资源简介 2024年山东省济南市平阴县中考数学一模试卷一、选择题(共10小题,每小题4分,共40分)1.(4分)如图是由一个长方体和一个圆柱组成的几何体,它的俯视图是( )A. B. C. D.2.(4分)党的二十大报告指出,我国建成世界上规模最大的教育体系、社会保障体系、医疗卫生体系,教育普及水平实现历史性跨越,基本养老保险覆盖十亿四千万人,基本医疗保险参保率稳定在百分之九十五.将数据1040000000用科学记数法表示为( )A.104×107 B.10.4×108C.1.04×109 D.0.104×10103.(4分)如图,Rt△ABC的直角顶点A在直线a上,斜边BC在直线b上,若a∥b,∠1=55°,则∠2=( )A.55° B.45° C.35° D.25°4.(4分)如图,比数轴上点A表示的数大3的数是( )A.﹣1 B.0 C.1 D.25.(4分)下列图形中,既是轴对称图形又是中心对称图形的是( )A. B. C. D.6.(4分)下列计算正确的是( )A.(a2)3=a6 B.a6÷a2=a3 C.a3 a4=a12 D.a2﹣a=a7.(4分)已知点A(﹣4,y1),B(﹣2,y2),C(3,y3)都在反比例函数的图象上,则y1,y2,y3的大小关系为( )A.y3<y2<y1 B.y1<y2<y3 C.y3<y1<y2 D.y2<y1<y38.(4分)4月23日是世界读书日,学校举行“快乐阅读,健康成长”读书活动.小明随机调查了本校七年级30名同学近4个月内每人阅读课外书的数量,数据如下表所示:人数 6 7 10 7课外书数量(本) 6 7 9 12则阅读课外书数量的中位数和众数分别是( )A.8,9 B.10,9 C.7,12 D.9,99.(4分)如图,△ABC是等腰三角形,AB=AC,∠A=36°.以点B为圆心,任意长为半径作弧,交AB于点F,交BC于点G,分别以点F和点G为圆心,大于FG的长为半径作弧,两弧相交于点H,作射线BH交AC于点D;分别以点B和点D为圆心,大于BD的长为半径作弧,两弧相交于M、N两点,作直线MN交AB于点E,连接DE.下列四个结论:①∠AED=∠ABC;②BC=AE;③ED=BC;④当AC=2时,AD=﹣1.其中正确结论的个数是( )A.1 B.2 C.3 D.410.(4分)已知二次函数y=ax2﹣2x+(a为常数,且a>0),下列结论:①函数图象一定经过第一、二、四象限;②函数图象一定不经过第三象限;③当x<0时,y随x的增大而减小;④当x>0时,y随x的增大而增大.其中所有正确结论的序号是( )A.①② B.②③ C.② D.③④二、填空题(本大题共6个小题,每小题4分,共24分.)11.(4分)因式分解a2﹣4a+4的结果是 .12.(4分)一个不透明的布袋里只有6个红球和n个白球(仅有颜色不同).若从中任意摸出一个球是红球的概率为,则n= .13.(4分)若关于x的一元二次方程x2﹣2x+k=0有两个不相等的实数根,则k的取值范围是 .14.(4分)若直线y=x向上平移3个单位长度后经过点(2,m),则m的值为 .15.(4分)《梦溪笔谈》是我国古代科技著作,其中它记录了计算圆弧长度的“会圆术”.如图,是以点O为圆心、OA为半径的圆弧,N是AB的中点,MN⊥AB.“会圆术”给出的弧长l的近似值计算公式:l=AB+.当OA=4,∠AOB=60°时,则l的值为 .16.(4分)如图,已知正方形ABCD的边长为1,点E、F分别在边AD、BC上,将正方形沿着EF翻折,点B恰好落在CD边上的点B′处,如果四边形ABFE与四边形EFCD的面积比为3:5,那么线段FC的长为 .三、解答题(本大题共10个小题,共86分.解答应写出文字说明、证明过程或演算步骤)17.(6分)计算:3﹣1+(﹣1)0+2sin30°﹣(﹣).18.(6分)解不等式组,并写出它的所有整数解.19.(6分)如图,点E、F、G分别在 ABCD的边AB、BC和AD上,且BA=BF,AE=AG,连接FE.求证:FE=FG.20.(8分)如图1,某人的一器官后面A处长了一个新生物,现需检测其到皮肤的距离(图1).为避免伤害器官,可利用一种新型检测技术,检测射线可避开器官从侧面测量.某医疗小组制定方案,通过医疗仪器的测量获得相关数据,并利用数据计算出新生物到皮肤的距离方案如下:课题 检测新生物到皮肤的距离工具 医疗仪器等示意图说明 如图2,新生物在A处,先在皮肤上选择最大限度地避开器官的B处照射新生物,检测射线与皮肤MN的夹角为∠DBN;再在皮肤上选择距离B处9cm的C处照射新生物,检测射线与皮肤MN的夹角为∠ECN.测量数据 ∠DBN=35°,∠ECN=22°,BC=9cm请你根据上表中的测量数据,计算新生物A处到皮肤的距离.(结果精确到0.1cm)(参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,sin22°≈0.37,cos22°≈0.93,tan22°≈0.40)21.(8分)在深化教育综合改革、提升区域教育整体水平的进程中,某中学以兴趣小组为载体,加强社团建设,艺术活动学生参与面达100%,通过调查统计,八年级二班参加学校社团的情况(每位同学只能参加其中一项):A.剪纸社团,B.泥塑社团,C.陶笛社团,D.书法社团,E.合唱社团,并绘制了如下两幅不完整的统计图.(1)该班共有学生 人,并把条形统计图补充完整;(2)扇形统计图中,m= 参加剪纸社团对应的扇形圆心角为 度;(3)小鹏和小兵参加了书法社团,由于参加书法社团几位同学都非常优秀,老师将从书法社团的学生中选取2人参加学校组织的书法大赛,请用“列表法”或“画树状图法”,求出恰好是小鹏和小兵参加比赛的概率.22.(8分)如图,在△ABC中,∠ACB=90°,点D是AB上一点,且∠BCD=∠A,点O在BC上,以点O为圆心的圆经过C、D两点.(1)试判断直线AB与⊙O的位置关系,并说明理由;(2)若sinB=,⊙O的半径为3,求AC的长.23.(10分)某超市销售A、B两种品牌的盐皮蛋,若购买9箱A种盐皮蛋和6箱B种盐皮蛋共需390元;若购买5箱A种盐皮蛋和8箱B种盐皮蛋共需310元.(1)A种盐皮蛋、B种盐皮蛋每箱价格分别是多少元?(2)若某公司购买A、B两种盐皮蛋共30箱,且A种的数量至少比B种的数量多5箱,怎样购买才能使总费用最少?并求出最少费用.24.(10分)如图,在平面直角坐标系xOy中,直线y=﹣x+5与y轴交于点A,与反比例函数的图象的一个交点为B(a,4),过点B作AB的垂线l.(1)求点A的坐标及反比例函数的表达式;(2)若点C在直线l上,且△ABC的面积为5,求点C的坐标;(3)P是直线l上一点,连接PA,以P为位似中心画△PDE,使它与△PAB位似,相似比为m.若点D,E恰好都落在反比例函数图象上,请直接写出m的值.25.(12分)已知抛物线y=ax2+bx+4与x轴相交于点A(1,0),B(4,0),与y轴相交于点C.(1)求抛物线的表达式;(2)如图1,点P是抛物线的对称轴l上的一个动点,当△PAC的周长最小时,求的值;(3)如图2,取线段OC的中点D,在抛物线上是否存在点Q,使tan∠QDB=?若存在,求出点Q的坐标;若不存在,请说明理由.26.(12分)综合与实践.(1)提出问题.如图1,在△ABC和△ADE中,∠BAC=∠DAE=90°,且AB=AC,AD=AE,连接BD,连接CE交BD的延长线于点O.∠BOC的度数是 ;BD:CE= .(2)类比探究.如图2,在△ABC和△DEC中,∠BAC=∠EDC=90°,且AB=AC,DE=DC,连接AD、BE并延长交于点O.求∠AOB的度数及AD:BE的值.(3)问题解决.如图3,在等边△ABC中,AD⊥BC于点D,点E在线段AD上(不与A重合),以AE为边在AD的左侧构造等边△AEF,将△AEF绕着点A在平面内顺时针旋转任意角度.如图4,M为EF的中点,N为BE的中点.请说明△MND为等腰三角形.2024年山东省济南市平阴县中考数学一模试卷参考答案与试题解析一、选择题(共10小题,每小题4分,共40分)1.(4分)如图是由一个长方体和一个圆柱组成的几何体,它的俯视图是( )A. B. C. D.【解答】解:从上面看下边是一个矩形,矩形的内部是一个圆.故选:D.2.(4分)党的二十大报告指出,我国建成世界上规模最大的教育体系、社会保障体系、医疗卫生体系,教育普及水平实现历史性跨越,基本养老保险覆盖十亿四千万人,基本医疗保险参保率稳定在百分之九十五.将数据1040000000用科学记数法表示为( )A.104×107 B.10.4×108C.1.04×109 D.0.104×1010【解答】解:1040000000=1.04×109.故选:C.3.(4分)如图,Rt△ABC的直角顶点A在直线a上,斜边BC在直线b上,若a∥b,∠1=55°,则∠2=( )A.55° B.45° C.35° D.25°【解答】解:∵a∥b,∠1=55°,∴∠ABC=∠1=55°,∵∠BAC=90°,∴∠2=180°﹣∠ABC﹣∠BAC=35°.故选:C.4.(4分)如图,比数轴上点A表示的数大3的数是( )A.﹣1 B.0 C.1 D.2【解答】解:由数轴可得:A表示﹣1,则比数轴上点A表示的数大3的数是:﹣1+3=2.故选:D.5.(4分)下列图形中,既是轴对称图形又是中心对称图形的是( )A. B. C. D.【解答】解:A、原图既是中心对称图形,又是轴对称图形,故此选项符合题意;B、原图是中心对称图形,不是轴对称图形,故此选项不合题意;C、原图是轴对称图形,不是中心对称图形,故此选项不合题意;D、原图是轴对称图形,不是中心对称图形,故此选项不合题意;故选:A.6.(4分)下列计算正确的是( )A.(a2)3=a6 B.a6÷a2=a3 C.a3 a4=a12 D.a2﹣a=a【解答】解:A.(a2)3=a2×3=a6,则A符合题意;B.a6÷a2=a6﹣2=a4,则B不符合题意;C.a3 a4=a3+4=a7,则C不符合题意;D.a2与a不是同类项,无法合并,则D不符合题意;故选:A.7.(4分)已知点A(﹣4,y1),B(﹣2,y2),C(3,y3)都在反比例函数的图象上,则y1,y2,y3的大小关系为( )A.y3<y2<y1 B.y1<y2<y3 C.y3<y1<y2 D.y2<y1<y3【解答】解:∵在反比例函数中,k>0,∴此函数图象在一、三象限,在每个象限y随x的增大而减小,∵﹣4<﹣2<0,∴点A(﹣4,y1),B(﹣2,y2)在第三象限,∴y2<y1<0,∵3>0,∴C(3,y3)点在第一象限,∴y3>0,∴y1,y2,y3的大小关系为y2<y1<y3.故选:D.8.(4分)4月23日是世界读书日,学校举行“快乐阅读,健康成长”读书活动.小明随机调查了本校七年级30名同学近4个月内每人阅读课外书的数量,数据如下表所示:人数 6 7 10 7课外书数量(本) 6 7 9 12则阅读课外书数量的中位数和众数分别是( )A.8,9 B.10,9 C.7,12 D.9,9【解答】解:中位数为第15个和第16个的平均数=9,众数为9.故选:D.9.(4分)如图,△ABC是等腰三角形,AB=AC,∠A=36°.以点B为圆心,任意长为半径作弧,交AB于点F,交BC于点G,分别以点F和点G为圆心,大于FG的长为半径作弧,两弧相交于点H,作射线BH交AC于点D;分别以点B和点D为圆心,大于BD的长为半径作弧,两弧相交于M、N两点,作直线MN交AB于点E,连接DE.下列四个结论:①∠AED=∠ABC;②BC=AE;③ED=BC;④当AC=2时,AD=﹣1.其中正确结论的个数是( )A.1 B.2 C.3 D.4【解答】解:由题意可知,BD是∠ABC的平分线,MN是线段BD的中垂线,∵AB=AC,∠A=36°,∴∠ABC=∠ACB==72°,∵BD是∠ABC的平分线,∴∠ABD=∠CBD=∠ABC=36°=∠A,∴AD=BD,在△BCD中,∠C=72°,∠CBD=36°,∴∠BDC=180°﹣36°﹣72°=72°=∠C,∴BD=BC,∴AD=BD=BC,∵MN是BD的中垂线,∴EB=ED,∴∠BDE=∠ABD=36°=∠CBD,∴DE∥BC,∴∠AED=∠ABC,因此①正确,∴AE=AD=BD=BC,因此②正确;由于DE不是△ABC的中位线,因此③不正确;∵∠CBD=∠BAC=36°,∠BCD=∠ACB=72°,∴△BCD∽△ABC,∴=,即BC2=AC CD,设BC=x,则CD=2﹣x,∴x2=2×(2﹣x),解得x=﹣1﹣(舍去)或x=﹣1,即BC=﹣1=AD,因此④正确,综上所述,正确的结论有①②④,共有3个,故选:C.10.(4分)已知二次函数y=ax2﹣2x+(a为常数,且a>0),下列结论:①函数图象一定经过第一、二、四象限;②函数图象一定不经过第三象限;③当x<0时,y随x的增大而减小;④当x>0时,y随x的增大而增大.其中所有正确结论的序号是( )A.①② B.②③ C.② D.③④【解答】解:∵a>0时,抛物线开口向上,∴对称轴为直线x==>0,当x<0时,y随x的增大而减小,当x>时,y随x的增大而增大,∴函数图象一定不经过第三象限,函数图象可能经过第一、二、四象限.故选:B.二、填空题(本大题共6个小题,每小题4分,共24分.)11.(4分)因式分解a2﹣4a+4的结果是 (a﹣2)2 .【解答】解:a2﹣4a+4=(a﹣2)2,故答案为:(a﹣2)2.12.(4分)一个不透明的布袋里只有6个红球和n个白球(仅有颜色不同).若从中任意摸出一个球是红球的概率为,则n= 9 .【解答】解:根据题意,,解得n=9,经检验n=9是方程的解.∴n=9.故答案为:9.13.(4分)若关于x的一元二次方程x2﹣2x+k=0有两个不相等的实数根,则k的取值范围是 k<1 .【解答】解:根据题意得Δ=(﹣2)2﹣4×k>0,解得k<1.故答案为:k<1.14.(4分)若直线y=x向上平移3个单位长度后经过点(2,m),则m的值为 5 .【解答】解:将直线y=x向上平移3个单位,得到直线y=x+3,把点(2,m)代入,得m=2+3=5.故答案为:5.15.(4分)《梦溪笔谈》是我国古代科技著作,其中它记录了计算圆弧长度的“会圆术”.如图,是以点O为圆心、OA为半径的圆弧,N是AB的中点,MN⊥AB.“会圆术”给出的弧长l的近似值计算公式:l=AB+.当OA=4,∠AOB=60°时,则l的值为 11﹣8 .【解答】解:连接ON,∵OA=OB,∠AOB=60°,∴△OAB是等边三角形,∴AB=OA=6,∵N是AB中点,∴ON⊥AB,∵MN⊥AB,∴M、N、O共线,∵△OAB是等边三角形,ON⊥AB,∴ON=OA=2,∵OM=OA=4,∴MN=OM﹣ON=4﹣2,∴=4+=11﹣4.故答案为:11﹣4.16.(4分)如图,已知正方形ABCD的边长为1,点E、F分别在边AD、BC上,将正方形沿着EF翻折,点B恰好落在CD边上的点B′处,如果四边形ABFE与四边形EFCD的面积比为3:5,那么线段FC的长为 .【解答】解:如图,连接BB',过点F作FH⊥AD,∵已知正方形ABCD的边长为1,四边形ABFE与四边形EFCD的面积比为3:5,∴S四边形ABFE=,设CF=x,则DH=x,BF=1﹣x,∴S四边形ABFE=,即,解得AE=x﹣,∴DE=1﹣AE=,∴EH=ED﹣HD=,由折叠的性质可得BB'⊥EF,∴∠1+∠2=∠BGF=90°,∵∠2+∠3=90°,∴∠1=∠3,又FH=BC=1,∠EHF=∠C,∴△EHF≌△B'CB(ASA),∴EH=B'C=,在Rt△B'FC中,B'F2=B'C2+CF2,∴(1﹣x)2=x2+()2,解得x=.故答案为:.三、解答题(本大题共10个小题,共86分.解答应写出文字说明、证明过程或演算步骤)17.(6分)计算:3﹣1+(﹣1)0+2sin30°﹣(﹣).【解答】解:原式=+1+2×+=+1+1+=(+)+(1+1)=1+2=3.18.(6分)解不等式组,并写出它的所有整数解.【解答】解:,解不等式①,得:x>﹣1,解不等式②,得:x≤2,∴原不等式组的解集是﹣1<x≤2,∴该不等式组的所有整数解是0,1,2.19.(6分)如图,点E、F、G分别在 ABCD的边AB、BC和AD上,且BA=BF,AE=AG,连接FE.求证:FE=FG.【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAF=∠BFA,∵BA=BF,∴∠BAF=∠BFA,∴∠DAF=∠BAF,且AE=AG,AF=AF,∴△AEF≌△AGF(SAS)∴FE=FG.20.(8分)如图1,某人的一器官后面A处长了一个新生物,现需检测其到皮肤的距离(图1).为避免伤害器官,可利用一种新型检测技术,检测射线可避开器官从侧面测量.某医疗小组制定方案,通过医疗仪器的测量获得相关数据,并利用数据计算出新生物到皮肤的距离方案如下:课题 检测新生物到皮肤的距离工具 医疗仪器等示意图说明 如图2,新生物在A处,先在皮肤上选择最大限度地避开器官的B处照射新生物,检测射线与皮肤MN的夹角为∠DBN;再在皮肤上选择距离B处9cm的C处照射新生物,检测射线与皮肤MN的夹角为∠ECN.测量数据 ∠DBN=35°,∠ECN=22°,BC=9cm请你根据上表中的测量数据,计算新生物A处到皮肤的距离.(结果精确到0.1cm)(参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,sin22°≈0.37,cos22°≈0.93,tan22°≈0.40)【解答】解:过点A作AF⊥MN,垂足为F,设BF=x cm,∵BC=9cm,∴CF=BC+BF=(x+9)cm,在Rt△ABF中,∠ABF=∠DBN=35°,∴AF=BF tan35°≈0.7x(cm),在Rt△ACF中,∠ACF=∠ECN=22°,∴AF=CF tan22°≈0.4(x+9)cm,∴0.7x=0.4(x+9),解得:x=12,∴AF=0.7x=8.4(cm),∴新生物A处到皮肤的距离约为8.4cm.21.(8分)在深化教育综合改革、提升区域教育整体水平的进程中,某中学以兴趣小组为载体,加强社团建设,艺术活动学生参与面达100%,通过调查统计,八年级二班参加学校社团的情况(每位同学只能参加其中一项):A.剪纸社团,B.泥塑社团,C.陶笛社团,D.书法社团,E.合唱社团,并绘制了如下两幅不完整的统计图.(1)该班共有学生 50 人,并把条形统计图补充完整;(2)扇形统计图中,m= 20 参加剪纸社团对应的扇形圆心角为 144 度;(3)小鹏和小兵参加了书法社团,由于参加书法社团几位同学都非常优秀,老师将从书法社团的学生中选取2人参加学校组织的书法大赛,请用“列表法”或“画树状图法”,求出恰好是小鹏和小兵参加比赛的概率.【解答】解:(1)该班共有学生人数为:5÷10%=50(人),则D的人数为:50﹣20﹣10﹣5﹣10=5(人),故答案为:50;把条形统计图补充完整如下:(2)∵m%=10÷50×100%=20%,∴m=20,参加剪纸社团对应的扇形圆心角为:360°×=144°,故答案为:20,144;(3)把小鹏和小兵分别记为a、b,其他3位同学分别记为c、d、e,画树状图如下:共有20种等可能的结果,其中恰好是小鹏和小兵参加比赛的结果有2种,∴恰好是小鹏和小兵参加比赛的概率为=.22.(8分)如图,在△ABC中,∠ACB=90°,点D是AB上一点,且∠BCD=∠A,点O在BC上,以点O为圆心的圆经过C、D两点.(1)试判断直线AB与⊙O的位置关系,并说明理由;(2)若sinB=,⊙O的半径为3,求AC的长.【解答】解:(1)直线AB与⊙O相切,理由:连接OD,∵OC=OD,∴∠OCD=∠ODC,∴∠DOB=∠OCD+∠ODC=2∠BCD,∴,∵∠BCD=∠A,∴∠BOD=∠A,∵∠ACB=90°,∴∠A+∠B=90°,∴∠BOD+∠B=90°,∴∠BDO=90°,∵OD是⊙O的半径,∴直线AB与⊙O相切;(2)∵sinB==,OD=3,∴OB=5,∴BC=OB+OC=8,在Rt△ACB中,sinB==,∴设AC=3x,AB=5x,∴BC==4x=8,∴x=2,∴AC=3x=6.23.(10分)某超市销售A、B两种品牌的盐皮蛋,若购买9箱A种盐皮蛋和6箱B种盐皮蛋共需390元;若购买5箱A种盐皮蛋和8箱B种盐皮蛋共需310元.(1)A种盐皮蛋、B种盐皮蛋每箱价格分别是多少元?(2)若某公司购买A、B两种盐皮蛋共30箱,且A种的数量至少比B种的数量多5箱,怎样购买才能使总费用最少?并求出最少费用.【解答】解:(1)设A种盐皮蛋每箱价格为a元,B种盐皮蛋每箱价格为b元,由题意可得:,解得,答:A种盐皮蛋每箱价格为30元,B种盐皮蛋每箱价格为20元;(2)设购买A种盐皮蛋x箱,则购买B种盐皮蛋(30﹣x)箱,总费用为w元,由题意可得:w=30x+20(30﹣x)=10x+600,∴w随x的增大而增大,∵A种的数量至少比B种的数量多5箱,又不超过B种的2倍,∴,解得17.5≤x≤20,∵x为整数,∴当x=18时,w取得最小值,此时w=780,30﹣x=12,答:购买18箱A种盐皮蛋,12箱B种盐皮蛋才能使总费用最少,最少费用为780元.24.(10分)如图,在平面直角坐标系xOy中,直线y=﹣x+5与y轴交于点A,与反比例函数的图象的一个交点为B(a,4),过点B作AB的垂线l.(1)求点A的坐标及反比例函数的表达式;(2)若点C在直线l上,且△ABC的面积为5,求点C的坐标;(3)P是直线l上一点,连接PA,以P为位似中心画△PDE,使它与△PAB位似,相似比为m.若点D,E恰好都落在反比例函数图象上,请直接写出m的值.【解答】解:(1)令x=0,则y=﹣x+5=5,∴点A的坐标为(0,5),将B(a,4)代入y=﹣x+5得,4=﹣a+5,∴a=1,∴B(1,4),将B(1,4)代入y=得,4=,解得k=4,∴反比例函数的表达式为y=;(2)设直线l与y轴交于M,直线y=﹣x+5与x轴交于N,令y=﹣x+5=0得,x=5,∴N(5,0),∴OA=ON=5,∵∠AON=90°,∴∠OAN=45°,∵A(0,5),B(1,4),∴=,∵直线l是AB的垂线,即∠ABM=90°,∠OAN=45°,∴,∴M(0,3),设直线l的解析式为y=k1x+b1,将M(0,3),B(1,4)代入y=k1x+b1得,,解得,∴直线l的解析式为y=x+3,设点C的坐标为(t,t+3),∵ |xB﹣xC|=,解得t=﹣4或t=6,当t=﹣4时,t+3=﹣1,当t=6时,t+3=9,∴点C的坐标为(6,9)或(﹣4,﹣1);(3)∵位似图形的对应点与位似中心三点共线,∴点B的对应点也在直线l上,不妨设为E点,则点A的对应点为D,将直线l与双曲线的解析式联立方程组,解得,或,∴E(﹣4,﹣1),画出图形如图所示,∵△PAB∽△PDE,∴∠PAB=∠PDE,∴AB∥DE,∴直线AB与直线DE的一次项系数相等,设直线DE的解析式为y=﹣x+b2,∴﹣1=﹣(﹣4)+b2,∴b2=﹣5,∴直线DE的解析式为y=﹣x﹣5,∵点D在直线DE与双曲线的另一个交点,∴解方程组得,或,∴D(﹣1,﹣4),则直线AD的解析式为y=9x+5,解方程组得,,∴P(﹣,),∴,,∴m=.25.(12分)已知抛物线y=ax2+bx+4与x轴相交于点A(1,0),B(4,0),与y轴相交于点C.(1)求抛物线的表达式;(2)如图1,点P是抛物线的对称轴l上的一个动点,当△PAC的周长最小时,求的值;(3)如图2,取线段OC的中点D,在抛物线上是否存在点Q,使tan∠QDB=?若存在,求出点Q的坐标;若不存在,请说明理由.【解答】解:(1)∵抛物线y=ax2+bx+4与x轴相交于点A(1,0),B(4,0),,解得:,∴抛物线的表达式为y=x2﹣5x+4;(2)由(1)知y=x2﹣5x+4,当x=0时,y=4,∴C(0,4),抛物线的对称轴为直线,∵△PAC的周长等于PA+PC+AC,AC为定长,∴当PA+PC的值最小时,△PAC的周长最小,∵A,B关于抛物线的对称轴对称,∴PA+PC=PB+PC≥BC,当P,B,C三点共线时,PA+PC的值最小,为BC的长,此时点P为直线BC与对称轴的交点,设直线BC的解析式为:y=mx+n,则:,解得:,∴直线BC的解析式为y=﹣x+4,当 时,,∴,∵A(1,0),C(0,4),∴PA==,PC==,∴;(3)存在,∵D为OC的中点,∴D(0,2),∴OD=2,∵B(4,0),∴OB=4,在Rt△BOD中,,,∴∠QDB=∠OBD;①当Q点在D点上方时:过点D作DQ∥OB,交抛物线于点Q,则:∠QDB=∠OBD,此时Q点纵坐标为2,设Q点横坐标为t,则:t2﹣5t+4=2,解得:,∴Q(,2)或(,2);②当点Q在D点下方时:设DQ与x轴交于点E,则:DE=BE,设E(p,0),则:DE2=OE2+OD2=p2+4,BE2=(4﹣p)2,∴p2+4=(4﹣p)2,解得:,∴,设DE的解析式为:y=kx+q,则:,解得:,∴,联立,解得:或,∴Q(3,﹣2)或;综上所述, 或(,2)或Q(3,﹣2)或.26.(12分)综合与实践.(1)提出问题.如图1,在△ABC和△ADE中,∠BAC=∠DAE=90°,且AB=AC,AD=AE,连接BD,连接CE交BD的延长线于点O.∠BOC的度数是 90° ;BD:CE= 1:1 .(2)类比探究.如图2,在△ABC和△DEC中,∠BAC=∠EDC=90°,且AB=AC,DE=DC,连接AD、BE并延长交于点O.求∠AOB的度数及AD:BE的值.(3)问题解决.如图3,在等边△ABC中,AD⊥BC于点D,点E在线段AD上(不与A重合),以AE为边在AD的左侧构造等边△AEF,将△AEF绕着点A在平面内顺时针旋转任意角度.如图4,M为EF的中点,N为BE的中点.请说明△MND为等腰三角形.【解答】(1)解:∵∠BAC=∠DAE=90°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠BAD=∠CAE.又∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS).∴∠ABD=∠ACE,∵∠BAC=90°,∴∠ABC+∠ACB=∠ABD+∠OBC+∠ACB=90°,∴∠ACE+∠OBC+∠ACB=90°,即:∠BCE+∠OBC=90°,∴∠BOC=90°.故∠BOC的度数是90°.∵△BAD≌△CAE,∴BD=CE.故BD:CE=1:1.故答案为:90°;1:1;(2)解:∵AB=AC,DE=DC,∴,又∵∠BAC=∠EDC=90°,∴△ABC∽△DEC,∴∠ACB=∠DCB,.∴∠ACE+∠ECB=∠DCA+∠ACE,∴∠ECB=∠DCA.∴△ECB∽△DCA,∴∠CBE=∠CAD,∴∠AOB=180°﹣∠ABO﹣∠BAO=180°﹣∠ABO﹣∠CAD﹣∠BAC=180°﹣∠ABO﹣∠CBE﹣90°=180°﹣45°﹣90°=45°.∵△ECB∽△DCA.∴AD:BE=DC:EC,∵∠EDC=90°,且DE=DC,∴∠DCE=45°,∴=cos45°=.∴.(3)证明:连接BF、CE,延长CE交MN于点P,交BF于点O.在等边△ABC中AB=AC,又∵AD⊥BC于点D,∴D为BC的中点,又∵M为EF的中点,N为BE的中点,∴MN、ND分别是△BEF、△BCE的中位线,∴MN=BF,DN=EC.∵∠FAE=∠BAC=60°,∴∠FAE+∠EAB=∠BAC+∠EAB.∴∠FAB=∠EAC.在△ACE和△ABF中,,∴△ACE≌△ABF(SAS).∴BF=EC.∴MN=DN.∴△MND为等腰三角形. 展开更多...... 收起↑ 资源预览