2024年江苏省无锡市江阴市中考一模数学试题(PDF版,含答案)

资源下载
  1. 二一教育资源

2024年江苏省无锡市江阴市中考一模数学试题(PDF版,含答案)

资源简介

2024 年春学期江阴市初中学业水平调研测试
九年级数学参考答案及评分标准
一、选择题(本大题共 10小题,每小题 3分,共 30分)
1.B 2.C 3.D 4.D 5.A 6.D 7.B 8.C 9.C 10.D
二、选择题(本大题共 8小题,每小题 3分,共 24分)
11. 1.26×106 12.x(y-2) (y+2) 13.x(x-2)=0 (答案不唯一) 14.12
15. 45 5-45 16.3π 17.3 5 18.4+ 10
三、解答题(本大题共 10 小题,共 96 分)
2
19.(1)解:原式= 2+2× -1 ················································································· 3 分
2
= 2+1 ···························································································· 4 分
(2)解:原式=m2-2mn+n2-m 2+2mn ···································································· 2 分
= n2 ································································································· 4 分
x+4>-2x+1, ①
20.(1)解方程:2x2-4x+1=0; (2)解不等式组: x x-1
- ≤1. ② 2 3
解: Δ=42-4×2=8 ····················· 1 分 解:由①得: x>-1; ············ ········· 1 分
4 8
x = , ·························· 2 分 由②得: x≤4; ···························· 2 分
2 2
2 2
∴ x =1+ , x =1 . ··········· 4 分 所以解集为-1<x≤4. ···················· 4 分 1 2
2 2
21.证明:(1)四边形 ABCD 是平行四边形,
∴AB∥CD,∴∠DCA=∠CAB. ·············································································· 1 分
∵O 是 AC 中点,∴OA=OC. ················································································· 2 分
在△AOF 和△COE 中
DCA= CAB

OA = OC

EOC= AOF
∴△AOF≌△COE(ASA). ··················································································· 5 分
(2)由(1)知 CE=AF,又∵DC∥AF,∴四边形 AFCE 是平行四边形. ························ 8 分
∵AC⊥EF∴四边形 AFCE 是菱形. ·········································································· 10 分
22.(1)100;126 ·········································································································· 4 分
(2)35(图略) ······································································································· 7 分
(3)900×5%=45(名)
答:该校七年级大概有 45 名学生喜欢“围棋”社团课. ·············································· 10 分
1
23.(1) ; ··············································································································· 3 分
4
(2)画树状图如下:
结果:8 12 20 8 2 2 2 3 2 5 2 4 ······················································ 8 分
共有 8 种等可能的结果,其中两球数字乘积为有理数的情况有 4 种, ································ 9 分
4 1
∴两球数字乘积为有理数的概率为 P= = . ························································· 10 分
8 2
1
{#{QQABAQKEggAoAIJAARhCQQVgCEAQkBECCKoOgBAAoAIBSRNABAA=}#}
24.(1)
······································································· 6 分
∴射线 BD 和点 E 即为所求. ···················································································· 7 分
2
(2) ··············································································································· 10 分
2
25.证明:(1)在△ABC 和△OBD 中 ∵∠A=∠BOD,∠C=∠D,∴∠ABD=∠ABC ·············· 2 分
∴∠ABD=∠ABC=90° ∴AB⊥BC ∴CD 是⊙O 的切线. ·········································· 4 分
(2)连接 BF
∵在 Rt△OBD 中,OB=3,BD=4, ∴OD=5. ······················································ 6 分
∵∠A=∠BOD, ∠C=∠D
∴△ABC∽△OBD
OB BD
∴ = .
AB BC
3 4
∴ = ∴BC=8 ····························································································· 8 分
6 BC
∵AB 为直径, ∴BF⊥AC,
CF CF
∴ cos∠C= = ,
BC 8
4 32
∴cos∠C=cos∠D= ∴CF= . ·································································· 10 分
5 5
26.解:(1)x=30 时,销售价为 60-0.5×30=45 元,
销售量为 30+20=50(件), ·················································································· 1 分
销售利润为(45-30)×50=750(元)
答:第 30 天的销售利润为 750 元. ············································································ 2 分
(2)设日销售利润为 w 元,
当 1≤x≤40 时. w=(60-0.5x-30)(x+20)
1
化简得:w=- x2+20x+600 ·················································································· 4 分
2
∵对称轴为直线 x=20,
1
又∵- <0 ∴抛物线开口向下,
2
∴x=20 时,w 取得最大值,w=800 ·········································································· 5 分
1
当 41≤x≤60 时 w=(40-30)(- x+80)
2
化简得:w=-5x+800 ···························································································· 7 分
∵-5<0 ∴w 随 x 的增大而减小,
又∵销售量为整数
∴x=42 时,w 取得最大值,w=590. ········································································· 8 分
∵590<800, ········································································································ 9 分
∴第 20 天时日销售利润最大,最大为 800 元. ···························································· 10 分
27. 解:(1)如图(1),在矩形 ABCD 中,M 是 AD 中点,AB=1,AD=2,
∴AM=MD=CD=1,∴ΔMCD 是等腰直角三角形. ······················································ 1 分
∵点 M、A'、C 三点共线, ∴CA'=MC-MA'= 2-1, ··············································· 2 分
∵∠MCD=45°,∠MA'B'=∠B'=90°,
∴∠A'CP=∠A'PC=∠NPB'=∠B'NP=45°,
∴ ΔA'PC 与 ΔNPB'是等腰直角三角形, ····································································· 3 分
∴PC= 2A'C=2- 2,NP= 2x,∴ x+ 2x+2- 2=2,
2
{#{QQABAQKEggAoAIJAARhCQQVgCEAQkBECCKoOgBAAoAIBSRNABAA=}#}
∴ x = 2 2 . ······································································································· 4 分
( 图 1) (图 2) (图 3)
(2)当 0<x<1 时,如图(2),
过 M 作 BC 垂线 垂足为 H,假设 A'B'交 BC 于点 E,连接 ME,
可得 ΔMHE ≌ ΔMA'E,∴ 可设 A'E=HE=y,∴B'E=1-y,
又∵ B'N=BN=x,
在 RtΔNB'E 中 由勾股定理知 B ' N 2 + B 'E2 = NE2 (1 x + y)2 = x2 + (1 y)2
x
整理得 y= ,
2-x
x2 x + 2
∴ S = . ·································································································· 7 分
4 2x
当 x=1 时,S=1,上式仍然成立;········································································· 8 分
当 1<x<2 时,如图(3)
设 NB'交 DC 于点 F,
∵ CN=2-x,
由对称性可得 (2 x)
2 (2 x) + 2 x2 3x + 4
S = = . ······················································ 9 分
4 2(2 x) 2x
x2 x + 2
0<x≤1


4 2x
S = . ················································································· 10 分
2
x 3x + 4 1<x<2
2x
k 2
28.解:(1)a = ; ······························································································ 2 分
2
(2)二次函数 y=ax2+2 图象的顶点为 B(0,2),
过 C 作 x 轴垂线,垂足为 H,
由点 C 横坐标为-5 可知,k>0,
2
∴ A( ,0)在 y 轴左侧,如图 4.
k
2 2
∴OH=5,OA= ,AE=5- ,
k k
∵ ∠HCA+∠CAH=∠CAH+∠BAO=90°,
∴ ∠HCA=∠BAO,
又 ∵ ∠CHA=∠AOB=90°,
∴ △HCA∽△OAB, ······························································································ 3 分
2
5
∴ AH CH k
2
= ,∴ =
OB AO 2 2
k
2k 2整理得: 5k + 2 = 0, ·················································································· 4 分
3
{#{QQABAQKEggAoAIJAARhCQQVgCEAQkBECCKoOgBAAoAIBSRNABAA=}#}
1
解得: k = 2或 , ································································································· 5 分
2
1
∴a = 或 2. ····································································································· 6 分
8
(3)当 k 0时,如图 4,
过 D 作 x 轴垂线,垂足为 I,
由(2)得 △HCA∽△OAB,
∴ AH CH= ,
OB AO
2
又∵CH =OB = 2 , OA = ,
k
∴ AH = 2k ,
∵∠CHA=∠AID ,∠CAH=∠DAI,
∴ △HCA∽△IDA, (图 4)
∴ AH CH AC 16= = = . ··························································································· 7 分
AI ID AD 9
∵ AH = 2k ,CH = 2 .
9 9
∴ AI = k, DI = .
8 8
9 2 9
∴ D 坐标为 ( k , ). ······················································································ 8 分
8 k 8
k 2
代入二次函数 y = x2 +2 中,
2
9 k 2 9 2
得 = ( k )
2 + 2 ,
8 2 8 k
9
( k 2 2
25
整理得 2) = ,
8 4
∵ k 0,∴ k = 2, ····························································································· 9 分
同理,当 k 0时可得 k = 2 ,
综上所述: k = 2或2 . ·························································································· 10 分
4
{#{QQABAQKEggAoAIJAARhCQQVgCEAQkBECCKoOgBAAoAIBSRNABAA=}#}2024年春学期江阴市初三学业水平调研测试
20.(8分)
23.(10分)
九年级数学答题卡
(1)
(1)
姓名:
准考证号码
(2)
班级:
[0][01][0][0][0][0][0][0]
[1]
[1]
1
[1]
[1
[1
[1
学号:
[2]
[2]
「21
[2]
「21
[27
[2
(2)
3
3
3
3
3
[3]
[4]
[4]
47
[4]
[4]
[4]
[4
5
5
151
5
5
[6
6
6
l6
[6]
[6
[7
7
7
「7
「7
>
[
[8
[8
[9]
97
[9]
[9][9]
「91
[9]
[9]
注意事项
1.答题前请将姓名、班级和准考证号(或学号)填写清楚并填涂完整。
2
客观题答题必须使用2B铅笔填涂,修改时用橡皮擦干净。主观题答题必须
使用黑色签字笔书写。
3.请在规定区域内答题,超出答题区域书写无效
21.(10分)
D

(1)
选择题
1. 0四6.和I四
2.知B]四7.D]四
B
3.0000
8. m四
第21题图
4.D0四9.ABC0四
5. 0四10. BI00四
24.(10分)
(1)
(2)
二、填空题
11.
12.
13.
14.
15.
16.
17.
18.
三、解答题
第24题图(1)
22.(10分)
人数
19.(8分)计算:
(1)
(1)|-2+2sin45-(π-4)°;
(2)(m-n)2-m(m-2n).
(2)补全条形统计图
(画图并标注相应数据);
(3)
8
(2)
0
类别

口口口
第1页
共6页
第2页
共6页
第3页
共6页
1

25.(10分)
27.(10分)
28.(10分)
(1)
(1)
(1)a=

(2)
A
B
第25题图
第27题图
(2)
第28题图
A
M
(3)
D
(2)
26.(10分》
(1)
备用图
备川图
(2)

■口
第4页
共6页
第5页共6页
第6页共6页
12024年春学期江阴市初中学业水平调研测试
九年级数学试题
本试卷分试题和答题卡两部分,所有答案一律写在答题卡上,考试时间为120分钟.试卷满分
150分.
注意事项:
1.答卷前,考生务必用0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写在答题卡的相
应位置上,并认真核对条形码上的姓名、准考证号是否与本人的相符合
2.答选择题必须用2B铅笔将答题卡上对应题目中的选项标号涂黑.如需改动,请用橡皮擦干
净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔作答,写在答题卡上各题目指
定区域内相应的位置,在其他位置答题一律无效.
3.作图必须用2B铅笔作答,并请加黑加粗,描写清楚
4.卷中除要求近似计算的结果取近似值外,其他均应给出精确结果,
一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项
是正确的,请用2B铅笔把答题卡上相应的选项标号涂黑.)
1.2024的倒数是…
1
A.2024
B.2024
C.-2024
D
2024
2.若要使二次根式x一2有意义,则x的值可以为…
…(▲)
A.0
B.1
C.3
D.
1
3.下列运算正确的是…
A.(-2a3b)2=4ab2
B.a8÷a=a2
C.(a-b)2=a2-b2
D.2a2b-a2b=a2b
4,下列图案中,既是轴对称图形,又是中心对称图形的是…
A
5,方程21
xx于万的解为…
A.x=-2
B.x=2
C.x=-4
D.x=4
6.一组数据0、1、一1、1、一2的中位数和众数分别是…(▲)
A.-2、1
B.-2、1
C.1、1
D.0、1
7.《九章算术》中有一题:“今有大器五、小器一,容三斛:大器一、小器五,容二斛.问大、小
器各容几何?”译文:今有大容器5个,小容器1个,总容量为3斛(斛:古代容量单位):大
容器1个,小容器5个,总容量为2斛,问大容器、小容器的容量各是多少斛?若大容器的容
量为x斛,小容器的容量为y斛,则可列方程组…(▲)
x+5y=3,
5x+y=3,
5x=y+3,
5x=y+2,
A.15x+y=2
B
C.
D.
x+5y=2
x=5y+2
2x+y=5
初三数学第1页(共6页)
8.如图,⊙O是△ABC的外接圆,AD是⊙O的直径,若∠ACB=70°,则∠BAD的度数是(▲)
A.30
B.40
C.20°
D.50
D
D
0
(第8题)》
(第10题)
9.已知不、八、z满足等式号针六-香,则下列结论不正确的是(4)
A,若x=y,则x=z
B.若z=4x,则y=4z:
C.若xD.若x10.如图,四边形ABCD是边长为4的菱形,∠A=60°,将△ABD沿着对角线BD平移到△A'B'D,
在移动过程中,A"B与AD交于点E,连接DE、CE、CD'.则下列结论:
①A'E=BB';
②当D'E⊥CE时,∠A'D'E-∠CEB=30°:
③当∠EDC=60时,BB'的长为N5:
④△CED的面积最大值为5V5.
其中正确的为…。
…(▲)
A.①③
B.②③
C.①②③
D.①②④
二、填空题(本大题共8小题,每小题3分,共24分,不需写出解答过程,只需把答案直接填写
在答题卡上相应的位置)
11.2023年我国国内生产总值约为1260000亿元,可将数字1260000用科学记数法表示为▲·
12.分解因式:y2-4x=▲
13.请写出一个一元二次方程,使其一个根为2,一个根为0:▲·
14.已知圆锥的母线长13cm,侧面积65πcm2,则这个圆锥的高是▲cm.
15.古筝是一种弹拨弦鸣乐器,又名汉筝、秦筝,是汉民族古老的民族乐器,流行于中国各地.若
古筝上有一根弦AB=90cm,支撑点C是靠近点A的一个黄金分割点,则BC=▲cm.(结
果保留根号)
16.如图,滑轮圆心为O,半径为6cm,若在力F作用下滑轮上一点A绕点O顺时针旋转90°,则
图中物块上升▲cm,(结果保留π)
初三数学第2页(共6页)

展开更多......

收起↑

资源列表