8.5 综合与实践 纳米材料的奇异特性 学习任务单 2023-2024学年沪科版数学七年级下册(含答案)

资源下载
  1. 二一教育资源

8.5 综合与实践 纳米材料的奇异特性 学习任务单 2023-2024学年沪科版数学七年级下册(含答案)

资源简介

8.5 综合与实践 纳米材料的奇异特性
素养目标
1.了解纳米材料体积小,表面积大的特点,感受纳米技术的巨大应用前景.
2.能计算将一个正方体进行n×n×n细分后表面积的变化情况.
3.体会数学知识与先进科学技术的紧密联系.
◎重点:计算正方体的表面积.
预习导学
知识点 纳米材料的奇异特征
阅读教材本课时所有内容,解决下列问题:
1.找一找:形成纳米材料这些新奇异特性的原因是什么
2.填一填:(1)将棱长为1 cm的正方体分成棱长为0.5 cm的正方体,一共可以分成   个,每个小正方体的表面积为   cm2,所有小正方体的表面积之和为   cm2,大正方体的表面积为   cm2,则小正方体的表面积之和与大正方体的表面积之比为   .
(2)将棱长为1 cm的正方体分成棱长为0.2 cm的正方体,一共可以分成   个,每个小正方体的表面积为   cm2,所有小正方体的表面积之和为   cm2,则小正方体的表面积之和与大正方体的表面积之比为   .
(3)将棱长为1 cm的正方体,分成棱长为0.1 cm的正方体,一共可以分成   个,每个小正方体的表面积为   cm2,所有小正方体的表面积之和为   cm2,则小正方体的表面积之和与大正方体的表面积之比为   .
3.填一填:
大正方 体棱长 分成的小正方体的棱长 分成小正方体的个数 所有小正方体的 表面积之和 小正方体的表面积之和与 大正方体的表面积之比
1            
a            
【答案】1.纳米材料颗粒的表面积之和与同体积的常规材料相比成倍增长.
2.(1)8 1.5 12 6 2∶1
(2)125 0.24 30 5∶1
(3)1000 0.06 60 10∶1
3.n3 6n n∶1 n3 6na2n∶1
【归纳总结】将一个正方体分割为a3(a为正整数)个小正方体,总的体积   ,小正方体的表面积之和是大正方体的   倍.
【答案】不变 a
对点自测
将棱长为2 cm的正方体,分割成棱长为0.5 cm的正方体,一共可以分成   个,每个小正方体的表面积为   cm2,所有小正方体的表面积之和为   cm2,则小正方体的表面积之和与大正方体的表面积之比为   .
【答案】64 1.5 96 4∶1
合作探究
任务驱动 正方体的分割
1.一个立方体木块的体积是64 cm3,把它切成大小相等的27个小立方体,其表面积之和是(方法指导:先求出一个小正方体的棱长) ( )
A.96 cm2 B.128 cm2
C.196 cm2 D.288 cm2
2.把一个棱长为1米的正方体分割成棱长为1分米的小正方体,并把它们排列成一排,可排成_______米.
【答案】1.D 2.100
【方法归纳交流】把正方体分成小正方体,如果小正方体棱长是大正方体的棱长的,那么可以分成   个小正方体.
【答案】n3
3.把一个长为20 cm、宽为10 cm、高为5 cm的长方体分割成若干个同样大小的小正方体,再把这些小正方体拼成一个大的正方体,求大正方体的表面积.
【答案】3.解:20、10与5的最大公因数是5,所以可分割成棱长是5 cm的小正方体,
(20÷5)×(10÷5)×(5÷5)=4×2×1=8(个).
因为2×2×2=8,
所以把这8个小正方体拼组成一个大正方体后的棱长是5×2=10 cm,
所以大正方体的表面积是10×10×6=600 cm2.
4.有一个棱长为9厘米的正方体木块,每一面都涂上红色.现在把它锯成棱长为3厘米的小正方体.(方法指导:可通过“魔方”模型帮助理解)
(1)能锯成多少个小正方体
(2)三面、二面、一面有红色的各有多少个
(3)没有红色的有多少个
【答案】4.解:(1)能锯成27个小正方体.
(2)三面有红色的正方体处在大正方体的八个顶角处,共有8个;二面有红色的正方体有12个,一面有红色的正方体处在大正方体每个面的正中间位置,有6个.
(3)没有红色的有一个,在大正方体的正中心处.
素养小测
1.如图,将一个棱长为3的正方体的表面涂上颜色,分割成棱长为1的小正方体.设其中一面、两面、三面涂色的小正方体的个数分别为x1、x2、x3,则x1、x2、x3之间的关系为( )
A.x1-x2+x3=1 B.x1+x2-x3=1
C.x1-x2+x3=2 D.x1+x2-x3=2
2.在边长为6的正方体的表面刷上蓝色的漆,再将它分割为边长是1的小正方体,那么三面有蓝色的小正方体有   个,两面有蓝色的有   个,一面有蓝色的有   个.
3.【知识生成】一般地,用两种不同的方法计算同一图形的面积,可以得到一个等式.
(1)如图1,根据图中阴影部分的面积可得等式   .
【知识迁移】类似地,用两种不同的方法计算同一几何体的体积,也能得到一个等式.
图2是边长为a+b的正方体,按如图所示的方式分割成8块.
(2)用不同的方法计算这个正方体的体积可得等式         .
(3)已知a+b=3,ab=1,利用上面的规律求a3+b3的值.
【答案】1.C
2.8 48 96
3.解:(1)(a+b)2-(a-b)2=4ab.
(2)(a+b)3=a3+3a2b+3ab2+b3.
(3)因为(a+b)3=a3+3a2b+3ab2+b3,
所以a3+b3=(a+b)3-3a2b-3ab2=(a+b)3-3ab(a+b).
因为a+b=3,ab=1,
所以a3+b3=33-3×1×3=18.

展开更多......

收起↑

资源预览