资源简介 巧构造 妙解题高琴1. 直接构造例1. 求函数的值域。分析:由于可以看作定点(2,3)与动点(-cosx,sinx)连线的斜率,故f(x)的值域即为斜率的最大、最小值。解:令,则表示单位圆表示连接定点P(2,3)与单位圆上任一点(,)所得直线的斜率。显然该直线与圆相切时,k取得最值,此时,圆心(0,0)到这条直线的距离为1,即所以故例2. 已知三条不同的直线,,共点,求的值。分析:由条件知为某一元方程的根,于是想法构造出这个一元方程,然后用韦达定理求值。解:设(m,n)是三条直线的交点,则可构造方程,即(*)由条件知,均为关于的一元三次方程(*)的根。由韦达定理知2. 由条件入手构造例3. 已知实数x,y,z满足,求证:分析:由已知得,以x,y为根构造一元二次方程,再由判别式非负证得结论。解:构造一元二次方程其中x,y为方程的两实根所以即故△=0,即3. 由结论入手构造例4. 求证:若,,则分析:待证式的左边求和的分母是三次式,为降低分母次数,构造一个恒不等式。所以左边故原式得证。例5. 已知实数x,y满足,求证:分析:要证原式成立,即证即证由三角函数线知可构造下图,此时不等式右边为图中三个矩形的面积之和,而单位圆的面积为,所以故结论成立。 展开更多...... 收起↑ 资源预览