第三章 常用机床电气控制1 课件(共29张PPT)- 《工厂电气控制设备(第二版)》同步教学(机工版)

资源下载
  1. 二一教育资源

第三章 常用机床电气控制1 课件(共29张PPT)- 《工厂电气控制设备(第二版)》同步教学(机工版)

资源简介

(共29张PPT)
第三章 常用机床电气控制
第一节 车床的电气控制
车床是一种应用最为广泛的金属切削机床,能够切削外圆、内圆、端面、螺纹、定型表面,并可以用钻头、绞刀等进行加工。
卧式车床主运动由床身、主轴变速箱、尾座进给箱、丝杠、光杠、刀架和溜板箱等组成。
车削加工的主运动是主轴通过卡盘或顶尖带动工件的旋转运动,它承受车削加工时的主要切削功率。进给运动是溜板带动刀架的纵向或横向直线运动。车床的辅助运动包括刀架的快速进给与快速退回,尾座的移动与工件的夹紧与松开等。
第一节 车床的电气控制
车削加工时,应根据工件材料、刀具种类、工件尺寸、工艺要求等来选择不同的切削速度,这就要求主轴能在相当大的范围内调速。目前大多数中小型车床采用三相笼型感应电动机拖动,主轴的变速是靠齿轮箱的机械有级调速来实现的。车削加工时,一般不要求反转,但在加工螺纹时,为避免乱扣,要反转退刀;同时,加工螺纹时,要求工件旋转速度与刀具的移动速度之间有严格的比例关系。为此,车床溜板箱与主轴箱之间通过齿轮传动来连接,而主运动与进给运动由一台电动机拖动。为了提高工作效率,有的车床刀架的快速移动由一台单独的进给电动机拖动。
进行车削加工时,刀具的温度高,需用切削液来进行冷却。为此,车床备有一台冷却泵电动机,拖动冷却泵,实现刀具的冷却。有的车床还专门设有润滑泵电动机,对系统进行润滑。
今以C650-2型卧式车床电气控制为例进行分析。图3-1为C650-2型车床电气控制电路图。C650-2型车床是一种中型车床,除有主轴电动机M1和冷却泵电动机M2外,还设置了刀架快速电动机M3。它的控制特点是:
(1)主轴电动机M1采用电气正反转控制。
(2)M1容量为20KW,采用电气反接制动,实现快速停车。
(3)为便于对刀操作,主轴设有点动控制。
(4)采用电流表来检测电动机负载情况。
一、主轴电动机的控制
1、主轴正反转控制
由按钮SB2、SB3和接触器KM1、KM2组成主轴电动机正反转控制电路,并由接触器KM3主触点短接反接制动电阻R,实现全压直接起动运转。
2、主轴的点动控制
由主轴点动按钮SB4与接触器KM1控制,并且在主轴电动机M1主电路中串入电阻R减压起动和低速点动,便于对刀操作。
3、主轴电动机反接制动的停车控制
主轴停车时,由停止按钮SB1与正反转接触器KM1、KM2及反接制动接触器KM3、速度继电器KV,构成电动机正反转反接制动控制电路,在KV控制下实现反接制动停车。
4、主轴电动机负载检测及保护环节
C650-2型车床采用电流表检测主轴电动机定子
电流。为防止起动电流的冲击,采用时间继电器KT的常闭通电延时断开触点连接在电流表的两端,为此KT延时应稍长于M1的起动时间。而当M1制动停车时,当按下停止按钮SB1时,KM3、KA、KT线圈相继断电释放,KT触点瞬时闭合,将电流表短接,不会受到反接制动电流的冲击。
二、刀架快速移动的控制
刀架的快速移动由快速移动电动机M3拖动,由刀架快速移动手柄操作。当扳动刀架快速移动手柄时,压下行程开关ST,接触器KM5线圈通电吸合,使M3电动机直接起动,拖动刀架快速移动。当将快速移动手柄扳回原位时,ST不受压,KM5断电释放,M3断电停止,刀架快速移动结束。
三、冷却泵电动机的控制
由按钮SB5、SB6和接触器KM4构成电动机单方向起动、停止电路,实现对冷却泵电动机M2的控制。
第二节 磨床的电气控制
磨床是用砂轮的周边或端面进行机械加工的精密机床。磨床的种类很多,按其工作性质可分为外圆磨床、内圆磨床、平面磨床、工具磨床以及一些专用磨床,如螺纹磨床、齿轮磨床、球面磨床、花键磨床、导轨磨床与无心磨床等。其中尤以平面磨床应用最为普遍。平面磨床可分为下列几种基本类型:立轴矩台平面磨床,卧轴矩台平面磨床、立轴圆台平面磨床,卧轴圆台平面磨床。今以M7475B立轴圆台平面磨床的电气控制为例进行分析。
M7475B立轴圆台平面磨床是大型平面磨床,主运动是砂轮的旋转,圆形工作台带动工件转动为进给运动。磨头的升降与台面的左右移动为辅助运动。工作台上设有电磁吸盘,用来吸持工件。
图3-2为M7475B型平面磨床交流电力拖动控制电路图,
图3-2 M7475B型平面磨床交流控制电路图
a)主电路图 b)交流控制电路
图3-3为M7475B型平面磨床电磁吸盘励磁、退磁控制电路图。
一、控制电路的特点
(1)砂轮电动机M1容量为25KW,采用Y-D减压起动。
(2)工作台旋转由双速电动机M2拖动,慢速时电动机联结成D形,快速时为YY联结。
(3)电动机M2和冷却泵电动机M5由手动选择开关SA1、SA3操作,为实现M2、M5的零电压保护,设置了零压继电器KHV。
(4)工作台的左右运动,磨头上下运动全都采用电气控制。
(5)机床设有完善的保护环节:FR1~FR5热继电器实现电动机M1~M5的过载保护;FU1、FU2熔断器分别为M2及M3~M5电动机的短路保护;行程开关SQ1、SQ2及SQ3
分别为工作台左行、右行及磨头上升的限位保护;接触器KM8与KM3及KM4的电气互锁,实现工作台旋转与磨头下降运动之间的互锁。
(6)M7475B型立轴圆台磨床电气控制电路由两部分组成。一部分为交流继电-接触器控制系统,控制交流电力拖动部分;另一部分为电子控制电路,控制电磁吸盘(magnctic chuck)的励磁与退磁。由按钮SB8、SB9控制中间继电器KA1,再由KA1控制KA2,实现对电磁吸盘的控制。其中V1、V2组成电子开关电路,用于给电磁吸盘励磁,V3和V4组成多谐振荡器电路,用于电磁吸盘的退磁。
二、交流控制电路分析
1、砂轮电动机M1的控制
合上开关,引入三相交流电源,按下起动按钮SB1,零
压保护继电器KHV线圈通电并自锁,电源接通,信号灯HL1亮,表明机床的电气电路处于带电状态。
按下砂轮电动机起动按钮SB2,接触器KM2线圈处于断电状态,其常闭辅助触点闭合,将砂轮电动机定子绕组联结成Y形。同时,接触器KM1线圈通电吸合并自保,时间继电器KT线圈通电吸合。KM1主触点闭合,将M1接通三相交流电源,使电动机定子绕组在Y联结下起动旋转。
经过一定时间延时,当M1转速接近其额定转速时,时间继电器触点KT(4-8)断开,KM线圈断电释放,触点KM1(5-6)闭合,为KM2线圈通电作准备。同时,触点KT(7-4)闭合,使KM2线圈通电吸合并自保,将砂轮电动机M1定子绕组联结成D形。在KM2线圈通电后,触点KM2(7-8)闭合,使KM1线圈重新通电吸合,接通M1电源,M1进入正常运转状态。
由上可知,在M1电动机起动过程中,KM2断电,电动机联结成Y形,KM1通电起动旋转,当电动机转速接近额定转速时,KM1先断电释放切断三相电源,然后KM2通电吸合,电动机联结成D形,再让KM1吸合动作。这是由于接触器KM2容量为40A,比KM1(容量为75A)小;另外电路中采用KM2辅助触点将M1电动机定子绕组联结成Y形,而辅助触点断开电流能力比主触点小得多。所以,首先使KM1断电释放,切断电源,然后才使KM2吸合,再无电的情况下将电动机联结成D形,再使KM1动作,重新接通电源。如果KM1不先断电释放,直接使KM2动作,势必使KM2的辅助触点断开大电流,这可能将触点烧蚀。即使触点不被烧坏,在断开大电流时也要产生强烈的电弧。而辅助触点的灭弧能量差,到KM2主触点闭合时,辅助触点间的电弧有可能尚未熄灭,这将发生电源短路。
砂轮电动机起动后,触点KM1接通砂轮起动信号灯HL2,同时KM1另一常闭触点断开砂轮停止信号灯HL3。
停车时,按下停止按钮SB12,KM1、KM2和KT线圈断电释放,砂轮电动机M1停转。同时,指示灯HL2灭,HL3亮。
2、工作台转动控制
工作台有高、低速两种旋转速度,在按下总起动按钮SB1,KHV通电并自保,指示灯HL1亮之后,由选择开关SA1选择。
当SA1向下扳动时,触点SA1(11-13)接通,接触器KM3线圈通电吸合,工作台转动电动机M2定子绕组联结成Y形,电动机低速旋转,经传动机构带动工作台低速转动。
当SA1向上扳动时,触点SA1(11-9)接通,KM4线圈通电吸合,M2定子绕组联结成YY形,电动机高速旋转,拖动工作台高速转动。
将SA1开关扳到中间位置时,KM3、KM4线圈均断电释放,M2与工作台停止转动。
3、工作台移动的控制
由按钮SB4、SB5与接触器KM5、KM6构成移动电动机M3的正反转点动控制电路。行程开关ST1、ST2为工作台左右移动行程开关。
4、磨头上升与下降的控制
由按钮SB6、SB7与接触器KM7、KM8构成磨头升降电动机M4正反转点动控制电路。ST3为磨头上升行程开关。在磨头下落过程中,为安全起见,不允许工作台转动。为此,工作台转动与磨头下降之间设有电气互锁。
5、冷却泵电动机的控制
冷却泵电动机M5由开关SA3来控制接触器KM9,以实现其起动与停止。
三、电磁吸盘励磁与退磁的控制
平面磨床是依靠电磁吸盘来吸持工件,然后进行磨削加工。工件磨削加工完成后,为使工件从吸盘上取下来,要求对电磁吸盘进行退磁。
1、电磁吸盘励磁控制
在图3-2中,按下励磁按钮SB8,励磁中间继电器KA1线圈通电并自保,触点KA1(100-100a)断开,切断退磁中间继电器KA2电路,其触点KA2(110-118)、KA2(134-121)、KA2(135-123)断开,晶体管V1因发射极断开而不能工作,V3、V4则因输出端断开而不起作用,此时只有晶体管V2正常工作。
V2选用的是3AX81 PNP型锗管,当它的发射极和基极之间的电压UEB≥ 0.2V时,V2导通;小于0.2V时,V2截止。在V2的发射极、基极回路中,有两个输入电压,一个是从电位器RP3上取出的电压UEA,即电容器C6两端的电压;另一个是从电位器RP2上取出并经二极管V21整流的电压UBA,即动作R11两端的电压。UBA来自同步变压器TS2的220V交流电压,在其正半周,正弦波电压被稳压管V10削成梯形波后加在RP2上;在其负半周,电源电压经V10、R15构成回路,如若忽略V10正向管压降0.6V,则RP2上没有电压,使V21截止。这样,梯形波经V21给电容器C7充电,使UC7电压逐渐上升。V21截止时,C7对R11放电,在R11两端出现锯齿形电压UBA,且UBA>0。
这样UEB=UEA+UAB=UEA-UBA,所以,RP3电位器上取出电压UEA愈高,则V2的UEB愈高,V2趋向导通;而锯齿波电压UBA上升,使V2的UEB减小,V2趋向截止。在UEA、UBA两个电压共同作用下,使V2处于两种工作状态:当UEB≥0.2V时,V2导通;当UEB<0.2V时,V2截止。在一般情况下,UBA处于峰值及其附近的较高电压值时,UEB<0.2V,V2截止;当锯齿波电压UBA在较低电压值时,V2导通。
V2开始导通时,其集电极上的脉冲变压器TP2产生一个触发脉冲,经V20送到晶闸管V6的控制极和阴极之间,使V6触发导通,电磁吸盘YH通电。半个周期后,V6阴极电压改变极性,晶闸管被关断。V2在电源电压的每个周期内导通一次,晶闸管也随着导通一次。于是,电磁吸盘YH中流过单方向脉动电流,而其脉动电压在100V左右。
调节RP3改变给定电压UEA的大小,当UEA大时,V2导通时间提前,触发脉冲前移,晶闸管导通角加大,YH中电流增大,电磁吸盘吸力加大,反之,UEA小时,电磁吸盘吸力将减小。
2、电磁吸盘退磁控制
当工件磨削完毕,在取下工件前,应使电磁吸盘退磁。退磁时,按下停止按钮SB9,励磁中间继电器KA1线圈断电释放,其常闭触点闭合,使退磁中间继电器KA2线圈通电吸合,触点KA2(110-118)、KA2(134-121)、KA2(135-123)闭合,接通V1的发射极和V3、V4的输出电路。而触点KA2(141-142)断开,因此C10经R23与RP3放电,RP3两端电压和给定电压UEA逐渐降低。
由V3、V4及有关的阻容件组成对称多谐振荡器电路。放大器V3和V4通过C8和C9互相耦合,轮流导通和截止。V3、V4一管截止时另一管导通,产生自激振荡,振荡频率由R18、R20和C8、C9决定。
V3或V4导通时,输出一个振荡电压,加到晶体管的基极,提高了基极电位,使V1或V2趋向截止。V3、V4轮流输出电压,V1、V2轮流截止与导通。脉冲变压器TP1、TP2轮流输出触发脉冲,分别送到V5和V6的控制极,使V5和V6轮流导通,通过电磁吸盘YH的电流交替改变,其变化的频率就是多谐振荡器的振荡频率。
由于C10的放电,给定电压UEA在逐渐减小,触发脉冲逐渐后移,晶闸管导通角逐渐减小。
所以YH上通过的交变电流及其两端的交变电压也逐渐降低,最后趋向于零,实现电磁吸盘的退磁。
感谢观看

展开更多......

收起↑

资源预览