资源简介 2023-2024学年人教版七年级数学下册《8.3实际问题与二元一次方程组—古代算术问题》专题提升训练(附答案)一、单选题1.明代数学家程大位的《算法统宗》中有这样一个问题,只闻隔壁人分银,不知多少银和人.每人9两少9两,每人半斤多半斤(古代1斤=16两).试问各位善算者,多少人分多少银.设有人,分两银,根据题意列二元一次方程组正确的是( )A. B. C. D.2.《九章算术》中记载“今有共买羊,人出五,不足四十五;人出七,不足三,问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?若设人数为人,羊价钱,则下面所列方程组正确的是( )A. B. C. D.3.我国清代算书《御制数理精蕴》(卷九)中有这样一题:“设如有甲、乙二人人山采果共得三百枚,但云甲数加六百枚,乙数加二百枚,则甲数比乙数多二倍.问甲、乙各得几何.”设甲数为枚,乙数为枚,根据题意可列方程组为( )A. B.C. D.4.《孙子算经》中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余l尺,问木长多少尺?若设木长尺,绳子长尺,则可列方程组为( )A. B. C. D.5.我国古代数学著作《九章算术》的“方程”一章里,一次方程组是由算筹布置而成的.如图1,图中各行从左到右列出的算筹数分别表示未知数,的系数与相应的常数项,把图1所示的算筹图用我们现在所熟悉的方程组的形式表述出来,就是类似地,表述图2所示的算筹图的方程组是( )A. B. C. D.6.《九章算术》中有这样一个题:今有二马、一牛价过-一万、如半马之价.一马、二牛价不满一万、如半牛之价.问牛、马价各几何?其意思是:今有2匹马、1头牛的总价超过1万钱,其超出的钱数相当于匹马的价格,1匹马、2头牛的总价不足1万钱,所差的钱数相当于头牛的价格.问每头牛、每匹马的价格各是多少?设每匹马的价格为x万钱,每头牛的价格为y万钱,则可建立方程组为( )A. B.C. D.二、填空题7.我国古代数学名著《张丘建算经》中有这样一题:一只公鸡值5钱,一只母鸡值3钱,3只小鸡值1钱,现花钱买了只鸡.若公鸡有8只,设母鸡有只,小鸡有只,可列方程组为 .8.“两果问价”问题出自我国古代算书《四元玉鉴》,原题如下:九百九十九文钱,甜果苦果买一千,甜果九个十一文,苦果七个四文钱.试问甜苦果几个?又问各该几个钱?将题目译成白话文,内容如下:九百九十九钱买了甜果和苦果共一千个,已知十一文钱可买九个甜果,四文钱可买七个苦果,那么甜果、苦果各买了多少个?设甜果买了x个,苦果买了y个,根据题意,可列方程组为 .9.“今有六十鹿进舍,小舍容四鹿,大舍容五鹿,需舍几何?(改编自《缉古算经》)”大意为:今有60只鹿进圈舍,小圈舍可以容纳4头鹿,大圈舍可以容纳5头鹿,求所需圈舍的间数.设小圈舍的间数是x间,大圈舍的间数是y间,则可列方程为 .10.《孙子算经》是我国古代一部较为普及的算书,许多问题浅显有趣,其中下卷第31题“雉兔同笼”流传尤为广泛,漂洋过海流传到了日本等国.“雉兔同笼”题为:“今有雉(鸡)兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”设雉(鸡)有x只,兔有y只,则可列方程组为 .11.《孙子算经》是中国古代重要的数学著作,其中一道题的原文是:“今三人共车,两车空;二人共车,九人步.问人与车各几何?”意思是:现有若干人和车,若每辆车乘坐3人,则空余两辆车:若每辆车乘坐2人,则有9人步行,问人与车各多少?设有人,辆车,可列方程组为 .12.我国古代数学著作《九章算术》中记载:“今有大器五小器一容九斛,大器一小器五容三斛.问大小器各容几何.”其大意为:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒9斛(斛,音hu,是古代的一种容量单位).1个大桶加上5个小桶可以盛酒3斛,问1个大桶和1个小桶分别可以盛 斛酒.三、解答题13.古代有一个官兵分布的问题:“一千官兵一千布,一官四尺无零数,四兵才得布一尺,请问官兵多少数?”大意如下:一千名军官和士兵分一千尺布,一名军官分四尺,四名士兵分一尺,正好分完.问军官和士兵各有多少名?14.我国古代《算法统宗》里有这样一首诗:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.”这首诗的意思是说:如果一间客房住个人,那么就剩个人安排不下;如果一间客房住个人,那么就空出一间客房.问现有客房多少间?房客多少人?(请列方程组解答)15.《九章算术》记载:“今有甲乙二人持钱不知其数,甲得乙半而钱五十,乙得甲半而亦钱五十.问:甲、乙持钱各几何?”大意是:甲、乙二人带着钱,不知多少,若甲得到乙的钱数的,则甲的钱数为50;若乙得到甲的钱数的,则乙的钱数也能为50,问甲、乙各有多少钱?16.《九章算术》中有这样一道题,原文如下:今有上禾六秉,损实一斗八升,当下禾一十秉.下禾十五秉,损实五升,当上禾五秉.问:上、下禾实一秉各几何?大意为:今有上禾6束,减损其中之“实”1斗8升,与下禾10束之“实”相当;下禾15束,减损其中之“实”5升,与上禾5束之“实”相当.问上、下禾每1束之实各为多少 (10升为1斗)17.列方程组解应用题:我国南宋数学家杨辉在《续古摘奇算法》中的攒九图中提出“幻圆”的概念.如图是一个最简的二阶幻圆的模型,将一些数字分别填入图中的圆圈内,要求:①外、内两个圆周上的四个数字之和相等;②外圆两直径上的四个数字之和相等,请你求出图中外,内两个圆周上两空白圆圈内应填写的数字是多少 18.《四元玉鉴》是一部成就辉煌的数学名著,在中国古代数学史上有着重要地位.其中有这样一个问题:酒分醇醨务中听得语吟吟,亩道醇醨酒二盆.醇酒一升醉三客,醨酒三升醉一人.共通饮了一斗九,三十三客醉醺醺.欲问高明能算士,几何醨酒几多醇?其大意为:有好酒和薄酒分别装在瓶中,好酒1升醉了3位客人,薄酒3升醉了1位客人,现在好酒和薄酒一共饮了19升,醉了33位客人,试问好酒、薄酒各有多少升?19.清朝数学家梅文鼎的著作《方程论》中有这样一道题:山田三亩,场地六亩共折实田四亩七分;又山田五亩,场地三亩,共折实田五亩五分,问每亩山田折实田多少,每亩场地折实田多少?译文为:假如有山田3亩,场地6亩,其产粮相当于实田4.7亩;有山田5亩,场地3亩,其产粮相当于实田5.5亩,问每亩山田和每亩场地产粮各相当于实田多少亩?请用方程组的知识解答.20.我国古代数学著作《九章算术》中记载有这样一个问题:“今有甲、乙二人,持钱不知其数.甲得乙半而钱五十,乙得甲大半而钱亦五十.问甲、乙持钱各几何?”题目大意是:今有甲、乙二人,各带了若干钱.如果甲得到乙所有钱的一半,那么甲共有钱50;如果乙得到甲所有钱的,那么乙也共有钱50,问甲、乙二人各带了多少钱?(1)求甲、乙两人各带的钱数;(2)若小明、小颖去文具店购买作业本,两人带的钱数(单位:元)恰好等于甲、乙两人各带的钱数,已知作业本的单价为2.5元/本.由于开学之际,文具店搞促销活动,凡消费50元可以打八折,那么他们合起来购买可以比单独购买多多少本作业本?参考答案1.解:设有人,分两银,则,故选:D.2.解:设合伙人人数为人,羊价钱,根据题意,可列方程组为:,即.故选:B3.解:设甲数为枚,乙数为枚,根据题意,得:,故选:A.4.解:设木长尺,绳子长尺,∵用一根绳子去量一根长木,绳子还剩余4.5尺,∴.∵将绳子对折再量长木,长木还剩余l尺,∴,∴可列方程组为.故选C.5.解:根据图1所示的算筹的表示方法,可推出图2所示的算筹表示的方程组:故选:A.6.解:根据题意,得:,故选:D.7.解:依题意得:,故答案为:.8.解:由题意可得,,故答案为:.9.解:依题意得:.故答案是:.10.解:根据题意,得,故答案为:.11.解:设有人,辆车.每辆车乘坐3人,则空余两辆车,坐满人的车数为(y-2),总人数3(y-2)人,可得x=3(y-2),若每辆车乘坐2人,则有9人步行,车上人数为2y人,总人数为(2y+9)人,可得x=2y+9,列方程组得.故答案为.12.解:设1个大桶可盛x斛酒,1个小桶可盛y斛酒;则;解得;所以设1个大桶可盛斛酒,1个小桶可盛斛酒;13.解:设军官有名,士兵名,根据题意,得:解得:答:军官有名,士兵有名.14.解:设客房间,房客人,由题意得,解得.答:客房间,房客人.15.解:设甲有x钱,乙有y钱,依题意得:,解得:答:甲有37.5钱,乙有25钱.16.解:设上、下禾每1束之实各为x,y升,根据题意可列方程组:,解得:答:上、下禾每1束之实分别为8升和3升.17.解:设图中外圆周上空白圆圈内填写的数字是x,图中内圆周上空白圆圈内填写的数字是y,根据题意得,解得:,答:图中外圆周上空白圆圈内填写的数字是4图中内圆周上空白圆圈内填写的数字是7.18.解:设好酒x升,薄酒y升,由题意得:,解得:,答:好酒10升,薄酒9升.19.解:设每亩山田产粮相当于实田亩,每亩场地产粮相当于实田亩,根据题意,得 ,解得 .答:每亩山田产粮相当于实田0.9亩,每亩场地产粮相当于实田亩.20.(1)解:设甲带钱x,乙持钱y,根据题意得:,解得:,答:甲带钱,乙持钱;(2)分开买:(本);合起来买:(本),即:(本),即:他们合起来购买可以比单独购买多6本作业本. 展开更多...... 收起↑ 资源预览