2009届新课标数学考点预测--导数及其应用

资源下载
  1. 二一教育资源

2009届新课标数学考点预测--导数及其应用

资源简介

2009届新课标数学考点预测--导数及其应用
一、考点介绍
导数属于新增内容,是高中数学知识的一个重要的交汇点,命题范围非常广泛,为高考考查函数提供了广阔天地,处于一种特殊的地位,不但一定出大题而相应有小题出现。主要考查导数有关的概念、计算和应用。利用导数工具研究函数的有关性质,把导数应用于单调性、极值等传统、常规问题的同时,进一步升华到处理与自然数有关的不等式的证明,是函数知识和不等式知识的一个结合体,它的解题又融合了转化、分类讨论、函数与方程、数形结合等数学思想与方法,不但突出了能力的考查,同时也注意了高考重点与热点,这一切对考查考生的应用能力和创新意识都大有益处。
1.了解导数概念的某些实际背景(如瞬时速度、加速度、光滑曲线切线的斜率等);掌握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念.
2.熟记基本导数公式;掌握两个函数和、差、积、商的求导法则.了解复合函数的求导法则,会求某些简单函数的导数.
3.理解可导函数的单调性与其导数的关系;了解可导函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异号);会求一些实际问题(一般指单峰函数)的最大值和最小值.
二、高考真题
1.(2008全国一21).(本小题满分12分)(注意:在试题卷上作答无效)
已知函数,.
(Ⅰ)讨论函数的单调区间;
(Ⅱ)设函数在区间内是减函数,求的取值范围.
解:(1)
求导:
当时,,
在上递增
当,求得两根为
即在递增,递减,
递增
(2),且 解得:
2.(2008全国二21).(本小题满分12分)
设,函数.
(Ⅰ)若是函数的极值点,求的值;
(Ⅱ)若函数,在处取得最大值,求的取值范围.
解:(Ⅰ).
因为是函数的极值点,所以,即,因此.
经验证,当时,是函数的极值点. 4分
(Ⅱ)由题设,.
当在区间上的最大值为时,
, 即.故得. 9分
反之,当时,对任意,

而,故在区间上的最大值为.
综上,的取值范围为. 12分
3.(2008山东卷21)(本小题满分12分)
已知函数其中n∈N*,a为常数.
(Ⅰ)当n=2时,求函数f(x)的极值;
(Ⅱ)当a=1时,证明:对任意的正整数n,当x≥2时,有f(x)≤x-1.
(Ⅰ)解:由已知得函数f(x)的定义域为{x|x>1},
当n=2时,
所以
(1)当a>0时,由f(x)=0得
>1,<1,
此时 f′(x)=.
当x∈(1,x1)时,f′(x)<0,f(x)单调递减;
当x∈(x1+∞)时,f′(x)>0, f(x)单调递增.
(2)当a≤0时,f′(x)<0恒成立,所以f(x)无极值.
综上所述,n=2时,
当a>0时,f(x)在处取得极小值,极小值为
当a≤0时,f(x)无极值.
(Ⅱ)证法一:因为a=1,所以
当n为偶数时,

则 g′(x)=1+>0(x≥2).
所以当x∈[2,+∞]时,g(x)单调递增,
又 g(2)=0
因此≥g(2)=0恒成立,
所以f(x)≤x-1成立.
当n为奇数时,
要证≤x-1,由于<0,所以只需证ln(x-1) ≤x-1,
令 h(x)=x-1-ln(x-1),
则 h′(x)=1-≥0(x≥2),
所以 当x∈[2,+∞]时,单调递增,又h(2)=1>0,
所以当x≥2时,恒有h(x) >0,即ln(x-1)<x-1命题成立.
综上所述,结论成立.
证法二:当a=1时,
当x≤2,时,对任意的正整数n,恒有≤1,
故只需证明1+ln(x-1) ≤x-1.


当x≥2时,≥0,故h(x)在上单调递增,
因此  当x≥2时,h(x)≥h(2)=0,即1+ln(x-1) ≤x-1成立.
故  当x≥2时,有≤x-1.
即f(x)≤x-1.
4..(2008湖南卷21)(本小题满分13分)
已知函数f(x)=ln2(1+x)-.
(I) 求函数的单调区间;
(Ⅱ)若不等式对任意的都成立(其中e是自然对数的底数).
求的最大值.
解: (Ⅰ)函数的定义域是,
设则
令则
当时, 在(-1,0)上为增函数,
当x>0时,在上为减函数.
所以h(x)在x=0处取得极大值,而h(0)=0,所以,
函数g(x)在上为减函数.
于是当时,
当x>0时,
所以,当时,在(-1,0)上为增函数.
当x>0时,在上为减函数.
故函数的单调递增区间为(-1,0),单调递减区间为.
(Ⅱ)不等式等价于不等式由知,
设则
由(Ⅰ)知,即
所以于是G(x)在上为减函数.
故函数G(x)在上的最小值为
所以a的最大值为
5..(2008陕西卷21).(本小题满分12分)
已知函数(且,)恰有一个极大值点和一个极小值点,其中一个是.
(Ⅰ)求函数的另一个极值点;
(Ⅱ)求函数的极大值和极小值,并求时的取值范围.
解:(Ⅰ),由题意知,
即得,(*),.
由得,
由韦达定理知另一个极值点为(或).
(Ⅱ)由(*)式得,即.
当时,;当时,.
(i)当时,在和内是减函数,在内是增函数.


由及,解得.
(ii)当时,在和内是增函数,在内是减函数.

恒成立.
综上可知,所求的取值范围为.
6.(2008重庆卷20)(本小题满分13分.(Ⅰ)小问5分.(Ⅱ)小问8分.)
   设函数曲线y=f(x)通过点(0,2a+3),且在点(-1,f(-1))
处的切线垂直于y轴.
(Ⅰ)用a分别表示b和c;
(Ⅱ)当bc取得最小值时,求函数g(x)=-f(x)e-x的单调区间.
解:(Ⅰ)因为
又因为曲线通过点(0,2a+3),

又曲线在(-1,f(-1))处的切线垂直于y轴,故
即-2a+b=0,因此b=2a.
(Ⅱ)由(Ⅰ)得
故当时,取得最小值-.
此时有
从而

所以
令,解得



由此可见,函数的单调递减区间为(-∞,-2)和(2,+∞);单调递增区间为(-2,2).
7.(2008福建卷19)(本小题满分12分)
   已知函数.
  (Ⅰ)设{an}是正数组成的数列,前n项和为Sn,其中a1=3.若点(n∈N*)在函数y=f′(x)的图象上,求证:点(n,Sn)也在y=f′(x)的图象上;
  (Ⅱ)求函数f(x)在区间(a-1,a)内的极值.
本小题主要考查函数极值、等差数列等基本知识,考查分类与整合、转化与化归等数学思想方法,考查分析问题和解决问题的能力.满分12分.
(Ⅰ)证明:因为所以′(x)=x2+2x,
由点在函数y=f′(x)的图象上,
又所以
所以,又因为′(n)=n2+2n,所以,
故点也在函数y=f′(x)的图象上.
(Ⅱ)解:,
由得.
当x变化时,﹑的变化情况如下表:
x
(-∞,-2)
-2
(-2,0)
0
(0,+∞)
f′(x)
+
0
-
0
+
f(x)

极大值

极小值

注意到,从而
①当,此时无极小值;
②当的极小值为,此时无极大值;
③当既无极大值又无极小值.
三、名校试题
1.(2008年潍坊市高三统一考试)
定义在的三个函数f(x)、g(x)、h(x),已知f(x)=lnx,g(x)= ,且g(x)在[1,2]为增函数,h(x)在(0,1)为减函数.
(I)求g(x),h(x)的表达式;
(II)求证:当1(III)把h(x)对应的曲线向上平移6个单位后得曲线,求与g(x)对应曲线的交点个数,并说明道理.
解(I)由题意:
∴恒成立.
又恒成立.
∴即
(II)
欲证:
只需证:
即证:


∴当x>1时,为增函数…………….9分

∴结论成立………………………………………………..10分
(III)由 (1)知:
∴对应表达式为
∴问题转化成求函数
即求方程:
即:

∴当时,为减函数.
当时,为增函数.
而的图象开口向下的抛物线
∴与的大致图象如图:
∴与的交点个数为2个.
即与的交点个数为2个.
2.(湖南师大附中)(本小题满分14分)已知函数
(Ⅰ)试判断函数上单调性并证明你的结论;
(Ⅱ)若恒成立,求整数k的最大值;
(Ⅲ)求证:(1+1×2)(1+2×3)…[1+n(n+1)]>e2n-3.
.解:(I)…………(2分)

上是减函数.……………………………………………………(4分)
(II)
即h(x)的最小值大于k.…………………………………………………………(6分)

则上单调递增,

存在唯一实根a,且满足


故正整数k的最大值是3 ……………………9分
(Ⅲ)由(Ⅱ)知
∴ ………………11分
令,则
∴ln(1+1×2)+ln(1+2×3)+…+ln[1+n(n+1)]
∴(1+1×2)(1+2×3)…[1+n(n+1)]>e2n-3 ………………14分
3.(浙江省重点中学2008年5月)
已知函数,数列的前项和为,,且.
(Ⅰ)求的最大值;
(Ⅱ)证明:;
(Ⅲ)探究:数列是否单调?
解:(Ⅰ)∵,∴.
∵=,(2分)
∴当时,,在上单调递增;
当时,,在上单调递减.
∴在区间内,.(2分)
(Ⅱ)用数学归纳法证明:
① 当时, ∵,∴,成立;
② 假设当时,成立.
当时,由及,得,(2分)
由(Ⅰ) 知,在上单调递增,所以,
而,, 故.
∴当时,也成立.
由①、②知,对任意都成立.(4分)
(Ⅲ)数列单调递减.(1分)
理由如下:
当时, ∴;
当时,由得.
∵,(2分)
又由 (Ⅱ) 知,,∴,
∴,即
∴,
∴,∴.(3分)
综上,数列单调递减.
4.已知函数,数列的前项和为,,且.
(Ⅰ)求的最大值;
(Ⅱ)证明:;
(Ⅲ)探究:数列是否单调?
解:(Ⅰ)∵,∴.
∵=,(2分)
∴当时,,在上单调递增;
当时,,在上单调递减.
∴在区间内,.(2分)
(Ⅱ)用数学归纳法证明:
① 当时, ∵,∴,成立;
② 假设当时,成立.
当时,由及,得,(2分)
由(Ⅰ) 知,在上单调递增,所以,
而,, 故.
∴当时,也成立.
由①、②知,对任意都成立.(4分)
(Ⅲ)数列单调递减.(1分)
理由如下:
当时, ∴;
当时,由得.
∵,(2分)
又由 (Ⅱ) 知,,∴,
∴,即
∴,
∴,∴.(3分)
综上,数列单调递减.
5.(天津市十二区县重点中学)
(本小题满分14分)
已知函数
(Ⅰ)判断的奇偶性;
(Ⅱ)在上求函数的极值;
(Ⅲ)用数学归纳法证明:当时,对任意正整数都有
解:(Ⅰ) 。……3分
(Ⅱ)当时,
………5分
令有,
当x变化时的变化情况如下表: 由表可知:

+
0


极大值

当时取极大值. ………7分
(Ⅲ)当时 ………8分
考虑到:时,不等式等价于…(1)
所以只要用数学归纳法证明不等式(1)对一切都成立即可………9分
(i)当时,设
, ………10分
故,即
所以,当时,不等式(1)都成立 ………11分
(ii)假设时,不等式(1)都成立,即
当时设
有 ………12分
故为增函数,
所以,,即, ………13分
这说明当时不等式(1)也都成立,
根据(i)(ii)可知不等式(1)对一切都成立,
故原不等式对一切都成立. ………14分
四、考点分类讲解
考点1 导数的概念
对概念的要求:了解导数概念的实际背景,掌握导数在一点处的定义和导数的几何意义,理解导函数的概念.
例1.(2007年北京卷)是的导函数,则的值是 .
[考查目的] 本题主要考查函数的导数和计算等基础知识和能力.
[解答过程]
故填3.
例2. ( 2006年湖南卷)设函数,集合M=,P=,若MP,则实数a的取值范围是 ( )
A.(-∞,1) B.(0,1) C.(1,+∞) D. [1,+∞)
[考查目的]本题主要考查函数的导数和集合等基础知识的应用能力.
[解答过程]由
综上可得MP时,
考点2 曲线的切线
(1)关于曲线在某一点的切线
求曲线y=f(x)在某一点P(x,y)的切线,即求出函数y=f(x)在P点的导数就是曲线在该点的切线的斜率.
(2)关于两曲线的公切线
若一直线同时与两曲线相切,则称该直线为两曲线的公切线.
典型例题
例3.(2007年湖南文)已知函数在区间,内各有一个极值点.
(I)求的最大值;
(II)当时,设函数在点处的切线为,若在点处穿过函数的图象(即动点在点附近沿曲线运动,经过点时,从的一侧进入另一侧),求函数的表达式.
思路启迪:用求导来求得切线斜率.
解答过程:(I)因为函数在区间,内分别有一个极值点,所以在,内分别有一个实根,
设两实根为(),则,且.于是
,,且当,即,时等号成立.故的最大值是16.
(II)解法一:由知在点处的切线的方程是
,即,
因为切线在点处空过的图象,
所以在两边附近的函数值异号,则
不是的极值点.
而,且

若,则和都是的极值点.
所以,即,又由,得,故.
解法二:同解法一得

因为切线在点处穿过的图象,所以在两边附近的函数值异号,于是存在().
当时,,当时,;
或当时,,当时,.
设,则
当时,,当时,;
或当时,,当时,.
由知是的一个极值点,则,
所以,又由,得,故.
例4.(2006年安徽卷)若曲线的一条切线与直线垂直,则的方程为( )
A. B.
C. D.
[考查目的]本题主要考查函数的导数和直线方程等基础知识的应用能力.
[解答过程]与直线垂直的直线为,即在某一点的导数为4,而,所以在(1,1)处导数为4,此点的切线为.
故选A.
例5. ( 2006年重庆卷)过坐标原点且与x2+y2 -4x+2y+=0相切的直线的方程为 ( )
A.y=-3x或y=x B. y=-3x或y=-x C.y=-3x或y=-x D. y=3x或y=x
[考查目的]本题主要考查函数的导数和圆的方程、直线方程等基础知识的应用能力.
[解答过程]解法1:设切线的方程为

故选A.
解法2:由解法1知切点坐标为由
故选A.
例6.已知两抛物线,取何值时,有且只有一条公切线,求出此时公切线的方程.
思路启迪:先对求导数.
解答过程:函数的导数为,曲线在点P()处的切线方程为,即   ①
曲线在点Q的切线方程是即
  ②
若直线是过点P点和Q点的公切线,则①式和②式都是的方程,故得
,消去得方程,
若△=,即时,解得,此时点P、Q重合.
∴当时,和有且只有一条公切线,由①式得公切线方程为 .
考点3 导数的应用
中学阶段所涉及的初等函数在其定义域内都是可导函数,导数是研究函数性质的重要而有力的工具,特别是对于函数的单调性,以“导数”为工具,能对其进行全面的分析,为我们解决求函数的极值、最值提供了一种简明易行的方法,进而与不等式的证明,讨论方程解的情况等问题结合起来,极大地丰富了中学数学思想方法.复习时,应高度重视以下问题:
1.. 求函数的解析式; 2. 求函数的值域; 3.解决单调性问题; 4.求函数的极值(最值);
5.构造函数证明不等式.
典型例题
例7.(2006年天津卷)函数的定义域为开区间,导函数在内的图象如图所示,则函数在开区间内有极小值点( )
A.1个
B.2个
C.3个
D. 4个
[考查目的]本题主要考查函数的导数和函数图象性质等基础知识的应用能力.
[解答过程]由图象可见,在区间内的图象上有一个极小值点.
故选A.
例8 .(2007年全国一)设函数在及时取得极值.
(Ⅰ)求a、b的值;
(Ⅱ)若对于任意的,都有成立,求c的取值范围.
思路启迪:利用函数在及时取得极值构造方程组求a、b的值.
解答过程:(Ⅰ),
因为函数在及取得极值,则有,.

解得,.
(Ⅱ)由(Ⅰ)可知,,

当时,;
当时,;
当时,.
所以,当时,取得极大值,又,.
则当时,的最大值为.
因为对于任意的,有恒成立,
所以 ,
解得 或,
因此的取值范围为.
例9.函数的值域是_____________.
思路启迪:求函数的值域,是中学数学中的难点,一般可以通过图象观察或利用不等式性质求解,也可以利用函数的单调性求出最大、最小值。此例的形式结构较为复杂,采用导数法求解较为容易。
解答过程:由得,,即函数的定义域为.

又,
当时,,
函数在上是增函数,而,的值域是.
例10.(2006年天津卷)已知函数,其中为参数,且.
(1)当时,判断函数是否有极值;
(2)要使函数的极小值大于零,求参数的取值范围;
(3)若对(2)中所求的取值范围内的任意参数,函数在区间内都是增函数,求实数的取值范围.
[考查目的]本小题主要考查运用导数研究三角函数和函数的单调性及极值、解不等式等基础知识,考查综合分析和解决问题的能力,以及分类讨论的数学思想方法.
[解答过程](Ⅰ)当时,,则在内是增函数,故无极值.
(Ⅱ),令,得.
由(Ⅰ),只需分下面两种情况讨论.
①当时,随x的变化的符号及的变化情况如下表:
x
0
+
0
-
0
+

极大值

极小值

因此,函数在处取得极小值,且.
要使,必有,可得.
由于,故.
②当时,随x的变化,的符号及的变化情况如下表:
+
0
-
0
+
极大值
极小值
因此,函数处取得极小值,且
若,则.矛盾.所以当时,的极小值不会大于零.
综上,要使函数在内的极小值大于零,参数的取值范围为.
(III)解:由(II)知,函数在区间与内都是增函数。
由题设,函数内是增函数,则a须满足不等式组

由(II),参数时时,.要使不等式关于参数恒成立,必有,即.
综上,解得或.
所以的取值范围是.
例11.(2006年山东卷)设函数f(x)=ax-(a+1)ln(x+1),其中a-1,求f(x)的单调区间.
[考查目的]本题考查了函数的导数求法,函数的极值的判定,考查了应用数形结合的数学思想分析问题解决问题的能力
[解答过程]由已知得函数的定义域为,且
(1)当时,函数在上单调递减,
(2)当时,由解得
、随的变化情况如下表

0
+
极小值
从上表可知
当时,函数在上单调递减.
当时,函数在上单调递增.
综上所述:当时,函数在上单调递减.
当时,函数在上单调递减,函数在上单调递增.
例12.(2006年北京卷)已知函数在点处取得极大值,其导函数的图象经过点,,如图所示.求:
(Ⅰ)的值;
(Ⅱ)的值.
[考查目的]本小题考查了函数的导数,函数的极值的判定,闭区间上二次函数的最值, 函数与方程的转化等基础知识的综合应用,考查了应用数形结合的数学思想分析问题解决问题的能力
[解答过程]解法一:(Ⅰ)由图像可知,在上,在上,在上,
故在上递增,在上递减,
因此在处取得极大值,所以
(Ⅱ)


解得
解法二:(Ⅰ)同解法一
(Ⅱ)设

所以
由即得
所以
例13.(2006年湖北卷)设是函数的一个极值点.
(Ⅰ)求与的关系式(用表示),并求的单调区间;
(Ⅱ)设,.若存在使得成立,求的取值范围.
[考查目的]本小题主要考查函数、不等式和导数的应用等知识,考查综合运用数学知识解决问题的能力.
[解答过程](Ⅰ)f `(x)=-[x2+(a-2)x+b-a ]e3-x,
由f `(3)=0,得 -[32+(a-2)3+b-a ]e3-3=0,即得b=-3-2a,
则 f `(x)=[x2+(a-2)x-3-2a-a ]e3-x
=-[x2+(a-2)x-3-3a ]e3-x=-(x-3)(x+a+1)e3-x.
令f `(x)=0,得x1=3或x2=-a-1,由于x=3是极值点,
所以x+a+1≠0,那么a≠-4.
当a<-4时,x2>3=x1,则
在区间(-∞,3)上,f `(x)<0, f (x)为减函数;
在区间(3,―a―1)上,f `(x)>0,f (x)为增函数;
在区间(―a―1,+∞)上,f `(x)<0,f (x)为减函数.
当a>-4时,x2<3=x1,则
在区间(-∞,―a―1)上,f `(x)<0, f (x)为减函数;
在区间(―a―1,3)上,f `(x)>0,f (x)为增函数;
在区间(3,+∞)上,f `(x)<0,f (x)为减函数.
(Ⅱ)由(Ⅰ)知,当a>0时,f (x)在区间(0,3)上的单调递增,在区间(3,4)上单调递减,那么f (x)在区间[0,4]上的值域是[min(f (0),f (4) ),f (3)],
而f (0)=-(2a+3)e3<0,f (4)=(2a+13)e-1>0,f (3)=a+6,
那么f (x)在区间[0,4]上的值域是[-(2a+3)e3,a+6].
又在区间[0,4]上是增函数,
且它在区间[0,4]上的值域是[a2+,(a2+)e4],
由于(a2+)-(a+6)=a2-a+=()2≥0,所以只须仅须
(a2+)-(a+6)<1且a>0,解得0故a的取值范围是(0,).
例14 (2007年全国二)
已知函数
在处取得极大值,在处取得极小值,且.
(1)证明;
(2)若z=a+2b,求z的取值范围。
[解答过程]求函数的导数.
(Ⅰ)由函数在处取得极大值,在处取得极小值,知是的两个根.
所以
当时,为增函数,,由,得.
(Ⅱ)在题设下,等价于 即.
化简得.
此不等式组表示的区域为平面上三条直线:.
所围成的的内部,其三个顶点分别为:.
在这三点的值依次为.
所以的取值范围为.
小结:本题的新颖之处在把函数的导数与线性
规划有机结合.
考点4 导数的实际应用
建立函数模型,利用
典型例题
例15. (2007年重庆文)
用长为18 cm的钢条围成一个长方体形状的框架,要求长方体的长与宽之比为2:1,问该长方体的长、宽、高各为多少时,其体积最大?最大体积是多少?
[考查目的]本小题主要考查函数、导数及其应用等基本知识,考查运用数学知识分析和解决实际问题的能力.
[解答过程]设长方体的宽为x(m),则长为2x(m),高为
.
故长方体的体积为
从而
令V′(x)=0,解得x=0(舍去)或x=1,因此x=1.
当0<x<1时,V′(x)>0;当1<x<时,V′(x)<0,
故在x=1处V(x)取得极大值,并且这个极大值就是V(x)的最大值。
从而最大体积V=V′(x)=9×12-6×13(m3),此时长方体的长为2 m,高为1.5 m.
答:当长方体的长为2 m时,宽为1 m,高为1.5 m时,体积最大,最大体积为3 m3。
例16.(2006年福建卷)统计表明,某种型号的汽车在匀速行驶中每小时的耗
油量(升)关于行驶速度(千米/小时)的函数解析式可以表示为:
已知甲、乙两地相距100千米.
(I)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升?
(II)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?
[考查目的]本小题主要考查函数、导数及其应用等基本知识,考查运用数学知识分析和解决实际问题的能力.
[解答过程](I)当时,汽车从甲地到乙地行驶了小时,
要耗没(升).
答:当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地耗油17.5升。
(II)当速度为千米/小时时,汽车从甲地到乙地行驶了小时,设耗油量为升,依题意得

令得
当时,是减函数;当时,是增函数.
当时,取到极小值
因为在上只有一个极值,所以它是最小值.
答:当汽车以80千米/小时的速度匀速行驶时,从甲地到乙地耗油最少,最少为11.25升.
五、考点预测
1.已知函数若在是增函数,求实数的范围。
解析:≥0在上恒成立在上恒成立
而在上的最小值为16,故。
2.已知定义在R上的函数y=f(x)的导函数f/(x)在R上也可导,且其导函数[f/(x)]/<0,
则y=f(x)的图象可能是下图中的 ( )
A.①② B.①③ C.②③ D.③④
C解析:由[f/(x)]/<0知f/(x)在R上递减,即函数y=f(x)的图象上从左到右各点处的切线斜率递减,不难看出图象②③满足这一要求。
3.f(x)是定义在(0,+∞)上的非负可导函数,且满足xf/(x)+f(x)≤0,对任意正数a、b,若a<b,则必有 ( ) (07陕西理11)
A.af(b) ≤bf(a) B.bf(a) ≤af(b)
C.af(a) ≤f(b) D.bf(b) ≤f(a)
解析:xf/(x)+f(x)≤0[xf(x)]/ ≤0函数F(x)= xf(x) 在(0,+∞)上为常函数或递减,
又0①②两式相乘得: af(b) ≤bf(a),故选A。
4.已知函数在处取得极大值,在处取得极小值,且.(1)证明;(2)若z=a+2b,求z的取值范围。
解析:函数的导数.
(Ⅰ)由函数在处取得极大值,在处取得极小值,知是的两个根.所以;当时,为增函数,,由,得.
(Ⅱ)在题设下,等价于 即.
化简得.此不等式组表示的区域为平面上三条直线:
所围成的的内部,由“线性规划”的知识容易求得:的取值范围为.
5.已知函数在处有极值10,则
解析: ,∴= ①
② 由①②得:或
当时,,此时函数无极值,舍去;
当时,函数在处左减右增,有极小值;
此时∴18 。
6.设函数在及时取得极值.
(Ⅰ)求a、b的值;(Ⅱ)若对于任意的,都有成立,求c的取值范围.
解析:(Ⅰ),由,.解得,.
(Ⅱ)在[0,3]上恒成立即,
由(Ⅰ)可知,,.
当时,;当时,;当时,.
即在0,1]上递增,[1,2]上递减,[2,3]上递增;∴当时,取得极大值,又.故当时,的最大值为.
于是有:,解得 或,因此的取值范围为。
7.已知定义在正实数集上的函数,,其中.设两曲线,有公共点,且在该点处的切线相同.用表示,并求的最大值;
解析:设与在公共点处的切线相同.
,,由题意,.
即由得:,或(舍去).
即有.
令,则.于是当,即时,;当,即时,.故在为增函数,
在为减函数,∴在的最大值为.

展开更多......

收起↑

资源预览