上,这个球的表面积是( ).
A. B. C. D.
错解:A.
错因:对正方体和球的关系理解不清.
正解:B.正方体的对角线就是球的直径.
[例5](06年江西卷)如图,在四面体ABCD中,截面AEF经过四面体的内切球(与四个面都相切的球)球心O,且与BC,DC分别截于E、F,如果截面将四面体分成体积相等的两部分,设四棱锥A-BEFD与三棱锥A-EFC的表面积分别是S1,S2,则必有( )
A.S1(S2  B.S1(S2    C.S1=S2      D.S1,S2的大小关系不能确定
解:连OA、OB、OC、OD
则VA-BEFD=VO-ABD+VO-ABE+VO-BEFD
VA-EFC=VO-ADC+VO-AEC+VO-EFC又VA-BEFD=VA-EFC而每个三棱锥的高都是原四面体的内切球的半径,故SABD+SABE+SBEFD=SADC+SAEC+SEFC又面AEF公共,故选C
[例6]正三棱台A1B1C1-ABC的侧面与底面成45°角,求侧棱与底面所成角的正切值.
解:解法一  如图,设O1,O为上下底面正三角形的中心,连接O1O,A1O1交A1B1于D1,AO交AB于D.连接D1D.易证A1O1⊥B1C1,AD⊥BC,D1D⊥BC,过A1,D1分别作A1E⊥底面ABC,D1F⊥底面ABC,易证E、F在AD上.
因为正三棱台A1B1C1-ABC的侧面与底面成45°的二面角,所以∠D1DA=45°.因此A1E=O1O=D1F=FD.设该正三棱台上下底面的边长为a,b,则AD=b,A1D1=a.
所以? A1E=O1O=D1F=FD=b-= (b-a).
AE=(b-a).
所以? tan∠A1AE=.
解法二 如图,延长AA1,BB1,CC1,则AA1,BB1,CC1相交于一点S.显然点S在DD1的延长线上.由解法一得知,∠SDA为二面角S-BC-A的平面角,故∠SDA=45°.
所以? 在RtΔSOD中,SO=OD,
因为? AO=2·OD,所以? tan∠SAO=.
点评:由此例可以看出,在解决棱台的问题时,“还台为锥”利用棱锥的性质来解决棱台问题是一种快捷方便的方法.
[例7] 粉碎机的下料斗是正四棱台形,如图所示,它的两底面边长分别是80 mm和440 mm,高是200 mm,计算:
(1)这个下料斗的体积;
(2)制造这样一个下料斗所需铁板的面积(保留两个有效数字)?
分析:要求下料斗所需铁板的面积,就是求正四棱台的侧面积.正四棱台的侧面积公式是S侧=(c+c')h'.
解:(1)因为S上=4402mm2,S下=802 mm2,h=200 mm

(2)下底面周长c'=4×80=320mm,
下底面周长c=4×440=1760mm,
斜高h'=
S正棱台侧=(c+c')h'=(1760+320)×269≈2.8×105(mm2)
答:这个下料斗的体积约为1.6×107mm3,制造这样一个下料斗需铁板约2.8×105mm2.
点评:对于实际问题,须分清是求几何体的表面积,还是求侧面积,还是求侧面积与一个底面面积的和,还是求体积.
四、典型习题导练
1.一个直立在水平面上圆柱体的主视图、俯视图、左视图分为( )
A.长方形、圆、矩形 B.矩形、长方形、圆
C.圆、长方形、矩形 D.长方形、矩形、圆
2.直角三角形绕它最长边(即斜边)旋转一周得到的几何体为( )
3.下列平面图中不能围成立方体的是( ).
4.从七边形的某个顶点出发,分别连接这个顶点与其余各顶点,可以把七边形分成_____个三角形.
5. 在球心同侧有相距9cm的两个平行截面,它们的面积分别为49πcm2和400πcm2,求球的表面积.
第七章 平面解析几何初步
§7.1直线和圆的方程
一、知识导学 
1.两点间的距离公式:不论A(1,1),B(2,2)在坐标平面上什么位置,都有d=|AB|=,特别地,与坐标轴平行的线段的长|AB|=|2-1|或|AB|=|2-1|.
2.定比分点公式:定比分点公式是解决共线三点A(1,1),B(2,2),P(,)之间数量关系的一个公式,其中λ的值是起点到分点与分点到终点的有向线段的数量之比.这里起点、分点、终点的位置是可以任意选择的,一旦选定后λ的值也就随之确定了.若以A为起点,B为终点,P为分点,则定比分点公式是.当P点为AB的中点时,λ=1,此时中点坐标公式是.
3.直线的倾斜角和斜率的关系
(1)每一条直线都有倾斜角,但不一定有斜率.
(2)斜率存在的直线,其斜率与倾斜角α之间的关系是=tanα.
4.确定直线方程需要有两个互相独立的条件。直线方程的形式很多,但必须注意各种形式的直线方程的适用范围.
名称
方程
说明
适用条件
斜截式
为直线的斜率
b为直线的纵截距
倾斜角为90°的直线不能用此式
点斜式
() 为直线上的已知点,为直线的斜率
倾斜角为90°的直线不能用此式
两点式
=
(),()是直线上两个已知点
与两坐标轴平行的直线不能用此式
截距式
+=1
为直线的横截距
b为直线的纵截距
过(0,0)及与两坐标轴平行的直线不能用此式
一般式
,,分别为斜率、横截距和纵截距
A、B不全为零
5.两条直线的夹角。当两直线的斜率,都存在且·≠ -1时,tanθ=,当直线的斜率不存在时,可结合图形判断.另外还应注意到:“到角”公式与“夹角”公式的区别.
6.怎么判断两直线是否平行或垂直?判断两直线是否平行或垂直时,若两直线的斜率都存在,可以用斜率的关系来判断;若直线的斜率不存在,则必须用一般式的平行垂直条件来判断.
(1)斜率存在且不重合的两条直线1∶, 2∶,有以下结论:
①1∥2=,且b1=b2
②1⊥2·= -1
(2)对于直线1∶,2 ∶,当1,2,1,2都不为零时,有以下结论:
①1∥2=≠
②1⊥212+12 = 0
③1与2相交≠
④1与2重合==
7.点到直线的距离公式.
(1)已知一点P()及一条直线:,则点P到直线的距离d=;
(2)两平行直线1: , 2: 之间的距离d=.
8.确定圆方程需要有三个互相独立的条件。圆的方程有两种形式,要知道两种形式之间的相互转化及相互联系
(1)圆的标准方程:,其中(,b)是圆心坐标,是圆的半径;
(2)圆的一般方程:(>0),圆心坐标为(-,-),半径为=.
二、疑难知识导析 
1.直线与圆的位置关系的判定方法.
(1)方法一 直线:;圆:.
一元二次方程
(2)方法二 直线: ;圆:,圆心(,b)到直线的距离为
d=
2.两圆的位置关系的判定方法.
设两圆圆心分别为O1、O2,半径分别为1,2,|O1O2|为圆心距,则两圆位置关系如下:
|O1O2|>1+2两圆外离;
|O1O2|=1+2两圆外切;
| 1-2|<|O1O2|<1+2两圆相交;
| O1O2 |=|1-2|两圆内切;
0<| O1O2|<| 1-2|两圆内含.
三、经典例题导讲 
[例1]直线l经过P(2,3),且在x,y轴上的截距相等,试求该直线方程.
错解:设直线方程为:,又过P(2,3),∴,求得a=5
∴直线方程为x+y-5=0.
错因:直线方程的截距式: 的条件是:≠0且b≠0,本题忽略了这一情形.
正解:在原解的基础上,再补充这样的过程:当直线过(0,0)时,此时斜率为:,
∴直线方程为y=x
综上可得:所求直线方程为x+y-5=0或y=x .
[例2]已知动点P到y轴的距离的3倍等于它到点A(1,3)的距离的平方,求动点P的轨迹方程.
错解:设动点P坐标为(x,y).由已知3
化简3=x2-2x+1+y2-6y+9 .
当x≥0时得x2-5x+y2-6y+10=0 . ①
当x<0时得x2+ x+y2-6y+10=0 . ②
错因:上述过程清楚点到y轴距离的意义及两点间距离公式,并且正确应用绝对值定义将方程分类化简,但进一步研究化简后的两个方程,配方后得
(x-)2+(y-3)2 =  ① 和 (x+)2+(y-3)2 = -  ②
两个平方数之和不可能为负数,故方程②的情况不会出现.
正解: 接前面的过程,∵方程①化为(x-)2+(y-3)2 = ,方程②化为(x+)2+(y-3)2 = - ,由于两个平方数之和不可能为负数,故所求动点P的轨迹方程为: (x-)2+(y-3)2 = (x≥0)
[例3]m是什么数时,关于x,y的方程(2m2+m-1)x2+(m2-m+2)y2+m+2=0的图象表示一个圆?
错解:欲使方程Ax2+Cy2+F=0表示一个圆,只要A=C≠0,
得2m2+m-1=m2-m+2,即m2+2m-3=0,解得m1=1,m2=-3,
∴当m=1或m=-3时,x2和y2项的系数相等,这时,原方程的图象表示一个圆
错因:A=C,是Ax2+Cy2+F=0表示圆的必要条件,而非充要条件,其充要条件是:
A=C≠0且<0.
正解:欲使方程Ax2+Cy2+F=0表示一个圆,只要A=C≠0,
得2m2+m-1=m2-m+2,即m2+2m-3=0,解得m1=1,m2=-3,
当m=1时,方程为2x2+2y2=-3不合题意,舍去.
当m=-3时,方程为14x2+14y2=1,即x2+y2=,原方程的图形表示圆.
[例4]自点A(-3,3)发出的光线L射到x轴上,被x轴反射,其反射光线所在直线与圆x2+y2-4x-4y+7=0相切,求光线L所在的直线方程.
错解:设反射光线为L′,由于L和L′关于x轴对称,L过点A(-3,3),点A关于x轴的对称点A′(-3,-3),于是L′过A(-3,-3).
  设L′的斜率为k,则L′的方程为y-(-3)=k[x-(-3)],即kx-y+3k-3=0,
已知圆方程即(x-2)2+(y-2)2=1,圆心O的坐标为(2,2),半径r=1
因L′和已知圆相切,则O到L′的距离等于半径r=1
  即
  整理得12k2-25k+12=0
解得k=  L′的方程为y+3=(x+3)
  即4x-3y+3=0  因L和L′关于x轴对称
  故L的方程为4x+3y+3=0.
错因:漏解
正解:设反射光线为L′,由于L和L′关于x轴对称,L过点A(-3,3),点A关于x轴的对称点A′(-3,-3), 于是L′过A(-3,-3).
  设L′的斜率为k,则L′的方程为y-(-3)=k[x-(-3)],即kx-y+3k-3=0,
  已知圆方程即(x-2)2+(y-2)2=1,圆心O的坐标为(2,2),半径r=1
  因L′和已知圆相切,则O到L′的距离等于半径r=1
  即
  整理得12k2-25k+12=0
  解得k=或k=
  L′的方程为y+3=(x+3);或y+3=(x+3)。
  即4x-3y+3=0或3x-4y-3=0
  因L和L′关于x轴对称
  故L的方程为4x+3y+3=0或3x+4y-3=0.
[例5]求过直线和圆的交点,且满足下列条件之一的圆的方程:
过原点;(2)有最小面积.
解:设所求圆的方程是:
即:
(1)因为圆过原点,所以,即
故所求圆的方程为:.
将圆系方程化为标准式,有:
当其半径最小时,圆的面积最小,此时为所求.
故满足条件的圆的方程是.
点评:(1)直线和圆相交问题,这里应用了曲线系方程,这种解法比较方便;当然也可以待定系数法。(2)面积最小时即圆半径最小。也可用几何意义,即直线与相交弦为直径时圆面积最小.
[例6](06年辽宁理科)已知点A(),B()(≠0)是抛物线上的两个动点,O是坐标原点,向量满足||=||.设圆C的方程为
(1)证明线段AB是圆C的直径;
(2)当圆C的圆心到直线的距离的最小值为时,求的值.
解:(1)证明 ∵||=||,∴()2=()2,
 整理得:=0  ∴+=0
设M()是以线段AB为直径的圆上的任意一点,则=0
即 +=0
整理得:
故线段AB是圆C的直径.
(2)设圆C的圆心为C(),则
∵,

又∵+=0 ,=-
∴-
∵≠0,∴≠0
∴=-4
 =
所以圆心的轨迹方程为
设圆心C到直线的距离为d,则

当=时,d有最小值,由题设得=
∴=2.
四、典型习题导练 
1.直线截圆得的劣弧所对的圆心角为 ( )
A. B. C. D.
2.已知直线x=a(a>0)和圆(x-1)2+y2=4相切 ,那么a的值是( )
A.5 B.4 C.3 D.2
3. 如果实数x、y满足等式(x-2)2+y2=3,则的最大值为: .
4.设正方形ABCD(A、B、C、D顺时针排列)的外接圆方程为x2+y2-6x+a=0(a<9),C、D点所在直线l的斜率为.
(1)求外接圆圆心M点的坐标及正方形对角线AC、BD的斜率;
(2)如果在x轴上方的A、B两点在一条以原点为顶点,以x轴为对称轴的抛物线上,求此抛物线的方程及直线l的方程;
(3)如果ABCD的外接圆半径为2,在x轴上方的A、B两点在一条以x轴为对称轴的抛物线上,求此抛物线的方程及直线l的方程.
5.如图,已知圆C:(x+4)2+y2=4。圆D的圆心D在y轴上且与圆C外切。圆 D与y轴交于A、B两点,点P为(-3,0).
(1)若点D坐标为(0,3),求∠APB的正切值;
(2)当点D在y轴上运动时,求∠APB的正切值的最大值;
(3)在x轴上是否存在定点Q,当圆D在y轴上运动时,∠AQB是定值?如果存在,求出点Q坐标;如果不存在,说明理由.
§7.2圆锥曲线
一、知识导学 
1.椭圆定义:在平面内,到两定点距离之和等于定长(定长大于两定点间的距离)的动点的轨迹
2.椭圆的标准方程:, ()
3椭圆的第二定义:一动点到定点的距离和它到一条定直线的距离的比是一个内常数,那么这个点的轨迹叫做椭圆 其中定点叫做焦点,定直线叫做准线,常数就是离心率
椭圆的第二定义与第一定义是等价的,它是椭圆两种不同的定义方式
4.椭圆的准线方程
对于,左准线;右准线
对于,下准线;上准线
5.焦点到准线的距离(焦参数)
椭圆的准线方程有两条,这两条准线在椭圆外部,与短轴平行,且关于短轴对称
6椭圆的参数方程
7.双曲线的定义:平面内到两定点的距离的差的绝对值为常数(小于)的动点的轨迹叫双曲线 即 这两个定点叫做双曲线的焦点,两焦点间的距离叫做焦距
8.双曲线的标准方程及特点:
(1)双曲线的标准方程有焦点在x轴上和焦点y轴上两种:
焦点在轴上时双曲线的标准方程为:(,);
焦点在轴上时双曲线的标准方程为:(,)
(2)有关系式成立,且
其中与b的大小关系:可以为
9焦点的位置:从椭圆的标准方程不难看出椭圆的焦点位置可由方程中含字母、项的分母的大小来确定,分母大的项对应的字母所在的轴就是焦点所在的轴 而双曲线是根据项的正负来判断焦点所在的位置,即项的系数是正的,那么焦点在轴上;项的系数是正的,那么焦点在轴上
10.双曲线的几何性质:
(1)范围、对称性
由标准方程,从横的方向来看,直线x=-,x=之间没有图象,从纵的方向来看,随着x的增大,y的绝对值也无限增大,所以曲线在纵方向上可无限伸展,不像椭圆那样是封闭曲线 双曲线不封闭,但仍称其对称中心为双曲线的中心
(2)顶点
顶点:,特殊点:
实轴:长为2, 叫做半实轴长 虚轴:长为2b,b叫做虚半轴长
双曲线只有两个顶点,而椭圆则有四个顶点,这是两者的又一差异
(3)渐近线
过双曲线的渐近线()
(4)离心率
双曲线的焦距与实轴长的比,叫做双曲线的离心率 范围:
双曲线形状与e的关系:,e越大,即渐近线的斜率的绝对值就大,这时双曲线的形状就从扁狭逐渐变得开阔 由此可知,双曲线的离心率越大,它的开口就越阔
11. 双曲线的第二定义:到定点F的距离与到定直线的距离之比为常数的点的轨迹是双曲线 其中,定点叫做双曲线的焦点,定直线叫做双曲线的准线 常数e是双曲线的离心率.
12.双曲线的准线方程:
对于来说,相对于左焦点对应着左准线,相对于右焦点对应着右准线;
焦点到准线的距离(也叫焦参数)
对于来说,相对于上焦点对应着上准线;相对于下焦点对应着下准线
抛物线
图形
方程
焦点
准线
13 抛物线定义:
平面内与一个定点F和一条定直线的距离相等的点的轨迹叫做抛物线 定点F叫做抛物线的焦点,定直线叫做抛物线的准线
二、疑难知识导析 
椭圆、双曲线、抛物线同属于圆锥曲线,它们的定义、标准方程及其推导过程以及简单的几何性质都存在着相似之处,也有着一定的区别,因此,要准确地理解和掌握三种曲线的特点以及它们之间的区别与联系
1.等轴双曲线
定义:实轴和虚轴等长的双曲线叫做等轴双曲线,这样的双曲线叫做等轴双曲线 等轴双曲线的性质:(1)渐近线方程为:;(2)渐近线互相垂直;(3)离心率
2.共渐近线的双曲线系
如果已知一双曲线的渐近线方程为,那么此双曲线方程就一定是:或写成
3.共轭双曲线
以已知双曲线的实轴为虚轴,虚轴为实轴,这样得到的双曲线称为原双曲线的共轭双曲线 双曲线和它的共轭双曲线的焦点在同一圆上 确定双曲线的共轭双曲线的方法:将1变为-1
4.抛物线的几何性质
(1)范围
因为p>0,由方程可知,这条抛物线上的点M的坐标(x,y)满足不等式x≥0,所以这条抛物线在y轴的右侧;当x的值增大时,|y|也增大,这说明抛物线向右上方和右下方无限延伸.
(2)对称性
以-y代y,方程不变,所以这条抛物线关于x轴对称,我们把抛物线的对称轴叫做抛物线的轴.
(3)顶点
抛物线和它的轴的交点叫做抛物线的顶点.在方程中,当y=0时,x=0,因此抛物线的顶点就是坐标原点.
(4)离心率
抛物线上的点M与焦点的距离和它到准线的距离的比,叫做抛物线的离心率,用e表示.由抛物线的定义可知,e=1.
19抛物线的焦半径公式:
抛物线,
抛物线,
抛物线,
抛物线,
三、经典例题导讲 
[例1]设双曲线的渐近线为:,求其离心率.
错解:由双曲线的渐近线为:,可得:,从而
剖析:由双曲线的渐近线为是不能确定焦点的位置在x轴上的,当焦点的位置在y轴上时,,故本题应有两解,即:
或.
[例2]设点P(x,y)在椭圆上,求的最大、最小值.
错解:因 ∴,得:,同理得:,故 ∴最大、最小值分别为3,-3.
剖析:本题中x、y除了分别满足以上条件外,还受制约条件的约束.当x=1时,y此时取不到最大值2,故x+y的最大值不为3.其实本题只需令,则,故其最大值为,最小值为.
[例3]已知双曲线的右准线为,右焦点,离心率,求双曲线方程.
错解一: 故所求的双曲线方程为
错解二: 由焦点知
故所求的双曲线方程为
错因: 这两个解法都是误认为双曲线的中心在原点,而题中并没有告诉中心在原点这个条件。由于判断错误,而造成解法错误。随意增加、遗漏题设条件,都会产生错误解法.
解法一: 设为双曲线上任意一点,因为双曲线的右准线为,右焦点,离心率,由双曲线的定义知 整理得
解法二: 依题意,设双曲线的中心为,
则 解得 ,所以
故所求双曲线方程为
[例4]设椭圆的中心是坐标原点,长轴在轴上,离心率,已知点到这个椭圆上的最远距离是,求这个椭圆的方程.
错解:依题意可设椭圆方程为
则 ,
所以 ,即
设椭圆上的点到点的距离为,


所以当时,有最大值,从而也有最大值。
所以 ,由此解得:
于是所求椭圆的方程为
错因:尽管上面解法的最后结果是正确的,但这种解法却是错误的。结果正确只是碰巧而已。由当时,有最大值,这步推理是错误的,没有考虑到的取值范围.事实上,由于点在椭圆上,所以有,因此在求的最大值时,应分类讨论.
正解:若,则当时,(从而)有最大值.
于是从而解得.
所以必有,此时当时,(从而)有最大值,
所以,解得
于是所求椭圆的方程为
[例5]从椭圆,(>b>0)上一点M向x轴所作垂线恰好通过椭圆的左焦点F1,A、B分别是椭圆长、短轴的端点,AB∥OM设Q是椭圆上任意一点,当QF2⊥AB时,延长QF2与椭圆交于另一点P,若⊿F1PQ的面积为20,求此时椭圆的方程
解:本题可用待定系数法求解
∵b=c, =c,可设椭圆方程为
∵PQ⊥AB,∴kPQ=-,则PQ的方程为y=(x-c),
代入椭圆方程整理得5x2-8cx+2c2=0,
根据弦长公式,得,
又点F1到PQ的距离d=c
∴ ,由
故所求椭圆方程为
[例6]已知椭圆:,过左焦点F作倾斜角为的直线交椭圆于A、B两点,求弦AB的长
解:a=3,b=1,c=2; 则F(-2,0)
由题意知:与联立消去y得:
设A(、B(,则是上面方程的二实根,由违达定理,
,又因为A、B、F都是直线上的点,
所以|AB|=
点评:也可利用“焦半径”公式计算
[例7](06年全国理科)设P是椭圆短轴的一个端点,Q为椭圆上的一个动点,求|PQ|的最大值.
解: 依题意可设P(0,1),Q(),则|PQ|=,又因为Q在椭圆上,所以,,|PQ|2==
=.
因为≤1,>1,若≥,则≤1,当时,|PQ|取最大值;若1<<,则当时,|PQ|取最大值2.
[例8]已知双曲线的中心在原点,过右焦点F(2,0)作斜率为的直线,交双曲线于M、N 两点,且=4,求双曲线方程
解:设所求双曲线方程为,由右焦点为(2,0)知C=2,b2=4-2
则双曲线方程为,设直线MN的方程为:,代入双曲线方程整理得:(20-82)x2+122x+54-322=0
设M(x1,y1),N(x2,y2),则,

解得 ,
故所求双曲线方程为:
点评:利用待定系数法求曲线方程,运用一元二次方程的根与系数关系将两根之和与积整体代入,体现了数学的整体思想,也简化了计算,要求学生熟练掌握
四、典型习题导练 
1. 设双曲线两焦点为F1、F2,点Q为双曲线上除顶点外的任一点,过F1作∠F1QF2的平分线的垂线,垂足为P,则点P的轨迹是  ( )
A.椭圆的一部分 B.双曲线的一部分
C.抛物线的一部分 D.圆的一部分.
2.已知点(-2,3)与抛物线y2=2px(p>0)的焦点 的距离是5,则p= .
3.平面内有两定点上,求一点P使取得最大值或最小值,并求出最大值和最小值.
4.已知椭圆的离心率为.(1)若圆(x-2)2+(y-1)2=与椭圆相交于A、B两点且线段AB恰为圆的直径,求椭圆方程;(2)设L为过椭圆右焦点F的直线,交椭圆于M、N两点,且L的倾斜角为600,求的值.
5.已知抛物线方程为,直线过抛物线的焦点F且被抛物线截得的弦长为3,求p的值.
6.线段AB过x轴正半轴上一点M(m,0)(m>0),端点A、B到x轴距离之积为,以x轴为对称轴,过A,O,B三点作抛物线
(1)求抛物线方程;
(2)若的取值范围
§7.3 点、直线和圆锥曲线
一、知识导学 
点M(x0,y0)与圆锥曲线C:f(x,y)=0的位置关系
已知(a>b>0)的焦点为F1、F2, (a>0,b>0)
的焦点为F1、F2,(p>0)的焦点为F,一定点为P(x0,y0),M点到抛物线的准线的距离为d,则有:
上述结论可以利用定比分点公式,建立两点间的关系进行证明.
2.直线∶Ax+B+C=0与圆锥曲线C∶f(x,y)=0的位置关系:
直线与圆锥曲线的位置关系可分为:相交、相切、相离.对于抛物线来说,平行于对称轴的直线与抛物线相交于一点,但并不是相切;对于双曲线来说,平行于渐近线的直线与双曲线只有一个交点,但并不相切.这三种位置关系的判定条件可引导学生归纳为:
设直线:Ax+By+C=0,圆锥曲线C:f(x,y)=0,由
消去y(或消去x)得:ax2+bx+c=0,△=b2-4ac,(若a≠0时),
△>0相交 △<0相离 △= 0相切
注意:直线与抛物线、双曲线有一个公共点是直线与抛物线、双曲线相切的必要条件,但不是充分条件.
二、疑难知识导析 
1.椭圆的焦半径公式:(左焦半径),(右焦半径),其中是离心率。 焦点在y轴上的椭圆的焦半径公式: ( 其中分别是椭圆的下上焦点).
焦半径公式的两种形式的区别只和焦点的左右有关,而与点在左在右无关 可以记为:左加右减,上减下加.
2.双曲线的焦半径
定义:双曲线上任意一点M与双曲线焦点的连线段,叫做双曲线的焦半径.
焦点在x轴上的双曲线的焦半径公式:
焦点在y轴上的双曲线的焦半径公式:
( 其中分别是双曲线的下上焦点)
3.双曲线的焦点弦:
定义:过焦点的直线割双曲线所成的相交弦。
焦点弦公式:
当双曲线焦点在x轴上时,
过左焦点与左支交于两点时: ;
过右焦点与右支交于两点时:。
当双曲线焦点在y轴上时,
过左焦点与左支交于两点时:;
过右焦点与右支交于两点时:。
4.双曲线的通径:
定义:过焦点且垂直于对称轴的相交弦 .
5.直线和抛物线
(1)位置关系:
相交(两个公共点或一个公共点);相离(无公共点);相切(一个公共点).
联立,得关于x的方程
当(二次项系数为零),唯一一个公共点(交点);
当,则
若,两个公共点(交点);
,一个公共点(切点);
,无公共点 (相离).
(2)相交弦长:
弦长公式:.
(3)焦点弦公式:
抛物线, .
抛物线, .
抛物线, .
抛物线,.
(4)通径:
定义:过焦点且垂直于对称轴的相交弦 通径:.
(5)常用结论:

和.
三、经典例题导讲 
[例1]求过点的直线,使它与抛物线仅有一个交点.
错解: 设所求的过点的直线为,则它与抛物线的交点为
,消去得整理得
直线与抛物线仅有一个交点,解得所求直线为
正解: ①当所求直线斜率不存在时,即直线垂直轴,因为过点,所以即轴,它正好与抛物线相切.②当所求直线斜率为零时,直线为y = 1平行轴,它正好与抛物线只有一个交点.③一般地,设所求的过点的直线为,则,
令解得k = ,∴ 所求直线为
综上,满足条件的直线为:
[例2]已知曲线C:与直线L:仅有一个公共点,求m的范围.
错解:曲线C:可化为①,联立,得:
,由Δ=0,得.
错因:方程①与原方程并不等价,应加上.
正解:原方程的对应曲线应为椭圆的上半部分.(如图),结合图形易求得m的范围为.
注意:在将方程变形时应时时注意范围的变化,这样才不会出错.
[例3]已知双曲线,过P(1,1)能否作一条直线L与双曲线交于A、B两点,且P为AB中点.
错解:(1)过点P且与x轴垂直的直线显然不符合要求.
(2)设过P的直线方程为,代入并整理得:
∴,又∵ ∴
解之得:k=2,故直线方程为:y=2x-1,即直线是存在的.
正解:接以上过程,考虑隐含条件“Δ>0”,当k=2时代入方程可知Δ<0,故这样的直线不存在.
[例4]已知A、B是圆与x轴的两个交点,CD是垂直于AB的动弦,直线AC和DB相交于点P,问是否存在两个定点E、F, 使 | | PE |-| PF | | 为定值?若存在,求出E、F的坐标;若不存在,请说明理由.
解:由已知得 A (-1, 0 )、B ( 1, 0 ),
设 P ( x, y ), C ( ) , 则 D (),
由A、C、P三点共线得 ①
由D、B、P三点共线得 ②
①×② 得 ③
又 , ∴, 代入③得 ,
即点P在双曲线上, 故由双曲线定义知,存在两个定点E (-, 0 )、
F (, 0 )(即此双曲线的焦点),使 | | PE |-| PF | | = 2 (即此双曲线的实轴长为定值).
[例5]已知椭圆的中心在坐标原点O,焦点在坐标轴上,直线y=x+1 与该椭圆相交于P和Q,且OP⊥OQ,|PQ|=,求椭圆的方程.
解:设所求椭圆的方程为=1.
  依题意知,点P、Q的坐标满足方程组:
  
  将②代入①,整理得
   , ③
设方程③的两个根分别为、,则直线y=x+1和椭圆的交点为
P(,+1),Q(,+1)
  由题设OP⊥OQ,|OP|=,可得
  
  整理得
  
  解这个方程组,得

  根据根与系数的关系,由③式得
   (1) 或 (2)
  解方程组(1)、(2)得
    或
  故所求椭圆方程为
 =1 , 或 =1.
[例6](06年高考湖南)已知椭圆C1:=1,抛物线C2:,且C1、C2的公共弦AB过椭圆C1的右焦点。(1)当AB⊥轴时,求、的值,并判断抛物线C2的焦点是否在直线AB上;(2)若=,且抛物线C2的焦点在直线AB上,求的值及直线AB的方程.
解:(1)当AB⊥轴时,点A、B关于轴对称,所以=0,直线AB的方程为=1,
 从而点A的坐标为(1,)或(1,-),
 因为点A在抛物线上,所以,=.
 此时,抛物线C2的焦点坐标为(,0),该焦点不在直线AB上.
(2)当抛物线C2的焦点在直线AB上时,由(1)知直线AB的斜率存在,设直线AB的方程为 .
 由消去得    ①
设A、B的坐标分别为 ()、().
则,是方程①的两根,+=.
因为AB既是过C1的右焦点的弦,又是C2的焦点的弦,
所以|AB|=(2-)+(2-)=4-,且
|AB|=()+()==.
从而=4-
所以,即
解得.
因为C2的焦点F、()在直线上,所以,

当时直线AB的方程为;
当时直线AB的方程为.
四、典型习题导练 
1.顶点在原点,焦点在x轴上的抛物线被直线l:y=2x+1截得的弦长为,则抛物线方程为
2.直线m:y=kx+1和双曲线x2-y2=1的左支交于A、B两点,直线l过点P(-2,0)和线段AB的中点,则直线l在y轴上的截距b的取值范围为
3.
试求m的取值范围.

4. 设过原点的直线l与抛物线y2=4(x-1)交于A、B两点,且以AB为直径的圆恰好过抛物线的焦点F,
(1)求直线l的方程;
(2)求|AB|的长.
5. 如图,过抛物线y2=4x的顶点O作任意两条互相垂直的弦OM、ON,求(1)MN与x轴交点的坐标;(2)求MN中点的轨迹方程.
9.设曲线C的方程是y=x3-x,将C沿x轴、y轴正向分别平行移动t,s单 位长度后得曲线C1.
  (1)写出曲线C1的方程;
  (2)证明曲线C与C1关于点A()对称;
  (3)如果曲线C与C1有且仅有一个公共点,证明s=且t≠0.
§7.4轨迹问题
一、知识导学 
1.方程的曲线
在平面直角坐标系中,如果某曲线C(看作适合某种条件的点的集合或轨迹 )上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系:
(1)曲线上的点的坐标都是这个方程的解;
(2)以这个方程的解为坐标的点都是曲线上的点.那么这个方程叫做曲线的方程;这条曲线叫做方程的曲线.
2.点与曲线的关系 若曲线C的方程是f(x,y)=0,则点P0(x0,y0)在曲线C上f(x0,y0)=0;
点P0(x0,y0)不在曲线C上f(x0,y0)≠0两条曲线的交点 若曲线C1,C2的方程分别为f1(x,y)=0,f2(x,y)=0,则点P0(x0,y0)是C1,C2的交点
方程组有n个不同的实数解,两条曲线就有n个不同的交点;方程组没有实数解,曲线就没有交点.
3.圆锥曲线的统一定义
平面内的动点P(x,y)到一个定点F(c,0)的距离与到不通过这个定点的一条定直线l的距离之比是一个常数e(e>0),则动点的轨迹叫做圆锥曲线.
其中定点F(c,0)称为焦点,定直线l称为准线,正常数e称为离心率.
当0<e<1时,轨迹为椭圆
当e=1时,轨迹为抛物线
当e>1时,轨迹为双曲线
4.坐标变换
(1)坐标变换 在解析几何中,把坐标系的变换(如改变坐标系原点的位置或坐标轴的方向)叫做坐标变换.实施坐标变换时,点的位置,曲线的形状、大小、位置都不改变,仅仅只改变点的坐标与曲线的方程.坐标轴的平移:坐标轴的方向和长度单位不改变,只改变原点的位置,这种坐标系的变换叫做坐标轴的平移,简称移轴.
(2)坐标轴的平移公式 设平面内任意一点M,它在原坐标系xOy中的坐标是(x,y),在新坐标系x ′O′y′中的坐标是(x′,y′).设新坐标系的原点O′在原坐标系xOy中的坐标是(h,k),则
(1) 或 (2)
公式(1)或(2)叫做平移(或移轴)公式.
二、疑难知识导析 
1.在求曲线轨迹方程的过程中,要注意:
(1)理解题意,弄清题目中的已知和结论,发现已知和未知的关系,进行知识的重新组合;
(2)合理进行数学语言间的转换,数学语言包括文字语言、符号语言和图形语言,通过审题画出必要的图形或示意图,把不宜于直接计算的关系化为能直接进行数学处理的关系式,把不便于进行数学处理的语言化为便于数学处理的语言;
(3)注意挖掘题目中的隐含条件;
(4)注意反馈和检验.
2.求轨迹方程的基本方法有:
(1)直接法:若动点满足的几何条件是一些几何量的等量关系,则将这些关系“翻译”成x,y的关系式,由此得到轨迹方程.一般步骤是:建立坐标系—设点—列式—代换—化简、整理.
(2)定义法:即当动点的轨迹满足的条件符合某种特殊曲线的定义时,则可根据这种曲线的定义建立方程.
(3)待定系数法:已知动点的轨迹是某种圆锥曲线,则可先设出含有待定系数的方程,再根据动点满足的条件确定待定系数.
(4)相关点法:当动点P(x,y)随着另一动点Q(x1,y1)的运动而运动时,而动点Q在某已知曲线上,且Q点的坐标可用P点的坐标来表示,则可代入动点Q的方程中,求得动点P的轨迹方程.
(5)参数法:当动点P的坐标x、y之间的直接关系不易建立时,可适当地选取中间变量t,并用t表示动点的坐标x、y,从而得到动点轨迹的参数方程 ,消去t,便可得动点P的普通方程.
另外,还有交轨法、几何法等.
3.在求轨迹问题时常用的数学思想是:
(1)函数与方程的思想:求平面曲线的轨迹方程,是将几何条件(性质)表示为动点坐标x、y的方程及函数关系;
(2)数形结合的思想:由曲线的几何性质求曲线方程是“数”与“形”的有机结合;
(3)等价转化的思想:通过坐标系使“数”与“形”相互结合,在解决问题时又需要相互转化.
三、经典例题导讲 
[例1]如图所示,已知P(4,0)是圆x2+y2=36内的一点,A、B是圆上两动点,且满足∠APB=90°,求矩形APBQ的顶点Q的轨迹方程.
解:设AB的中点为R,坐标为(x,y),则在Rt△ABP中,|AR|=|PR|.
又因为R是弦AB的中点,依垂径定理:在Rt△OAR中,|AR|2=|AO|2-|OR|2=36-(x2+y2)
又|AR|=|PR|=
所以有(x-4)2+y2=36-(x2+y2),即x2+y2-4x-10=0
因此点R在一个圆上,而当R在此圆上运动时,Q点即在所求的轨迹上运动.
设Q(x,y),R(x1,y1),因为R是PQ的中点,所以x1=,
代入方程x2+y2-4x-10=0,得
-10=0
整理得 x2+y2=56,这就是所求的轨迹方程.
技巧与方法:对某些较复杂的探求轨迹方程的问题,可先确定一个较易于求得的点的轨迹方程,再以此点作为主动点,所求的轨迹上的点为相关点,求得轨迹方程.
[例2]某检验员通常用一个直径为2 cm和一个直径为1 cm的标准圆柱,检测一个直径为3 cm的圆柱,为保证质量,有人建议再插入两个合适的同号标准圆柱,问这两个标准圆柱的直径为多少?
解:设直径为3,2,1的三圆圆心分别为O、A、B,问题转化为求两等圆P、Q,使它们与⊙O相内切,与⊙A、⊙B相外切.
建立如图所示的坐标系,并设⊙P的半径为r,则
|PA|+|PO|=1+r+1.5-r=2.5
∴点P在以A、O为焦点,长轴长2.5的椭圆上,其方程为
=1 ①
同理P也在以O、B为焦点,长轴长为2的椭圆上,其方程为
(x-)2+y2=1 ②
由①、②可解得,∴r=
故所求圆柱的直径为 cm.
[例3] 直线L:与圆O:相交于A、B两点,当k变动时,弦AB的中点M的轨迹方程.
错解:易知直线恒过定点P(5,0),再由,得:
∴,整理得:
分析:求动点轨迹时应注意它的完备性与纯粹性。本题中注意到点M应在圆内,故易求得轨迹为圆内的部分,此时.
[例4] 已知A、B为两定点,动点M到A与到B的距离比为常数λ,求点M的轨迹方程,并注明轨迹是什么曲线.
解:建立坐标系如图所示,
设|AB|=2a,则A(-a,0),B(a,0).
设M(x,y)是轨迹上任意一点.
则由题设,得=λ,坐标代入,得=λ,化简得
(1-λ2)x2+(1-λ2)y2+2a(1+λ2)x+(1-λ2)a2=0
(1)当λ=1时,即|MA|=|MB|时,点M的轨迹方程是x=0,点M的轨迹是直线(y轴).
(2)当λ≠1时,点M的轨迹方程是x2+y2+x+a2=0.点M的轨迹是以
(-,0)为圆心,为半径的圆.
[例5]若抛物线y=ax2-1上,总存在不同的两点A、B关于直线y+x=0对称,求实数a的取值范围.
分析:若存在A、B关于直线y+x=0对称,A、B必在与直线y+x=0垂直的直线系中某一条与抛物线y=ax2-1相交的直线上,并且A、B的中点M恒在直线y+x=0上.
解:如图所示,设与直线y+x=0垂直的直线系方程为
y=x+b
由 得
ax2-x-(b+1)=0   ①
令 △>0
即 (-1)-4a[-(b+1)]>0
整理得
4ab+4a+1>0  ②
在②的条件下,由①可以得到直线y=x+b、抛物线y=ax2-1的交点A、B的中点M的坐标为
(,+b),要使A、B关于直线y+x=0对称,则中点M应该在直线y+x=0上,所以有
+(+b)=0 ③
即 b=- 代入②解不等式得 a>
因此,当a>时,抛物线y=ax2-1上总存在不同的两点A、B关于直线y+x=0对称.
四、典型习题导练 
1.已知椭圆的焦点是F1、F2,P是椭圆上的一个动点,如果延长F1P到Q,使得|PQ|=|PF2|,那么动点Q的轨迹是( )
A.圆 B.椭圆
C.双曲线的一支 D.抛物线
2.高为5 m和3 m的两根旗杆竖在水平地面上,且相距10 m,如果把两旗杆底部的坐标分别确定为A(-5,0)、B(5,0),则地面观测两旗杆顶端仰角相等的点的轨迹方程是_________.
3.设直线2x-y-=0与y轴的交点为P,点P把圆(x+1)2+y2 =25的直径分为两段,则其长度之比是
4.已知A、B、C是直线上的三点,且|AB|=|BC|=6,⊙O′切直线于点A,又过B、C作⊙O′异于的两切线,设这两切线交于点P,求点P的轨迹方程.
5.双曲线=1的实轴为A1A2,点P是双曲线上的一个动点,引A1Q⊥A1P,A2Q⊥A2P,A1Q与A2Q的交点为Q,求Q点的轨迹方程.
6.已知椭圆=1(a>b>0),点P为其上一点,F1、F2为椭圆的焦点,∠F1PF2的外角平分线为,点F2关于的对称点为Q,F2Q交于点R.
(1)当P点在椭圆上运动时,求R形成的轨迹方程;
(2)设点R形成的曲线为C,直线l:y=k(x+a)与曲线C相交于A、B两点,当△AOB的面积取得最大值时,求k的值.
§7.5综合问题选讲
一、知识导学 
(一)直线和圆的方程
1.理解直线的斜率的概念,掌握过两点的直线的斜率公式,掌握直线方程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程.
2.掌握两条直线平行与垂直的条件,两条直线所成的角和点到直线的距离公式,能够根据直线的方程判断两条直线的位置关系.
3.了解二元一次不等式表示平面区域.
4.了解线性规划的意义,并会简单的应用.
5.了解解析几何的基本思想,了解坐标法.
6.掌握圆的标准方程和一般方程,了解参数方程的概念,理解圆的参数方程.
(二)圆锥曲线方程
掌握椭圆的定义、标准方程和椭圆的简单几何性质.
掌握双曲线的定义、标准方程和双曲线的简单几何性质.
掌握抛物线的定义、标准方程和抛物线的简单几何性质.
4.了解圆锥曲线的初步应用.
(三)目标
1.能正确导出由一点和斜率确定的直线的点斜式方程;从直线的点斜式方程出发推导出直线方程的其他形式,斜截式、两点式、截距式;能根据已知条件,熟练地选择恰当的方程形式写出直线的方程,熟练地进行直线方程的不同形式之间的转化,能利用直线的方程来研究与直线有关的问题了.
2.能正确画出二元一次不等式(组)表示的平面区域,知道线性规划的意义,知道线性约束条件、线性目标函数、可行解、可行域、最优解等基本概念,能正确地利用图解法解决线性规划问题,并用之解决简单的实际问题,了解线性规划方法在数学方面的应用;会用线性规划方法解决一些实际问题.
3.理解“曲线的方程”、“方程的曲线”的意义,了解解析几何的基本思想,掌握求曲线的方程的方法.
4.掌握圆的标准方程:(r>0),明确方程中各字母的几何意义,能根据圆心坐标、半径熟练地写出圆的标准方程,能从圆的标准方程中熟练地求出圆心坐标和半径,掌握圆的一般方程:,知道该方程表示圆的充要条件并正确地进行一般方程和标准方程的互化,能根据条件,用待定系数法求出圆的方程,理解圆的参数方程(θ为参数),明确各字母的意义,掌握直线与圆的位置关系的判定方法.
5.正确理解椭圆、双曲线和抛物线的定义,明确焦点、焦距的概念;能根据椭圆、双曲线和抛物线的定义推导它们的标准方程;记住椭圆、双曲线和抛物线的各种标准方程;能根据条件,求出椭圆、双曲线和抛物线的标准方程;掌握椭圆、双曲线和抛物线的几何性质:范围、对称性、顶点、离心率、准线(双曲线的渐近线)等,从而能迅速、正确地画出椭圆、双曲线和抛物线;掌握、b、、、之间的关系及相应的几何意义;利用椭圆、双曲线和抛物线的几何性质,确定椭圆、双曲线和抛物线的标准方程,并解决简单问题;理解椭圆、双曲线和抛物线的参数方程,并掌握它的应用;掌握直线与椭圆、双曲线和抛物线位置关系的判定方法.
二、疑难知识导析 
1. ⑴ 直线的斜率是一个非常重要的概念,斜率反映了直线相对于轴的倾斜程度.当斜率存在时,直线方程通常用点斜式或斜截式表示,当斜率不存在时,直线方程为=(∈R).因此,利用直线的点斜式或斜截式方程解题时,斜率存在与否,要分别考虑.
⑵ 直线的截距式是两点式的特例,、b分别是直线在轴、轴上的截距,因为≠0,b≠0,所以当直线平行于轴、平行于轴或直线经过原点,不能用截距式求出它的方程,而应选择其它形式求解.
⑶求解直线方程的最后结果,如无特别强调,都应写成一般式.
⑷当直线或的斜率不存在时,可以通过画图容易判定两条直线是否平行与垂直
⑸在处理有关圆的问题,除了合理选择圆的方程,还要注意圆的对称性等几何性质的运用,这样可以简化计算.
2. ⑴用待定系数法求椭圆的标准方程时,要分清焦点在轴上还是轴上,还是两种都存在.
⑵注意椭圆定义、性质的运用,熟练地进行、b、、间的互求,并能根据所给的方程画出椭圆.
⑶求双曲线的标准方程 应注意两个问题:⑴ 正确判断焦点的位置;⑵ 设出标准方程后,运用待定系数法求解.
⑷双曲线的渐近线方程为或表示为.若已知双曲线的渐近线方程是,即,那么双曲线的方程具有以下形式:
,其中是一个不为零的常数.
⑸双曲线的标准方程有两个和(>0,b>0).这里,其中||=2c.要注意这里的、b、c及它们之间的关系与椭圆中的异同.
⑹求抛物线的标准方程,要线根据题设判断抛物线的标准方程的类型,再求抛物线的标准方程,要线根据题设判断抛物线的标准方程的类型,再由条件确定参数的值.同时,应明确抛物线的标准方程、焦点坐标、准线方程三者相依并存,知道其中抛物线的标准方程、焦点坐标、准线方程三者相依并存,知道其中一个,就可以求出其他两个.
三、经典例题导讲
[例1]已知点T是半圆O的直径AB上一点,AB=2、OT=(0<<1),以AB为直腰作直角梯形,使垂直且等于AT,使垂直且等于BT,交半圆于P、Q两点,建立如图所示的直角坐标系.
(1)写出直线的方程;
(2)计算出点P、Q的坐标;
(3)证明:由点P发出的光线,经AB反射后,反射光线通过点Q.
解: (1 ) 显然, 于是 直线的方程为;
(2)由方程组 解出 、;
(3), .
由直线PT的斜率和直线QT的斜率互为相反数知,由点P发出的光线经点T反射,反射光线通过点Q.
[例2]设P是圆M:(-5)2+(-5)2=1上的动点,它关于A(9, 0)的对称点为Q,把P绕原点依逆时针方向旋转90°到点S,求|SQ|的最值.
解:设P(,),则Q(18-, -),记P点对应的复数为+,则S点对应的复数为: (+)·=-+,即S(-, )

其中可以看作是点P到定点B(9, -9)的距离,共最大值为最小值为,则
|SQ|的最大值为,|SQ|的最小值为.
[例4](02年天津卷)已知两点M(-1,0),N(1,0)且点P使成公差小于零的等差数列,
(1)点P的轨迹是什么曲线?
(2)若点P坐标为,为的夹角,求tanθ.
解:(1)记P(, ),由M(-1,0)N(1,0)得

所以

于是, 是公差小于零的等差数列等价于

所以,点P的轨迹是以原点为圆心,为半径的右半圆.
(2)点P的坐标为。.
因为 0〈, 所以 .
[例4]舰A在舰B的正东6千米处,舰C在舰B的北偏西30°且与B相距4千米,它们准备捕海洋动物,某时刻A发现动物信号,4秒后B、C同时发现这种信号,A发射麻醉炮弹.设舰与动物均为静止的,动物信号的传播速度为1千米/秒,炮弹的速度是千米/秒,其中g为重力加速度,若不计空气阻力与舰高,问舰A发射炮弹的方位角和仰角应是多少?
分析:答好本题,除要准确地把握好点P的位置(既在线段BC的垂直平分线上,又在以A、B为焦点的抛物线上),还应对方位角的概念掌握清楚.
技巧与方法:通过建立恰当的直角坐标系,将实际问题转化成解析几何问题来求解.对空间物体的定位,一般可利用声音传播的时间差来建立方程.
解:取AB所在直线为轴,以AB的中点为原点,建立如图所示的直角坐标系.由题意可知,A、B、C舰的坐标为(3,0)、(-3,0)、(-5,2).
由于B、C同时发现动物信号,记动物所在位置为P,则|PB|=|PC|.于是P在线段BC的中垂线上,易求得其方程为-3+7=0.
又由A、B两舰发现动物信号的时间差为4秒,知|PB|-|PA|=4,故知P在双曲线=1的右支上.
直线与双曲线的交点为(8,5),此即为动物P的位置,利用两点间距离公式,可得|PA|=10.
据已知两点的斜率公式,得kPA=,所以直线PA的倾斜角为60°,于是舰A发射炮弹的方位角应是北偏东30°.
设发射炮弹的仰角是θ,初速度v0=,则,
∴sin2θ=,∴仰角θ=30°.
答:方位角北偏东300,仰角30°.
解决圆锥曲线综合题,关键是熟练掌握每一种圆锥曲线的定义、标准方程、图形与几何性质,注意挖掘知识的内在联系及其规律,通过对知识的重新组合,以达到巩固知识、提高能力的目的.
(1)对于求曲线方程中参数的取值范围问题,需构造参数满足的不等式,通过求不等式(组)求得参数的取值范围;或建立关于参数的目标函数,转化为函数的值域.
(2)对于圆锥曲线的最值问题,解法常有两种:当题目的条件和结论能明显体现几何特征及意义,可考虑利用数形结合法解;当题目的条件和结论能体现一种明确的函数关系,则可先建立目标函数,再求这个函数的最值.
[例5]已知抛物线C:2=4.
(1)若椭圆左焦点及相应的准线与抛物线C的焦点F及准线分别重合,试求椭圆短轴端点B与焦点F连线中点P的轨迹方程;
(2)若M(m,0)是轴上的一定点,Q是(1)所求轨迹上任一点,试问|MQ|有无最小值?若有,求出其值;若没有,说明理由.
解:由抛物线2=4,得焦点F(1,0),准线:=-1.
(1)设P(,),则B(2-1,2),椭圆中心O′,则|FO′|∶|BF|=,又设点B到的距离为,则|BF|∶=,∴|FO′|∶|BF|=|BF|∶,即(2-2)2+(2)2=2(2-2),化简得P点轨迹方程为2=-1(>1).
(2)设Q(,y),则
|MQ|=?
(ⅰ)当m-≤1,即m≤时,函数=[-(m-)2]+m-在(1,+∞)上递增,故无最小值,亦即|MQ|无最小值.
(ⅱ)当m->1,即m>时,函数=[2-(m-)2]+m-在=m-处有最小值m-,∴|MQ|min=.
[例6]已知抛物线C的对称轴与轴平行,顶点到原点的距离为5.若将抛物线C向上平移3个单位,则在轴上截得的线段长为原抛物线C在轴上截得的线段长的一半;若将抛物线C向左平移1个单位,则所得抛物线过原点,求抛物线C的方程.
解:设所求抛物线方程为(-)2=(-)( ∈R, ≠0)    ①
由①的顶点到原点的距离为5,得=5  ②
在①中,令=0,得2-2+2+=0。设方程的二根为1,2,则
|1-2|=2.
将抛物线①向上平移3个单位,得抛物线的方程为
(-h)2=(--3)
令=0,得2-2+2++3=0。设方程的二根为3,4,则
|3-4|=2.
依题意得2=·2,
即 4(+3)= ③
将抛物线①向左平移1个单位,得(-+1)2=(-),
由抛物线过原点,得(1-)2=- ④
由②③④得=1,=3, =-4或=4,=-3, =-4.
∴所求抛物线方程为(-3)2=+4,或(+3)2=4(+4).
四、典型习题导练 
1.过抛物线2=4的对称轴上任一点P(0,m)(m>0)作直线与抛物线交于A,B两点,点Q是点P关于原点的对称点.
(1)设点P分有向线段所成的比为,证明:;
(2)设直线AB的方程是-2+12=0,过A、B两点的圆C与抛物线在点A处有共同的切线,求圆C的方程.
2.制定投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损.某投资人打算投资甲、乙两个项目. 根据预测,甲、乙项目可能的最大盈利率分别为100﹪和50﹪,可能的最大亏损分别为30﹪和10﹪. 投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过1.8万元. 问投资人对甲、乙两个项目各投资多少万元,才能使可能的盈利最大?
3.直线的右支交于不同的两点A、B.
(1)求实数的取值范围;
(2)是否存在实数,使得以线段AB为直径的圆经过双曲线C的右焦点F?若存在,求出的值;若不存在,说明理由.
4.已知倾斜角为的直线过点A(1,-2)和点B,B在第一象限,|AB|=3.
(1) 求点B的坐标;
若直线与双曲线相交于、两点,且线段的中点坐标为(4,1),求的值;
对于平面上任一点,当点Q在线段AB上运动时,称|PQ|的最小值为与线段的距离. 已知点在轴上运动,写出点到线段的距离关于的函数关系式.
5.已知椭圆的中心在原点,离心率为 ,一个焦点是F(-m,0)(m是大于0的常数).
(1)求椭圆的方程;
(2)设Q是椭圆上的一点,且过点F、Q的直线与轴交于点M. 若|MQ|=2|QF|,求直线的斜率.
第八章 平面向量与空间向量
§8.1平面向量及其运算
一、知识导学
1.模(长度):向量的大小,记作||。长度为0的向量称为零向量,长度等于1个单位长度的向量,叫做单位向量。
2.平行向量:方向相同或相反的非零向量叫做平行向量,又叫做共线向量。
3.相等向量:长度相等且方向相同的向量。
4.相反向量:我们把与向量长度相等,方向相反的向量叫做的相反向量。记作-。
5.向量的加法:求两个向量和的运算。
已知,。在平面内任取一点,作=,=,则向量叫做与的和。记作+。
6. 向量的减法:求两个向量差的运算。
已知,。在平面内任取一点O,作=,=,则向量叫做与的差。记作-。   
7.实数与向量的积:
(1)定义: 实数λ与向量的积是一个向量,记作λ,并规定:   ①λ的长度|λ|=|λ|·||; ②当λ>0时,λ的方向与的方向相同; 当λ<0时,λ的方向与的方向相反; 当λ=0时,λ= (2)实数与向量的积的运算律:设λ、μ为实数,则 ①λ(μ)=(λμ) ②(λ+μ) =λ+μ ③λ(+)=λ+λ
8.向量共线的充分条件:向量与非零向量共线的充要条件是有且只有一个实数λ,使得=λ。
另外,设=(x1 ,y1), = (x2,y2),则//x1y2-x2y1=0
9.平面向量基本定理: 如果、是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1、λ2使 =λ1+λ2 ,其中不共线向量、叫做表示这一平面内所有向量的一组基底。
10.定比分点 设P1,P2是直线l上的两点,点P是不同于P1,P2的任意一点则存在一个实数λ,使=λ,λ叫做分有向线段所成的比。若点P1、P、P2的坐标分别为(x1,y1),(x,y),(x2,y2),则有  
特别当λ=1,即当点P是线段P1P2的中点时,有  11.平面向量的数量积 (1)定义:已知两个非零向量和,它们的夹角为θ,则数量||||cosθ叫做与的数量积(或内积),记作·,即·=||||cosθ 规定:零向量与任一向量的数量积是0。 (2)几何意义:数量积·等于的长度||与在的方向上的投影||cosθ的乘积。
(3)性质:设,都是非零向量,是与方向相同的单位向量,θ是与的夹角,则·=·=||cosθ ,⊥·=0 当与同向时,·=||||  当与反向时,·=-|||| 特别地,·=||2或||= cosθ= |·|≤|||| (4)运算律: ·=· (交换律) (λ)·=λ(·)=·(λ) (+)·=·+·
(5)平面向量垂直的坐标表示的充要条件: 设=(x1 ,y1), = (x2,y2),则 ·=||·||cos90°=0 x1x2+y1y2=0
12.平移公式: 设P(x,y)是图形F上的任意一点,它在平移后图形F/上对应点为P/(x/,y/),且设的坐标为(h,k),则由=+,得:(x/,y/)=(x,y)+(h,k)
二、疑难知识导析
1.向量的概念的理解,尤其是特殊向量“零向量”
向量是既有大小,又有方向的量.向量的模是正数或0,是可以进行大小比较的,由于方向不能比较大小,所以向量是不能比大小的.两个向量的模相等,方向相同,我们称这两个向量相等,两个零向量是相等的,零向量与任何向量平行,与任何向量都是共线向量;
2.在运用三角形法则和平行四边形法则求向量的加减法时要注意起点和终点;
3.对于坐标形式给出的两个向量,在运用平行与垂直的充要条件时,一定要区分好两个公式,切不可混淆。因此,建议在记忆时对比记忆;
4.定比分点公式中则要记清哪个点是分点;还有就是此公式中横坐标和纵坐标是分开计算的;
5.平移公式中首先要知道这个公式是点的平移公式,故在使用的过程中须将起始点的坐标给出,同时注意顺序。
三、经典例题导讲
[例1] 和= (3,-4)平行的单位向量是_________;
错解:因为的模等于5,所以与平行的单位向量就是,即 (,-)
错因:在求解平行向量时没有考虑到方向相反的情况。
正解:因为的模等于5,所以与平行的单位向量是,即(,-)或(-,)
点评:平行的情况有方向相同和方向相反两种。读者可以自己再求解“和= (3,-4)垂直的单位向量”,结果也应该是两个。
[例2]已知A(2,1),B(3,2),C(-1,4),若A、B、C是平行四边形的三个顶点,求第四个顶点D的坐标。
错解:设D的坐标为(x,y),则有x-2=-1-3,y-1=4-2 ,即x=-2,y=3。故所求D的坐标为(-2,3)。
错因:思维定势。习惯上,我们认为平行四边形的四个顶点是按照ABCD的顺序。其实,在这个题目中,根本就没有指出四边形ABCD。因此,还需要分类讨论。
正解:设D的坐标为(x,y)
当四边形为平行四边形ABCD时,有x-2=-1-3,y-1= 4-2 ,即x= -2,y= 3。解得D的坐标为(-2,3);
当四边形为平行四边形ADBC时,有x-2=3-(-1),y-1= 2-4 ,即x= 6,y= -1。解得D的坐标为(6,-1);
当四边形为平行四边形ABDC时,有x-3=-1-2,y-2= 4-1 ,即x= 0,y= 5。解得D的坐标为(0,5)。
故第四个顶点D的坐标为(-2,3)或(6,-1)或(0,5)。
[例3]已知P1(3,2),P2(8,3),若点P在直线P1P2上,且满足|P1P|=2|PP2|,求点P的坐标。
错解:由|P1P|=2|PP2|得,点P 分P1P2所成的比为2,代入定比分点坐标公式得P()
错因:对于|P1P|=2|PP2|这个等式,它所包含的不仅是点P为 P1,P2 的内分点这一种情况,还有点P是 P1,P2的外分点。故须分情况讨论。
正解:当点P为 P1,P2 的内分点时,P 分P1P2所成的比为2,此时解得P();
当点P为 P1,P2 的外分点时,P 分P1P2所成的比为-2,此时解得P(13,4)。
则所求点P的坐标为()或(13,4)。
点评:在运用定比分点坐标公式时,要审清题意,注意内外分点的情况。也就是分类讨论的数学思想。
[例4] 设向量 ,,,则“”是“”的
? A.充分不必要条件???????????????? B.必要不充分条件
? C.充要条件?????????????????????? D.既不充分也不必要条件
分析:根据向量的坐标运算和充要条件的意义进行演算即可.
解:若,∵,则,代入坐标得:,即且 .消去,得;
反之,若,则且,即
? 则,∴
? 故“”是“ ”的充要条件.
答案:C
点评:本题意在巩固向量平行的坐标表示.
[例5].已知=(1,-1),=(-1,3),=(3,5),求实数x、y,使=x +y .
分析:根据向量坐标运算和待定系数法,用方程思想求解即可.
解:由

展开更多......

收起↑

资源预览