湘教版数学九年级上册第4章锐角三角函数单元检测卷(含答案)

资源下载
  1. 二一教育资源

湘教版数学九年级上册第4章锐角三角函数单元检测卷(含答案)

资源简介

第4章检测卷
一、选择题(每题3分,共30分)
题序 1 2 3 4 5 6 7 8 9 10
答案
1.3tan 30° 的值为(  )
A. B. C. D.
2.如图,在△ABC中,∠C=90°,∠A,∠B,∠C所对的边分别为a,b,c,则(  )
A.c=bsinB B.b=ctanB C.a=btanB D.b=csinB
INCLUDEPICTURE"XJJ4-1.tif" INCLUDEPICTURE "D:\\课件\\九数XJ\\XJJ4-1.tif" \* MERGEFORMATINET INCLUDEPICTURE "D:\\课件\\九数XJ\\XJJ4-1.tif" \* MERGEFORMATINET (第2题)  INCLUDEPICTURE"XJJ4-2.tif" INCLUDEPICTURE "D:\\课件\\九数XJ\\XJJ4-2.tif" \* MERGEFORMATINET INCLUDEPICTURE "D:\\课件\\九数XJ\\XJJ4-2.tif" \* MERGEFORMATINET (第3题)
3.如图,在Rt△ABC中,若∠C=90°,∠B=45°,AB=8,则BC的长为(  )
A. B.4 C.8 D.4
4.如图,在4×4的正方形网格中,小正方形的顶点称为格点,△ABC的顶点都在格点上,则图中∠ABC的正切值是(  )
(第4题)
A.2 B. C. D.
5.如图,一棵大树被台风拦腰刮断,树根A到刮断点P的长度是4 m,折断部分PB与地面成40°的夹角,那么原来树的高度是 (  )
INCLUDEPICTURE"XJJ4-4.tif" INCLUDEPICTURE "D:\\课件\\九数XJ\\XJJ4-4.tif" \* MERGEFORMATINET INCLUDEPICTURE "D:\\课件\\九数XJ\\XJJ4-4.tif" \* MERGEFORMATINET
(第5题)
A. m B. m
C.(4+4sin 40°) m D.(4+4cos 40°) m
6.已知△ABC中,AB=AC,tan B=,则cos C的值为(  )
A. B. C. D.
7.如图,点A为∠α边上的任意一点,作AC⊥BC于点C,CD⊥AB于点D,下列用线段比表示tan α的值中错误的是(  )
A. B. C. D.
INCLUDEPICTURE"XJJ4-5.tif" INCLUDEPICTURE "D:\\课件\\九数XJ\\XJJ4-5.tif" \* MERGEFORMATINET INCLUDEPICTURE "D:\\课件\\九数XJ\\XJJ4-5.tif" \* MERGEFORMATINET
(第7题)
8.关于x的一元二次方程x2-x+sin α=0有两个相等的实数根,则锐角α 等于(  )
A.15° B.30° C.45° D.60°
9.如图,在△ABC中,∠A=30°,tan B=,AC=2 ,则AB的长是(  )
A.4 B.3+ C.5 D.2+2
(第9题)   (第10题)
10.如图,在 ABCD中,CD=4,∠B=60°,分别以点A,B为圆心,大于 AB的长为半径作弧,两弧交点的连线交BC于点E,连接AE,若BE∶EC=2∶1,则 ABCD的面积为(  )
A.12 B.12 C.12 D.12
二、填空题(每题3分,共18分)
11.如图,Rt△ABC中,∠C=90°,sin A=,则cos B=______.
INCLUDEPICTURE"XJJ4-8.tif" INCLUDEPICTURE "D:\\课件\\九数XJ\\XJJ4-8.tif" \* MERGEFORMATINET INCLUDEPICTURE "D:\\课件\\九数XJ\\XJJ4-8.tif" \* MERGEFORMATINET (第11题)   INCLUDEPICTURE"XJJ4-9.tif" INCLUDEPICTURE "D:\\课件\\九数XJ\\XJJ4-9.tif" \* MERGEFORMATINET INCLUDEPICTURE "D:\\课件\\九数XJ\\XJJ4-9.tif" \* MERGEFORMATINET (第12题)
12.如图,菱形ABCD的对角线AC=6,BD=8,∠ABD=α,则tan α=________.
13.课外活动小组想测量学校旗杆的高度.如图,当太阳光线与地面成30°角时,测得旗杆AB在地面上的影长BC为 24米,则旗杆AB的高度是________米(结果保留根号).
(第13题)
14.如图,平面直角坐标系中有一个正方形ABCD,点B的坐标为(0,),∠BAO=60°,那么点C的坐标为____________.
INCLUDEPICTURE"XJJ4-11.tif" INCLUDEPICTURE "D:\\课件\\九数XJ\\XJJ4-11.tif" \* MERGEFORMATINET INCLUDEPICTURE "D:\\课件\\九数XJ\\XJJ4-11.tif" \* MERGEFORMATINET     INCLUDEPICTURE"XJJ4-12.tif" INCLUDEPICTURE "D:\\课件\\九数XJ\\XJJ4-12.tif" \* MERGEFORMATINET INCLUDEPICTURE "D:\\课件\\九数XJ\\XJJ4-12.tif" \* MERGEFORMATINET    INCLUDEPICTURE"XJJ4-13.tif" INCLUDEPICTURE "D:\\课件\\九数XJ\\XJJ4-13.tif" \* MERGEFORMATINET INCLUDEPICTURE "D:\\课件\\九数XJ\\XJJ4-13.tif" \* MERGEFORMATINET
(第14题)        (第15题)
15.如图①是一款可调节的笔记本电脑支架,其侧面示意图如图②,调节杆BC=a,AB=b,AB的最大仰角为α.当∠C=45°时,则点A到桌面的最大高度是________.
16.若AD是△ABC的高,CD=1,AD=BD=,则∠BAC=________.
三、解答题(17,18题每题8分,19~21题每题10分,22题12分,23题14分,共72分)
17.计算:
(1) tan245°+-3cos230°;
(2)×(-1)2 025+2sin 45°-cos 30°+sin 60°+tan260°.
18.如图,在Rt△ABC中,∠C=90°,已知BC=3 ,AC=3 ,解这个直角三角形.
INCLUDEPICTURE"XJJ4-14.tif" INCLUDEPICTURE "D:\\课件\\九数XJ\\XJJ4-14.tif" \* MERGEFORMATINET INCLUDEPICTURE "D:\\课件\\九数XJ\\XJJ4-14.tif" \* MERGEFORMATINET
(第18题)
19.如图,在Rt△ABC中,∠C=90°,M是边AC上一点,N是边AB上一点,∠CMN+∠B=180°,AN=3,AM=4,求cos B的值.
INCLUDEPICTURE"XJJ4-15.tif" INCLUDEPICTURE "D:\\课件\\九数XJ\\XJJ4-15.tif" \* MERGEFORMATINET INCLUDEPICTURE "D:\\课件\\九数XJ\\XJJ4-15.tif" \* MERGEFORMATINET
(第19题)
20.如图,C地在A地的正东方向,因有大山阻隔,由A地到C地需要绕行到B地.已知B地位于A地北偏东67°方向,且距离A地520 km,C地位于B地南偏东30°方向,若打通穿山隧道,建成A,C两地直达高铁,求A地到C地之间直达高铁线路的长.(结果保留整数,参考数据:sin 67°≈,cos 67°≈,tan 67°≈,≈1.73)
INCLUDEPICTURE"XJJ4-16.tif" INCLUDEPICTURE "D:\\课件\\九数XJ\\XJJ4-16.tif" \* MERGEFORMATINET INCLUDEPICTURE "D:\\课件\\九数XJ\\XJJ4-16.tif" \* MERGEFORMATINET
(第20题)
21.根据以下材料,完成项目任务.
项目 测量古塔的高度及古塔底面圆的半径
测量工具 测角仪、皮尺等
测量 INCLUDEPICTURE"XJJ4-17.tif" INCLUDEPICTURE "D:\\课件\\九数XJ\\XJJ4-17.tif" \* MERGEFORMATINET INCLUDEPICTURE "D:\\课件\\九数XJ\\XJJ4-17.tif" \* MERGEFORMATINET 说明:如图,点Q为古塔底面圆的圆心,测角仪高度AB=CD=1.5 m,在B、D处分别测得古塔顶端的仰角为32°、45°,BD=9 m,测角仪CD所在位置与古塔底部边缘距离DG=12.9 m,点B、D、G、Q在同一条直线上
参考数据 sin 32°≈0.530,cos 32°≈0.848,tan 32°≈0.625
项目任务
(1)求出古塔的高度;(2)求出古塔底面圆的半径.
22.如图,在△ABC中,AD⊥BC,垂足为点D,DE∥AC,cos C=,AC=10,BE=2AE.
INCLUDEPICTURE"XJJ4-18.tif" INCLUDEPICTURE "D:\\课件\\九数XJ\\XJJ4-18.tif" \* MERGEFORMATINET INCLUDEPICTURE "D:\\课件\\九数XJ\\XJJ4-18.tif" \* MERGEFORMATINET
(第22题)
(1)求BD的长;
(2)求△BDE的面积.
23.沿江大堤经过改造后的某处横断面为如图所示的梯形ABCD.高DH=12 m,斜坡CD的坡度i=1∶1.此处大堤的正上方有高压电线穿过,PD表示高压线上的点与堤面AD的最近距离(P,D,H在同一直线上),在点C处测得∠DCP=26°.
(1)求斜坡CD的坡角α;
(2)电力部门要求此处高压线离堤面AD的安全距离不低于18 m,请问此次改造是否符合电力部门的安全要求?(参考数据:sin 26°≈0.44,tan 26°≈0.49,sin 71°≈0.95,tan 71°≈2.90)
INCLUDEPICTURE"XJJ4-19.tif" INCLUDEPICTURE "D:\\课件\\九数XJ\\XJJ4-19.tif" \* MERGEFORMATINET INCLUDEPICTURE "D:\\课件\\九数XJ\\XJJ4-19.tif" \* MERGEFORMATINET
(第23题)
答案
一、1.C 2.D 3.D 4.A 5.B 6.B 7.C
8.B 思路点睛:根据方程有两个相等的实数根得出Δ=0,即可得到关于sin α的一元一次方程,解出此一元一次方程,然后根据特殊三角函数值即可得解.
9.C 10.C
二、11. 12. 13.8  
14.(-,+1) 15.a+bsin α
16.75°或15° 易错点睛:本题分高AD在△ABC内部和高AD在△ABC外部两种情况,易因考虑不全面而漏解.
三、17.解:(1)原式=×12+-3×=+4-=2.
(2)原式=3×(-1)+2×-++()2=-3++3=.
18.解:由题意,得AB===6 .∵tan A===,
∴∠A=30°,∴∠B=90°-∠A=60°.
19.解:∵∠CMN+∠B=180°,∠AMN+∠CMN=180°,∴∠B=∠AMN.又∵∠A=∠A,
∴∠ANM=∠C=90°.∵AN=3,AM=4,
∴MN==,∴cos∠AMN==,∴cos B=cos∠AMN=.
20.解:过点B作BD⊥AC于点D.
在Rt△ABD中,∵∠ABD=67°,AB=520 km,
∴AD=AB·sin 67°≈520×=480(km),
BD=AB·cos 67°≈520×=200(km).
在Rt△BCD中,∵∠CBD=30°,∴CD=BD·tan 30°≈200×≈200×≈115.3(km),
∴AC=AD+CD≈480+115.3=595.3≈595(km).
答:A地到C地之间直达高铁线路的长约是595 km.
21.解:(1)延长AC交PQ于点E,则易得四边形CDQE是矩形,∴QE=CD=1.5 m,依题意得∠PCE=45°,∠PAE=32°,AC=BD=9 m.
在Rt△PCE中,由∠PCE=45°,得CE=PE.
在Rt△PAE中,由tan∠PAE==tan 32°,得PE=AE·tan 32°=(AC+CE)·tan 32°,解得PE≈15 m,
∴PQ=PE+EQ≈15+1.5=16.5(m).
答:古塔的高度约为16.5 m.
(2)在矩形CDQE中,由(1)知DQ=CE=PE≈15 m.
∵DG=12.9 m,∴GQ≈15-12.9=2.1 (m).
答:古塔底面圆的半径约为2.1 m.
22.解:(1)∵AD⊥BC,∴∠ADC=90°,∵cos C=,AC=10,∴cos C===,∴CD=8.
∵DE∥AC,∴=.又∵BE=2AE,
∴=2.∴=2,∴BD=16.
(2)在Rt△ACD中,由勾股定理得
AD===6.∵BE=2AE,
∴易得S△BDE=S△ABD=×=×=32.
23.解:(1)∵斜坡CD的坡度i=1∶1,
∴tan α=1∶1=1,∴α=45°.
答:斜坡CD的坡角α为45°.
(2)∵斜坡CD的坡度i=1∶1,∴CH=DH=12 m.
∵α=45°,∠DCP=26°,∴∠PCH=26°+45°=71°,
∴tan∠PCH=tan 71°==≈2.90,
∴PD≈22.8 m,∵22.8>18,∴此次改造符合电力部门的安全要求.

展开更多......

收起↑

资源预览