资源简介 中小学教育资源及组卷应用平台备考2024中考二轮数学《高频考点冲刺》(全国通用)专题28 旋转问题考点扫描☆聚焦中考旋转问题在近几年各地中考主要以填空题、选择题、解答题的形式进行考查,各地试题有容易题、中档题也有压轴题;考查的内容主要涉及的有:中心对称和中心对称图形的概念与性质;图形的旋转的概念与性质;;考查的热点主要有旋转对称图形与中心对称图形;旋转的性质;旋转变换;几何变换综合问题。考点剖析☆典型例题例1 (2023 潍坊)下列图形由正多边形和圆弧组成,其中既是轴对称图形又是中心对称图形的是( )A. B. C. D.例2(2021 安徽)如图,在菱形ABCD中,AB=2,∠A=120°,过菱形ABCD的对称中心O分别作边AB,BC的垂线,交各边于点E,F,G,H,则四边形EFGH的周长为( )A.3+ B.2+2 C.2+ D.1+2例3(2023 天津)如图,把△ABC以点A为中心逆时针旋转得到△ADE,点B,C的对应点分别是点D,E,且点E在BC的延长线上,连接BD,则下列结论一定正确的是( )A.∠CAE=∠BED B.AB=AE C.∠ACE=∠ADE D.CE=BD例4(2023 达州)如图,网格中每个小正方形的边长均为1,△ABC的顶点均在小正方形的格点上.(1)将△ABC向下平移3个单位长度得到△A1B1C1,画出△A1B1C1;(2)将△ABC绕点C顺时针旋转90度得到△A2B2C2,画出△A2B2C2;(3)在(2)的运动过程中请计算出△ABC扫过的面积.例5(2023 安徽)在Rt△ABC中,M是斜边AB的中点,将线段MA绕点M旋转至MD位置,点D在直线AB外,连接AD,BD.(1)如图1,求∠ADB的大小;(2)已知点D和边AC上的点E满足ME⊥AD,DE∥AB.(i)如图2,连接CD,求证:BD=CD;(ii)如图3,连接BE,若AC=8,BC=6,求tan∠ABE的值.考点过关☆专项突破类型一 旋转对称图形与中心对称图形1.(2022 上海)有一个正n边形旋转90°后与自身重合,则n的值可能为( )A.6 B.9 C.12 D.152.(2020 赤峰)下列图形绕某一点旋转一定角度都能与原图形重合,其中旋转角度最小的是( )A. 等边三角形 B. 平行四边形C. 正八边形 D. 圆及其一条弦3.(2023 永州)企业标志反映了思想、理念等企业文化,在设计上特别注重对称美.下列企业标志图为中心对称图形的是( )A. B. C. D.4.(2023 自贡)下列交通标志图案中,既是中心对称图形又是轴对称图形的是( )A. B. C. D.5.(2023 北京)下列图形中,既是轴对称图形又是中心对称图形的是( )A. B. C. D.6.(2023 宜昌)我国古代数学的许多创新与发明都曾在世界上有重要影响.下列图形“杨辉三角”“中国七巧板”“刘徽割圆术”“赵爽弦图”中,中心对称图形是( )A. B. C. D.7.(2021 青海)如图所示的图案由三个叶片组成,绕点O旋转120°后可以和自身重合.若每个叶片的面积为4cm2,∠AOB为120°,则图中阴影部分的面积之和为 cm2.8.(2020 镇江)点O是正五边形ABCDE的中心,分别以各边为直径向正五边形的外部作半圆,组成了一幅美丽的图案(如图).这个图案绕点O至少旋转 °后能与原来的图案互相重合.类型二 中心对称1.(2023 株洲)如图所示,在矩形ABCD中,AB>AD,AC与BD相交于点O,下列说法正确的是( )A.点O为矩形ABCD的对称中心 B.点O为线段AB的对称中心C.直线BD为矩形ABCD的对称轴 D.直线AC为线段BD的对称轴2.(2021 陕西)如图,在矩形ABCD中,AB=4,BC=6,O是矩形的对称中心,点E、F分别在边AD、BC上,连接OE、OF,若AE=BF=2,则OE+OF的值为( )A.2 B.5 C. D.23.(2020 绍兴)如图,点O为矩形ABCD的对称中心,点E从点A出发沿AB向点B运动,移动到点B停止,延长EO交CD于点F,则四边形AECF形状的变化依次为( )A.平行四边形→正方形→平行四边形→矩形 B.平行四边形→菱形→平行四边形→矩形C.平行四边形→正方形→菱形→矩形 D.平行四边形→菱形→正方形→矩形4.(2023 陕西)如图,在 ABCD中,AB=3,AD=4,点E在AD的延长线上,且DE=2,过点E作直线l分别交边CD,AB于点M,N.若直线l将 ABCD的面积平分,则线段CM的长为 .5.(2023 宁夏)如图是由边长为1的小正方形组成的9×6网格,点A,B,C,D,E,F,G均在格点上,下列结论:①点D与点F关于点E中心对称;②连接FB,FC,FE,则FC平分∠BFE;③连接AG,则点B,F到线段AG的距离相等.其中正确结论的序号是 .6.(2020 台州)用四块大正方形地砖和一块小正方形地砖拼成如图所示的实线图案,每块大正方形地砖面积为a,小正方形地砖面积为b,依次连接四块大正方形地砖的中心得到正方形ABCD.则正方形ABCD的面积为 .(用含a,b的代数式表示)类型三 旋转的性质1.(2023 无锡)如图,△ABC中,∠BAC=55°,将△ABC逆时针旋转α(0°<α<55°),得到△ADE,DE交AC于F.当α=40°时,点D恰好落在BC上,此时∠AFE等于( )A.80° B.85° C.90° D.95°2.(2023 宁夏)如图,在△ABC中,∠BAC=90°,AB=AC,BC=2.点D在BC上,且BD:CD=1:3.连接AD,线段AD绕点A顺时针旋转90°得到线段AE,连接BE,DE.则△BDE的面积是( )A. B. C. D.3.(2023 泰州)菱形ABCD的边长为2,∠A=60°,将该菱形绕顶点A在平面内旋转30°,则旋转后的图形与原图形重叠部分的面积为( )A.3﹣ B.2﹣ C.﹣1 D.2﹣24.(2023 宜宾)如图,△ABC和△ADE是以点A为直角顶点的等腰直角三角形,把△ADE以A为中心顺时针旋转,点M为射线BD、CE的交点.若AB=,AD=1.以下结论:①BD=CE;②BD⊥CE;③当点E在BA的延长线上时,MC=;④在旋转过程中,当线段MB最短时,△MBC的面积为.其中正确结论有( )A.1个 B.2个 C.3个 D.4个5.(2023 益阳)如图,在正方形ABCD中,AB=4,E为AB的中点,连接DE,将△DAE绕点D按逆时针方向旋转90°得到△DCF,连接EF,则EF的长为 .6.(2023 宜宾)如图,M是正方形ABCD边CD的中点,P是正方形内一点,连接BP,线段BP以B为中心逆时针旋转90°得到线段BQ,连接MQ.若AB=4,MP=1,则MQ的最小值为 .6.(2023 泰州)如图,△ABC中,AB=AC,∠A=30°,射线CP从射线CA开始绕点C逆时针旋转α角(0°<α<75°),与射线AB相交于点D,将△ACD沿射线CP翻折至△A′CD处,射线CA′与射线AB相交于点E.若△A′DE是等腰三角形,则∠α的度数为 .类型四 旋转变换1.(2023 宁波)在4×4的方格纸中,请按下列要求画出格点三角形(顶点均在格点上).(1)在图1中先画出一个以格点P为顶点的等腰三角形PAB,再画出该三角形向右平移2个单位后的△P′A′B′.(2)将图2中的格点△ABC绕点C按顺时针方向旋转90°,画出经旋转后的△A′B′C.2.(2023 宜昌)如图,在方格纸中按要求画图,并完成填空.(1)画出线段OA绕点O顺时针旋转90°后得到的线段OB,连接AB;(2)画出与△AOB关于直线OB对称的图形,点A的对称点是C;(3)填空:∠OCB的度数为 .3.(2023 温州)如图,在2×4的方格纸ABCD中,每个小方格的边长为1.已知格点P,请按要求画格点三角形(顶点均在格点上).(1)在图1中画一个等腰三角形PEF,使底边长为,点E在BC上,点F在AD上,再画出该三角形绕矩形ABCD的中心旋转180°后的图形;(2)在图2中画一个Rt△PQR,使∠P=45°,点Q在BC上,点R在AD上,再画出该三角形向右平移1个单位后的图形.4.(2022 安徽)如图,在由边长为1个单位长度的小正方形组成的网格中,△ABC的顶点均为格点(网格线的交点).(1)将△ABC向上平移6个单位,再向右平移2个单位,得到△A1B1C1,请画出△A1B1C1;(2)以边AC的中点O为旋转中心,将△ABC按逆时针方向旋转180°,得到△A2B2C2,请画出△A2B2C2.5.(2023 武汉)如图是由小正方形组成的8×6网格,每个小正方形的顶点叫做格点.正方形ABCD四个顶点都是格点,E是AD上的格点,仅用无刻度的直尺在给定网格中完成画图,画图过程用虚线表示.(1)在图(1)中,先将线段BE绕点B顺时针旋转90°,画对应线段BF,再在CD上画点G,并连接BG,使∠GBE=45°;(2)在图(2)中,M是BE与网格线的交点,先画点M关于BD的对称点N,再在BD上画点H,并连接MH,使∠BHM=∠MBD.类型五 几何变换综合题1.(2023 广元)如图1,已知线段AB,AC,线段AC绕点A在直线AB上方旋转,连接BC,以BC为边在BC上方作Rt△BDC,且∠DBC=30°.(1)若∠BDC=90°,以AB为边在AB上方作Rt△BAE,且∠AEB=90°,∠EBA=30°,连接DE,用等式表示线段AC与DE的数量关系是 ;(2)如图2,在(1)的条件下,若DE⊥AB,AB=4,AC=2,求BC的长;(3)如图3,若∠BCD=90°,AB=4,AC=2,当AD的值最大时,求此时tan∠CBA的值.2.(2023 重庆)如图,在等边△ABC中,AD⊥BC于点D,E为线段AD上一动点(不与A,D重合),连接BE,CE,将CE绕点C顺时针旋转60°得到线段CF,连接AF.(1)如图1,求证:∠CBE=∠CAF;(2)如图2,连接BF交AC于点G,连接DG,EF,EF与DG所在直线交于点H,求证:EH=FH;(3)如图3,连接BF交AC于点G,连接DG,EG,将△AEG沿AG所在直线翻折至△ABC所在平面内,得到△APG,将△DEG沿DG所在直线翻折至△ABC所在平面内,得到△DQG,连接PQ,QF.若AB=4,直接写出PQ+QF的最小值.3.(2023 岳阳)如图1,在△ABC中,AB=AC,点M,N分别为边AB,BC的中点,连接MN.初步尝试:(1)MN与AC的数量关系是 ,MN与AC的位置关系是 .特例研讨:(2)如图2,若∠BAC=90°,BC=4,先将△BMN绕点B顺时针旋转α(α为锐角),得到△BEF,当点A,E,F在同一直线上时,AE与BC相交于点D,连接CF.①求∠BCF的度数;②求CD的长.深入探究:(3)若∠BAC<90°,将△BMN绕点B顺时针旋转α,得到△BEF,连接AE,CF.当旋转角α满足0°<α<360°,点C,E,F在同一直线上时,利用所提供的备用图探究∠BAE与∠ABF的数量关系,并说明理由.4.(2023 贵州)如图①,小红在学习了三角形相关知识后,对等腰直角三角形进行了探究,在等腰直角三角形ABC中,CA=CB,∠C=90°,过点B作射线BD⊥AB,垂足为B,点P在CB上.(1)【动手操作】如图②,若点P在线段CB上,画出射线PA,并将射线PA绕点P逆时针旋转90°与BD交于点E,根据题意在图中画出图形,图中∠PBE的度数为 度;(2)【问题探究】根据(1)所画图形,探究线段PA与PE的数量关系,并说明理由;(3)【拓展延伸】如图③,若点P在射线CB上移动,将射线PA绕点P逆时针旋转90°与BD交于点E,探究线段BA,BP,BE之间的数量关系,并说明理由.5.(2023 辽宁)在Rt△ABC中,∠ACB=90°,CA=CB,点O为AB的中点,点D在直线AB上(不与点A,B重合),连接CD,线段CD绕点C逆时针旋转90°,得到线段CE,过点B作直线l⊥BC,过点E作EF⊥l,垂足为点F,直线EF交直线OC于点G.(1)如图1,当点D与点O重合时,请直接写出线段AD与线段EF的数量关系;(2)如图2,当点D在线段AB上时,求证:CG+BD=BC;(3)连接DE,△CDE的面积记为S1,△ABC的面积记为S2,当EF:BC=1:3时,请直接写出的值.21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)HYPERLINK "http://21世纪教育网(www.21cnjy.com)" 21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台备考2024中考二轮数学《高频考点冲刺》(全国通用)专题28 旋转问题考点扫描☆聚焦中考旋转问题在近几年各地中考主要以填空题、选择题、解答题的形式进行考查,各地试题有容易题、中档题也有压轴题;考查的内容主要涉及的有:中心对称和中心对称图形的概念与性质;图形的旋转的概念与性质;;考查的热点主要有旋转对称图形与中心对称图形;旋转的性质;旋转变换;几何变换综合问题。考点剖析☆典型例题例1 (2023 潍坊)下列图形由正多边形和圆弧组成,其中既是轴对称图形又是中心对称图形的是( )A. B. C. D.【答案】D【点拨】根据中心对称图形,轴对称图形的定义一一判断即可.【解析】解:A、是轴对称图形,不是中心对称图形,不合题意;B、不是轴对称图形,是中心对称图形,不合题意;C、是轴对称图形,不是中心对称图形,不合题意;D、是轴对称图形,也是中心对称图形,符合题意;故选:D.【点睛】本题考查利用旋转设计图案,利用轴对称设计图案等知识,解题的关键是掌握中心对称图形,轴对称图形的定义,属于中考常考题型.例2(2021 安徽)如图,在菱形ABCD中,AB=2,∠A=120°,过菱形ABCD的对称中心O分别作边AB,BC的垂线,交各边于点E,F,G,H,则四边形EFGH的周长为( )A.3+ B.2+2 C.2+ D.1+2【答案】A【点拨】证明△BEF是等边三角形,求出EF,同法可证△DGH,△EOH,△OFG都是等边三角形,求出EH,GF,FG即可.【解析】解:如图,连接BD,AC.∵四边形ABCD是菱形,∠BAD=120°,∴AB=BC=CD=AD=2,∠BAO=∠DAO=60°,BD⊥AC,∴∠ABO=∠CBO=30°,∴OA=AB=1,OB=OA=,∵OE⊥AB,OF⊥BC,∴∠BEO=∠BFO=90°,在△BEO和△BFO中,,∴△BEO≌△BFO(AAS),∴OE=OF,BE=BF,∵∠EBF=60°,∴△BEF是等边三角形,∴EF=BE=×=,同法可证,△DGH,△OEH,△OFG都是等边三角形,∴EF=GH=,EH=FG=,∴四边形EFGH的周长=3+,故选:A.【点睛】本题考查中心对称,菱形的性质,等边三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.例3(2023 天津)如图,把△ABC以点A为中心逆时针旋转得到△ADE,点B,C的对应点分别是点D,E,且点E在BC的延长线上,连接BD,则下列结论一定正确的是( )A.∠CAE=∠BED B.AB=AE C.∠ACE=∠ADE D.CE=BD【答案】A【点拨】由旋转的性质可得∠ABC=∠ADE,∠BAD=∠CAE,由三角形内角和定理可得∠BED=∠BAD=∠CAE.【解析】解:如图,设AD与BE的交点为O,∵把△ABC以点A为中心逆时针旋转得到△ADE,∴∠ABC=∠ADE,∠BAD=∠CAE,又∵∠AOB=∠DOE,∴∠BED=∠BAD=∠CAE,故选:A.【点睛】本题考查了旋转的性质,掌握旋转的性质是解题的关键.例4(2023 达州)如图,网格中每个小正方形的边长均为1,△ABC的顶点均在小正方形的格点上.(1)将△ABC向下平移3个单位长度得到△A1B1C1,画出△A1B1C1;(2)将△ABC绕点C顺时针旋转90度得到△A2B2C2,画出△A2B2C2;(3)在(2)的运动过程中请计算出△ABC扫过的面积.【答案】(1)见解析;(2)见解析;(3)+.【点拨】(1)按平移变换的性质分别确定A,B,C平移后的位置,再按原来的连接方式连接即可;(2)按旋转变换的性质分别确定A,B,C绕点C顺时针旋转90度后的位置,再按原来的连接方式连接即可;(3)将△ABC扫过的面积用规则图形的面积和差表示,求出即可.【解析】解:(1)△A1B1C1如图所示;(2)△A2B2C2如图所示;(3)=,∵AC=,∴==,∴在(2)的运动过程中△ABC扫过的面积==+.【点睛】本题考查网格作图﹣平移、旋转,以及网格中图形面积的计算,解题涉及平移的性质,旋转的性质,勾股定理,扇形面积公式,掌握平移、旋转的性质和网格中图形面积的计算方法是解题的关键.例5(2023 安徽)在Rt△ABC中,M是斜边AB的中点,将线段MA绕点M旋转至MD位置,点D在直线AB外,连接AD,BD.(1)如图1,求∠ADB的大小;(2)已知点D和边AC上的点E满足ME⊥AD,DE∥AB.(i)如图2,连接CD,求证:BD=CD;(ii)如图3,连接BE,若AC=8,BC=6,求tan∠ABE的值.【答案】见解析【点拨】(1)证MA=MD=MB,得∠MAD=∠MDA,∠MDB=∠MBD,再由三角形内角和定理得∠ADB=∠MDA+∠MDB=90°即可;(2)(i)证四边形EMBD是平行四边形,得DE=BM=AM,再证四边形EAMD是平行四边形,进而得平行四边形EAMD是菱形,则∠BAD=∠CAD,然后证A、C、D、B四点共圆,由圆周角定理得=,即可得出结论;(ii)过点E作EH⊥AB于点H,由勾股定理得AB=10,再由菱形的性质得AE=AM=5,进而由锐角三角函数定义得EH=3,则AH=4,BH=6,然后由锐角三角函数定义即可得出结论.【解析】(1)解:∵M是AB的中点,∴MA=MB,由旋转的性质得:MA=MD=MB,∴∠MAD=∠MDA,∠MDB=∠MBD,∵∠MAD+∠MDA+∠MDB+∠MBD=180°,∴∠ADB=∠MDA+∠MDB=90°,即∠ADB的大小为90°;(2)(i)证明:∵∠ADB=90°,∴AD⊥BD,∵ME⊥AD,∴ME∥BD,∵ED∥BM,∴四边形EMBD是平行四边形,∴DE=BM=AM,∴DE∥AM,∴四边形EAMD是平行四边形,∵EM⊥AD,∴平行四边形EAMD是菱形,∴∠BAD=∠CAD,又∵∠ACB=∠ADB=90°,∴A、C、D、B四点共圆,∵∠BCD=∠CAD,∴=,∴BD=CD;(ii)解:如图3,过点E作EH⊥AB于点H,则∠EHA=∠EHB=90°,在Rt△ABC中,由勾股定理得:AB===10,∵四边形EAMD是菱形,∴AE=AM=AB=5,∴sin∠CAB===,∴EH=AE sin∠CAB=5×=3,∴AH===4,∴BH=AB﹣AH=10﹣4=6,∴tan∠ABE===,即tan∠ABE的值为.【点睛】本题是几何变换综合题目,考查了旋转的性质,平行四边形的判定与性质,菱形的判定与性质,等腰三角形的性质,勾股定理,四点共圆,圆周角定理以及锐角三角函数定义等知识,本题综合性强,熟练掌握菱形的判定与性质、等腰三角形的性质以及锐角三角函数是解题的关键,属于中考常考题型.考点过关☆专项突破类型一 旋转对称图形与中心对称图形1.(2022 上海)有一个正n边形旋转90°后与自身重合,则n的值可能为( )A.6 B.9 C.12 D.15【答案】C【点拨】如果某一个图形围绕某一点旋转一定的角度(小于360°)后能与原图形重合,那么这个图形就叫做旋转对称图形.直接利用旋转对称图形的性质,结合正多边形中心角相等进而得出答案.【解析】解:A.正六边形旋转90°后不能与自身重合,不合题意;B.正九边形旋转90°后不能与自身重合,不合题意;C.正十二边形旋转90°后能与自身重合,符合题意;D.正十五边形旋转90°后不能与自身重合,不合题意;故选:C.【点睛】此题主要考查了旋转对称图形,正确把握正多边形的性质是解题的关键.2.(2020 赤峰)下列图形绕某一点旋转一定角度都能与原图形重合,其中旋转角度最小的是( )A. 等边三角形 B. 平行四边形C. 正八边形 D. 圆及其一条弦【答案】C【点拨】求出各旋转对称图形的最小旋转角度,继而可作出判断.【解析】解:A、最小旋转角度==120°;B、最小旋转角度==180°;C、最小旋转角度==45°;D、不是旋转对称图形;综上可得:旋转一定角度后,能与原图形完全重合,且旋转角度最小的是C.故选:C.【点睛】本题考查了旋转对称图形的知识,求出各图形的最小旋转角度是解题关键.3.(2023 永州)企业标志反映了思想、理念等企业文化,在设计上特别注重对称美.下列企业标志图为中心对称图形的是( )A. B. C. D.【答案】C【点拨】根据中心对称图形的概念判断.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.【解析】解:选项A、B、D中的图形都不能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以不是中心对称图形.选项C中的图形能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以是中心对称图形.故选:C.【点睛】本题考查的是中心对称图形,中心对称图形是要寻找对称中心,旋转180度后与自身重合.4.(2023 自贡)下列交通标志图案中,既是中心对称图形又是轴对称图形的是( )A. B. C. D.【答案】B【点拨】根据中心对称图形和轴对称图形的概念得出结论即可.【解析】解:图形既是中心对称图形又是轴对称图形,故选:B.【点睛】本题主要考查中心对称图形和轴对称图形的知识,熟练掌握中心对称图形和轴对称图形的概念是解题的关键.5.(2023 北京)下列图形中,既是轴对称图形又是中心对称图形的是( )A. B. C. D.【答案】A【点拨】根据中心对称图形与轴对称图形的概念进行判断即可.【解析】解:A、原图既是中心对称图形,又是轴对称图形,故此选项符合题意;B、原图是中心对称图形,不是轴对称图形,故此选项不合题意;C、原图是轴对称图形,不是中心对称图形,故此选项不合题意;D、原图是轴对称图形,不是中心对称图形,故此选项不合题意;故选:A.【点睛】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与自身重合.6.(2023 宜昌)我国古代数学的许多创新与发明都曾在世界上有重要影响.下列图形“杨辉三角”“中国七巧板”“刘徽割圆术”“赵爽弦图”中,中心对称图形是( )A. B. C. D.【答案】D【点拨】根据中心对称图形的概念判断.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.【解析】解:选项A、B、C都不能找到一个点,使图形绕某一点旋转180°后与原来的图形重合,所以不是中心对称图形.选项D能找到一个点,使图形绕某一点旋转180°后与原来的图形重合,所以是中心对称图形.故选:D.【点睛】本题考查的是中心对称图形,中心对称图形是要寻找对称中心,旋转180度后与自身重合.7.(2021 青海)如图所示的图案由三个叶片组成,绕点O旋转120°后可以和自身重合.若每个叶片的面积为4cm2,∠AOB为120°,则图中阴影部分的面积之和为 4 cm2.【答案】4【点拨】由于∠AOB为120°,由三个叶片组成,绕点O旋转120°后可以和自身重合,所以图中阴影部分的面积之和等于三个叶片的面积和的三分之一.【解析】解:∵三个叶片组成,绕点O旋转120°后可以和自身重合,而∠AOB为120°,∴图中阴影部分的面积之和=(4+4+4)=4(cm2).故答案为4.【点睛】本题考查了旋转对称图形:如果某一个图形围绕某一点旋转一定的角度(小于360°)后能与原图形重合,那么这个图形就叫做旋转对称图形.8.(2020 镇江)点O是正五边形ABCDE的中心,分别以各边为直径向正五边形的外部作半圆,组成了一幅美丽的图案(如图).这个图案绕点O至少旋转 72 °后能与原来的图案互相重合.【答案】72【点拨】直接利用旋转图形的性质进而得出旋转角.【解析】解:连接OA,OE,则这个图形至少旋转∠AOE才能与原图象重合,∠AOE==72°.故答案为:72.【点睛】此题主要考查了旋转图形,正确掌握旋转图形的性质是解题关键.类型二 中心对称1.(2023 株洲)如图所示,在矩形ABCD中,AB>AD,AC与BD相交于点O,下列说法正确的是( )A.点O为矩形ABCD的对称中心 B.点O为线段AB的对称中心C.直线BD为矩形ABCD的对称轴 D.直线AC为线段BD的对称轴【答案】A【点拨】根据矩形的性质、轴对称图形的性质和中心对称图形的性质,可以判断各个选项中的说法是否正确,本题得以解决.【解析】解:矩形ABCD是中心对称图形,对称中心是对角线的交点O,故选项A正确,符合题意;线段AB的中点是为线段AB的对称中心,故选项B错误,不符合题意;矩形ABCD是轴对称图形,对称轴是过一组对边中点的直线,故选项C错误,不符合题意;过线段BD的中点的垂线是线段BD的对称轴,故选项D错误,不符合题意;故选:A.【点睛】本题考查中心对称、矩形的性质、轴对称的性质,熟记矩形即是中心对称图形也是轴对称图形是解答本题的关键.2.(2021 陕西)如图,在矩形ABCD中,AB=4,BC=6,O是矩形的对称中心,点E、F分别在边AD、BC上,连接OE、OF,若AE=BF=2,则OE+OF的值为( )A.2 B.5 C. D.2【答案】D【点拨】如图,连接,AC,BD.过点O作OM⊥AD于点M交BC于点N.利用勾股定理,求出OE,可得结论.【解析】解:如图,连接,AC,BD.过点O作OM⊥AD于点M交BC于点N.∵四边形ABCD是矩形,∴OA=OD=OB,∵OM⊥AD,∴AM=DM=3,∴OM=AB=2,∵AE=2,∴EM=AM﹣AE=1,∴OE===,同法可得OF=,∴OE+OF=2,故选:D.【点睛】本题考查中心对称,矩形的性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.3.(2020 绍兴)如图,点O为矩形ABCD的对称中心,点E从点A出发沿AB向点B运动,移动到点B停止,延长EO交CD于点F,则四边形AECF形状的变化依次为( )A.平行四边形→正方形→平行四边形→矩形 B.平行四边形→菱形→平行四边形→矩形C.平行四边形→正方形→菱形→矩形 D.平行四边形→菱形→正方形→矩形【答案】B【点拨】根据对称中心的定义,根据矩形的性质,可得四边形AECF形状的变化情况:这个四边形先是平行四边形,当对角线互相垂直时是菱形,然后又是平行四边形,最后点A与点B重合时是矩形.【解析】解:观察图形可知,四边形AECF形状的变化依次为平行四边形→菱形→平行四边形→矩形.故选:B.【点睛】考查了中心对称,矩形的性质,平行四边形的判定与性质,菱形的判定,根据EF与AC的位置关系即可求解.4.(2023 陕西)如图,在 ABCD中,AB=3,AD=4,点E在AD的延长线上,且DE=2,过点E作直线l分别交边CD,AB于点M,N.若直线l将 ABCD的面积平分,则线段CM的长为 .【答案】.【点拨】依据题意,连接AC交l于点O,由直线l将 ABCD的面积平分,从而O为AC的中点,结合平行四边形的性质可得△AON≌△COM,进而AN=CM,再由AN∥DM有=,求出AN,故而可以得解.【解析】解:连接AC交l于点O.∵直线l将 ABCD的面积平分,AC为 ABCD的对角线,∴O为AC的中点,为平行四边形的中心.∴OA=OC.∵四边形ABCD是平行四边形,∴AB∥CD.∴∠NAO=∠MCO,=.又∠AON=∠COM,∴△AON≌△COM(ASA).∴AN=CM.∴=.又ED=2,AD=4,AB=3,∴=.∴CM=.故答案为:.【点睛】本题主要考查了平行四边形的性质,解题时要熟练掌握并理解是关键.5.(2023 宁夏)如图是由边长为1的小正方形组成的9×6网格,点A,B,C,D,E,F,G均在格点上,下列结论:①点D与点F关于点E中心对称;②连接FB,FC,FE,则FC平分∠BFE;③连接AG,则点B,F到线段AG的距离相等.其中正确结论的序号是 ①②③ .【答案】①②③.【点拨】根据中心对称概念,全等三角形判定与性质,点到直线的距离等逐个判断.【解析】解:①连接DF,如图:由图可知,点D与点F关于点E中心对称,故①正确;②如图:由SSS可知△BFC≌△EFC,∴∠BFC=∠EFC,FC平分∠BFE,故②正确;③取AG上的格点M,N,连接BM,FN,如图,由正方形性质可知∠AMB=∠FNG=90°,∴B到AG的距离为BM的长度,F到AG的距离为FN的长度,而BM=FN,∴点B,F到线段AG的距离相等,故③正确;∴正确结论是①②③;故答案为:①②③.【点睛】本题考查中心对称,三角形全等的判定与性质,等腰直角三角形性质及应用等,解题的关键是掌握中心对称的概念,能熟练应用全等三角形的判定定理.6.(2020 台州)用四块大正方形地砖和一块小正方形地砖拼成如图所示的实线图案,每块大正方形地砖面积为a,小正方形地砖面积为b,依次连接四块大正方形地砖的中心得到正方形ABCD.则正方形ABCD的面积为 (a+b) .(用含a,b的代数式表示)【答案】(a+b)【点拨】如图,连接DK,DN,证明S四边形DMNT=S△DKN=a即可解决问题.【解析】解:如图,连接DK,DN,∵∠KDN=∠MDT=90°,∴∠KDM=∠NDT,∵DK=DN,∠DKM=∠DNT=45°,∴△DKM≌△DNT(ASA),∴S△DKM=S△DNT,∴S四边形DMNT=S△DKN=a,∴正方形ABCD的面积=4×a+b=a+b.故答案为(a+b).【点睛】本题考查中心对称,全等三角形的判定和性质,图形的拼剪等知识,解题的关键灵活运用所学知识解决问题,属于中考常考题型.类型三 旋转的性质1.(2023 无锡)如图,△ABC中,∠BAC=55°,将△ABC逆时针旋转α(0°<α<55°),得到△ADE,DE交AC于F.当α=40°时,点D恰好落在BC上,此时∠AFE等于( )A.80° B.85° C.90° D.95°【答案】B【点拨】由旋转的性质可得∠BAC=∠DAE,∠BAD=∠CAE=40°,AB=AD,∠C=∠E,由等腰三角形的性质可求∠B=70°,由三角形内角和定理可求解.【解析】解:∵将△ABC逆时针旋转α(0°<α<55°),得到△ADE,∴∠BAC=∠DAE,∠BAD=∠CAE=40°,AB=AD,∠C=∠E,∴∠B=70°,∴∠C=∠E=55°,∴∠AFE=180°﹣55°﹣40°=85°,故选:B.【点睛】本题考查了旋转的性质,等腰三角形的性质,掌握旋转的性质是解题的关键.2.(2023 宁夏)如图,在△ABC中,∠BAC=90°,AB=AC,BC=2.点D在BC上,且BD:CD=1:3.连接AD,线段AD绕点A顺时针旋转90°得到线段AE,连接BE,DE.则△BDE的面积是( )A. B. C. D.【答案】B【点拨】根据旋转的性质得出AD=AE,∠DAE=90°,再根据SAS证明△EAB≌△DAC得出∠C=∠ABE=45°,CD=BE,得出∠EBC=90°,再根据三角形的面积公式即可求解.【解析】解:∵线段AD绕点A顺时针旋转90°得到线段AE,∴AD=AE,∠DAE=90°,∴∠EAB+∠BAD=90°,在△ABC中,∠BAC=90°,AB=AC,∴∠BAD+∠CAD=90°,∠C=∠ABC=45°,∴∠EAB=∠CAD,∴△EAB≌△DAC(SAS),∴∠C=∠ABE=45°,CD=BE,∴∠EBC=∠EBA+∠ABC=90°,∵BC=2,BD:CD=1:3,∴BD=,CD=BE=,∴=,故选:B.【点睛】本题考查了旋转的性质,全等三角形的判定与性质,根据SAS证明△EAB≌△DAC是解题的关键.3.(2023 泰州)菱形ABCD的边长为2,∠A=60°,将该菱形绕顶点A在平面内旋转30°,则旋转后的图形与原图形重叠部分的面积为( )A.3﹣ B.2﹣ C.﹣1 D.2﹣2【答案】A【点拨】分两种情况:①如图,将该菱形绕顶点A在平面内顺时针旋转30°,连接AC,BD相交于点O,BC与C'D'交于点E,根据菱形的性质推出AC的长,再根据菱形的性质推出CD'与CE的长,再根据重叠部分的面积=△ABC的面积﹣△D'EC的面积求解即可.②将该菱形绕顶点A在平面内逆时针旋转30°,同①方法可得重叠部分的面积=3﹣.【解析】解:①如图,将该菱形绕顶点A在平面内顺时针旋转30°,连接AC,BD相交于点O,BC与C'D'交于点E,∵四边形ABCD是菱形,∠DAB=60°,∴∠CAB=30°=∠CAD,AC⊥BD,AO=CO,BO=DO,∵AB=2,∴DO=1,AO=DO=,∴AC=2,∵菱形ABCD绕点A顺时针旋转30°得到菱形AB'C'D',∴∠D'AB=30°,AD=AD'=2,∴A,D',C三点共线,∴CD'=CA﹣AD'=2﹣2,又∵∠ACB=30°,∴D'E=﹣1,CE=D'E=3﹣,∵重叠部分的面积=△ABC的面积﹣△D'EC的面积,∴重叠部分的面积=×=3﹣;②将该菱形绕顶点A在平面内逆时针旋转30°,同①方法可得重叠部分的面积=3﹣,故选:A.【点睛】本题考查了旋转的性质,菱形的性质,正确作出图形是解题的关键.4.(2023 宜宾)如图,△ABC和△ADE是以点A为直角顶点的等腰直角三角形,把△ADE以A为中心顺时针旋转,点M为射线BD、CE的交点.若AB=,AD=1.以下结论:①BD=CE;②BD⊥CE;③当点E在BA的延长线上时,MC=;④在旋转过程中,当线段MB最短时,△MBC的面积为.其中正确结论有( )A.1个 B.2个 C.3个 D.4个【答案】D【点拨】证明△BAD≌△CAE可判断①,由三角形的外角的性质可判断②,证明∠DCM∽∠ECA,有 ,即可判断③;以A为圆心,AD为半径画圆,当CE在⊙A的下方与⊙A相切时,MB的值最小,可得四边形AEMD是正方形,在Rt△MBC中,,然后根据三角形的面积公式可判断④.【解析】解:∵△ABC和△ADE是以点A为直角顶点的等腰直角三角形,∴BA=CA,DA=EA,∠BAC=∠DAE=90°,∴∠BAD=∠CAE,∴△BAD≌△CAE(SAS),∴BD=CE,∠ABD=∠ACE,故①正确;设∠ABD=∠ACE=x,∠DBC=45°﹣x,∴∠EMB=∠DBC+∠BCM=∠DBC+∠BCA+∠ACE=45°﹣x+45°+x=90°,∴BD⊥CE,故②正确;当点E在BA的延长线上时,如图:同理可得∠DMC=90°,∴∠DMC=∠EAC,∵∠DCM=∠ECA,∴△DCM∽△ECA∴,∵=AC,AD=1=AE,∴,,∴,∴,故③正确;④以A为圆心,AD为半径画圆,如图:∵∠BMC=90°,∴当CE在⊙A的下方与⊙A相切时,MB的值最小,∴∠ADM=∠DME=∠AEM=90°,∵AE=AD,∴四边形AEMD是正方形,∴MD=AE=1,∵BD===,∴CE=BD=,BM=BD﹣MD=﹣1,∴MC=CE+ME=+1,∵BC=AB=,∴MB===﹣1,∴△MBC的面积为×(+1)×(﹣1)=,故④正确,故选:D.【点睛】本题考查等腰直角三角形的旋转问题,涉及全等三角形的判定与性质,相似三角形的判定与性质,最短路径等知识,解题的关键是掌握旋转的性质.5.(2023 益阳)如图,在正方形ABCD中,AB=4,E为AB的中点,连接DE,将△DAE绕点D按逆时针方向旋转90°得到△DCF,连接EF,则EF的长为 2 .【答案】2.【点拨】先根据正方形的性质得到AD=AB=4,∠A=90°,AE=2,则利用勾股定理可计算出DE=2,再根据旋转的性质得到DE=DF=2,∠EDF=90°,然后利用△DEF为等腰直角三角形得到EF=DE.【解析】解:∵四边形ABCD为正方形,∴AD=AB=4,∠A=90°,∵E为AB的中点,∴AE=2,∴DE===2,∵△DAE绕点D按逆时针方向旋转90°得到△DCF,∴DE=DF=2,∠EDF=90°,∴△DEF为等腰直角三角形,∴EF=DE=×2=2.故答案为:2.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了正方形的性质.6.(2023 宜宾)如图,M是正方形ABCD边CD的中点,P是正方形内一点,连接BP,线段BP以B为中心逆时针旋转90°得到线段BQ,连接MQ.若AB=4,MP=1,则MQ的最小值为 2﹣1 .【答案】2﹣1.【点拨】连接BM,将△BCM绕B逆时针旋转90°得△BEF,连接MF,QF,证明△BPM≌△BQF(SAS),得MP=QF=1,故Q的运动轨迹是以F为圆心,1为半径的弧,求出BM==2,可得MF=BM=2,由MQ≥MF﹣QF,知MQ≥2﹣1,从而可得MQ的最小值为2﹣1.【解析】解:连接BM,将△BCM绕B逆时针旋转90°得△BEF,连接MF,QF,如图:∵∠CBE=90°,∠ABC=90°,∴∠ABC+∠CBE=180°,∴A,B,E共线,∵∠PBM=∠PBQ﹣∠MBQ=90°﹣∠MBQ=∠FBQ,由旋转性质得PB=QB,MB=FB,∴△BPM≌△BQF(SAS),∴MP=QF=1,∴Q的运动轨迹是以F为圆心,1为半径的弧,∵BC=AB=4,CM=CD=2,∴BM==2,∵∠MBF=90°,BM=BF,∴MF=BM=2,∵MQ≥MF﹣QF,∴MQ≥2﹣1,∴MQ的最小值为2﹣1.故答案为:2﹣1.【点睛】本题考查正方形中的旋转问题,解题的关键是掌握旋转的性质,正确作出辅助线构造全等三角形解决问题.6.(2023 泰州)如图,△ABC中,AB=AC,∠A=30°,射线CP从射线CA开始绕点C逆时针旋转α角(0°<α<75°),与射线AB相交于点D,将△ACD沿射线CP翻折至△A′CD处,射线CA′与射线AB相交于点E.若△A′DE是等腰三角形,则∠α的度数为 22.5°或67.5°或45° .【答案】22.5°或67.5°或45°.【点拨】根据折叠的性质可得:∠ACD=∠A′CD=α=∠ACA′,∠A=∠DA′C=30°,然后分三种情况:当A′D=A′E时;当DA′=DE时;当ED=EA′时;分别进行计算即可解答.【解析】解:由折叠得:∠ACD=∠A′CD=α=∠ACA′,∠A=∠DA′C=30°,分三种情况:当A′D=A′E时,如图:∴∠A′DE=∠A′ED=(180°﹣∠A′)=75°,∵∠A′ED是△ACE的一个外角,∴∠ACE=∠A′ED﹣∠A=45°,∴∠ACD=∠A′CD=α=∠ACE=22.5°;当A′D=A′E时,当△ADC和△A′DC位于射线AB的同侧时,如图:∴∠A′DE=∠A′ED=∠CA′D=15°,∴∠ACA′=180°﹣∠A﹣∠A′EA=135°,∴∠ACD=∠A′CD=α=∠ACA′=67.5°;当DA′=DE时,∴∠A′=∠DEA′=30°,∵∠DEA′是△ACE的一个外角,∴∠DEA′>30°,∴此种情况不成立;当ED=EA′时,如图:∴∠EDA′=∠A′=30°,∴∠DEA′=180°﹣∠EDA′﹣∠A′=120°,∵∠A′ED是△ACE的一个外角,∴∠ACE=∠A′ED﹣∠A=90°,∴∠ACD=∠A′CD=α=∠ACE=45°;综上所述:若△A′DE是等腰三角形,则∠α的度数为22.5°或67.5°或45°,故答案为:22.5°或67.5°或45°.【点睛】本题考查了旋转的性质,等腰三角形的性质,翻折变换(折叠问题),分三种情况讨论是解题的关键.类型四 旋转变换1.(2023 宁波)在4×4的方格纸中,请按下列要求画出格点三角形(顶点均在格点上).(1)在图1中先画出一个以格点P为顶点的等腰三角形PAB,再画出该三角形向右平移2个单位后的△P′A′B′.(2)将图2中的格点△ABC绕点C按顺时针方向旋转90°,画出经旋转后的△A′B′C.【答案】见解析【点拨】(1)根据等腰三角形的定义,平移变换的性质作出图形即可;(2)根据旋转变换的性质作出图形即可.【解析】解:(1)如图1,△P′A′B′即为所求;(2)如图2,△A′B′C即为所求.【点睛】本题考查作图﹣旋转变换,平移变换,等腰三角形的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.2.(2023 宜昌)如图,在方格纸中按要求画图,并完成填空.(1)画出线段OA绕点O顺时针旋转90°后得到的线段OB,连接AB;(2)画出与△AOB关于直线OB对称的图形,点A的对称点是C;(3)填空:∠OCB的度数为 45° .【答案】(1)(2)见解析;(3)45°.【点拨】(1)利用网格特点和旋转的性质画出点A的对称点B,从而得到OB;(2)延长AO到C点使OC=OA,则△COB满足条件;(3)先根据旋转的性质得到OB=OA,∠AOB=90°,则可判断△OAB为等腰直角三角形,所以∠OAB=45°,然后利用对称的性质得到∠OCB的度数.【解析】解:(1)如图,OB为所作;(2)如图,△COB为所作;(3)∵线段OA绕点O顺时针旋转90°后得到的线段OB,∴OB=OA,∠AOB=90°,∴△OAB为等腰直角三角形,∴∠OAB=45°,∵△COB与△AOB关于直线OB对称,∴∠OCB=∠OAB=45°.故答案为:45°.【点睛】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了轴对称变换.3.(2023 温州)如图,在2×4的方格纸ABCD中,每个小方格的边长为1.已知格点P,请按要求画格点三角形(顶点均在格点上).(1)在图1中画一个等腰三角形PEF,使底边长为,点E在BC上,点F在AD上,再画出该三角形绕矩形ABCD的中心旋转180°后的图形;(2)在图2中画一个Rt△PQR,使∠P=45°,点Q在BC上,点R在AD上,再画出该三角形向右平移1个单位后的图形.【答案】(1)(2)作图见解析.【点拨】(1)根据题意作出图形即可;(2)作等腰直角三角形PQR,可得结论.【解析】解:(1)图形如图1所示(答案不唯一);(2)图形如图2所示(答案不唯一).【点睛】本题考查作图﹣旋转变换,平移变换等知识,解题的关键是掌握在旋转变换,平移变换的性质,属于中考常考题型.4.(2022 安徽)如图,在由边长为1个单位长度的小正方形组成的网格中,△ABC的顶点均为格点(网格线的交点).(1)将△ABC向上平移6个单位,再向右平移2个单位,得到△A1B1C1,请画出△A1B1C1;(2)以边AC的中点O为旋转中心,将△ABC按逆时针方向旋转180°,得到△A2B2C2,请画出△A2B2C2.【答案】见解析.【点拨】(1)根据平移的性质可得△A1B1C1;(2)根据旋转的性质可得△A2B2C2.【解析】解:(1)如图,△A1B1C1即为所求;(2)如图,△A2B2C2即为所求.【点睛】本题主要考查了作图﹣平移变换,旋转变换,熟练掌握平移和旋转的性质是解题的关键.5.(2023 武汉)如图是由小正方形组成的8×6网格,每个小正方形的顶点叫做格点.正方形ABCD四个顶点都是格点,E是AD上的格点,仅用无刻度的直尺在给定网格中完成画图,画图过程用虚线表示.(1)在图(1)中,先将线段BE绕点B顺时针旋转90°,画对应线段BF,再在CD上画点G,并连接BG,使∠GBE=45°;(2)在图(2)中,M是BE与网格线的交点,先画点M关于BD的对称点N,再在BD上画点H,并连接MH,使∠BHM=∠MBD.【答案】图形见解析.【点拨】(1)取格点F,连接BF,连接 EF,再取格点P,连接CP交EF于Q,连接BQ,延长交CD于G即可;(2)取格点F,连接 BF、EF,交格线于N,再取格点P,Q,连接PQ交EF于O,连接MO并延长交BD于H即可.【解析】解:(1)如图(1),线段BF和点G即为所求;理由:∵BC=BA,CF=AE,∠BCF=∠BAE=90°,∴△BCF≌△BAE(SAS),∴∠CBF=∠ABE,∴∠FBE=∠CBF+∠CBE=∠ABE+∠CBE=∠CBA=90°,∴线段BE绕点B顺时针旋转90° 得BF,∵PE∥FC,∴∠PEQ=∠CFQ,∠EPQ=∠FCQ,∵PE=FC,∴△PEQ≌△CFO(ASA),∴EQ=FQ,∴∠GBE=EBF=45°;(2)如图(2)所示,点N与点H即为所求,理由:∵BC=BA,∠BCF=∠BAE=90°,CF=AE,∴△BCF≌△BAE(SAS),∴BF=BE,∵DF=DE,∴BF与BE 关于BD对称∵BN=BM,∴M,N关于BD对称,∵PE∥FC,∴△POE∽△QOF,∴,∵MG∥AE∴,∴,∵∠MEO=∠BEF,∴△MEO∽△BEF,∴∠EMO=∠EBF,∴OM∥BF,∴∠MHB=∠FBH,由轴对称可得∠FBH=∠EBH,∴∠BHM=∠MBD.【点睛】本题考查了作图﹣旋转变换,轴对称变换,勾股定理、勾股定理的逆定理,全等三角形的判定与性质,解决本题的关键是掌握旋转和轴对称的性质.类型五 几何变换综合题1.(2023 广元)如图1,已知线段AB,AC,线段AC绕点A在直线AB上方旋转,连接BC,以BC为边在BC上方作Rt△BDC,且∠DBC=30°.(1)若∠BDC=90°,以AB为边在AB上方作Rt△BAE,且∠AEB=90°,∠EBA=30°,连接DE,用等式表示线段AC与DE的数量关系是 AC=DE ;(2)如图2,在(1)的条件下,若DE⊥AB,AB=4,AC=2,求BC的长;(3)如图3,若∠BCD=90°,AB=4,AC=2,当AD的值最大时,求此时tan∠CBA的值.【答案】(1);(2);(3).【点拨】(1)证明△ABE∽△CBD,根据相似三角形的性质得出,∠DBE=∠CBA,进而证明△ABC∽△EBD,根据相似三角形的性质即可求解;(2)求出AE=2,延长DE交AB于点F,在Rt△AEF 中,由直角三角形的性质求得EF,AF,进而求得BF的长,根据(1 的结论,得出 ,在Rt△BFD中,勾股定理求得BD,进而根据△ABC∽△EBD,即可求出案.(3)如图所示,以AB为边在AB上方作Rt△BAE,且∠EAB=90°,∠EBA=30°,连接BE,EA,ED,EC,同(1)可得△BDE∽△BCA,求出AE的长,进而得出D在以E为圆心,为半径的圆上运动,当点A,E,D 三点共线时,AD的值最大,进而求得 ,,根据△ABC∽△EBD得出∠BDE=∠BCA,过点A作AF⊥BC于点F,由直角三角形的性质分别求得AF,CF,然后求出BF,最后根据正切的定义即可得出答案.【解析】解:(1)在Rt△BDC中,∠DBC=30°,在Rt△BAE中,∠AEB=90°,∠EBA=30°,∴△ABE∽△CBD,∠DBE+∠EBC=∠ABC+∠EBC,,∴,∠DBE=∠CBA,∴△ABC∽△EBD,∴,∴,故答案为:AC=DE;(2)在Rt△BAE,∠AEB=90°,∠EBA=30°,AB=4,∴AE=AB sin∠EBA=AB=2,∠BAE=60°,延长DE交AB于点F,如图所示,∴,,∴BF=AB﹣AF=4﹣1=3,由(1)可得,∴,∴,在Rt△BFD中,,∵△ABC∽△EBD,∴,∴,即;(3)如图所示,以AB为边在AB上方作Rt△BAE,且∠EAB=90°,∠EBA=30°,连接BE,EA,ED,EC,同(1)可得△BDE∽△BCA,∴,∵AC=2,∴,在Rt△AEB中,AB=4,,∴D在以E为圆心,为半径的圆上运动,∴当点A,E,D三点共线时,AD的值最大,此时如图所示,则,在Rt△ABD中,,∴cos∠BDA==,sin∠BDA==,∵∠BEA=60°,∴∠BED=120°,∵△ABC∽△EBD,∴∠BDE=∠BCA,过点A作AF⊥BC于点F,∴,,∵∠DBC=30°,∴BC=BD==2,∴,Rt△AFB中,tan=.【点睛】本题是几何变换综合题,考查了旋转的性质,直角三角形的性质,相似三角形的性质与判定,勾股定理,解直角三角形,锐角三角函数的定义,熟练掌握解直角三角形及相似三角形的性质与判定是解题的关键.2.(2023 重庆)如图,在等边△ABC中,AD⊥BC于点D,E为线段AD上一动点(不与A,D重合),连接BE,CE,将CE绕点C顺时针旋转60°得到线段CF,连接AF.(1)如图1,求证:∠CBE=∠CAF;(2)如图2,连接BF交AC于点G,连接DG,EF,EF与DG所在直线交于点H,求证:EH=FH;(3)如图3,连接BF交AC于点G,连接DG,EG,将△AEG沿AG所在直线翻折至△ABC所在平面内,得到△APG,将△DEG沿DG所在直线翻折至△ABC所在平面内,得到△DQG,连接PQ,QF.若AB=4,直接写出PQ+QF的最小值.【答案】(1)证明过程见解析;(2)证明过程见解析;(3)+2.【点拨】(1)根据旋转的性质得出CE=CF,∠ECF=60°,进而证明△BCE≌△ACF(SAS),即可得证;(2)过点F作FK∥AD,交DH点的延长线于点K,连接EK,FD,证明四边形EDFK是平行四边形,即可得证;(3)如图所示,延长AP,DQ交于点R,由(2)可知△DCG是等边三角形,根据折叠的性质可得∠PAG=∠EAG=30°,∠QDG=∠EDG=30°,进而得出△ADR是等边三角形,由(2)可得Rt△CED≌Rt△CFG,得出四边形GDQF是平行四边形,则QF=DC=AC=2,进而得出∠PGQ=360°﹣2∠AGD=120°,则PQ=PG=GQ,当GQ取得最小值时,即GQ⊥DR时,PQ取得最小值,即可求解.【解析】(1)证明:∵△ABC为等边三角形,∴∠ACB=60°,AC=BC,∵将CE绕点C顺时针旋转60°得到线段CF,∴CE=CF,∠ECF=60°,∵△ABC是等边三角形,∴∠BCA=∠ECF,∴∠BCE=∠ACF,∴△BCE≌△ACF(SAS),∴∠CBE=∠CAF;(2)证明:如图所示,过点F作FK∥AD,交DH点的延长线于点K,连接EK,FD,∵△ABC是等边三角形,∴AB=AC=BC,∵AD⊥BC,∴BD=CD,∴AD垂直平分BC,∴EB=EC,又∵△BCE≌△ACF,∴AF=BE,CF=CE,∴AF=CF,∴F在AC的垂直平分线上,∵AB=BC,∴B在AC的垂直平分线上,∴BF垂直平分AC,∴AC⊥BF,AG=CG=AC,∴∠AGF=90°,又∵DG=AC=CG,∠ACD=60°,∴△DCG是等边三角形,∴∠CGD=∠CDG=60°,∴∠AGH=∠DGC=60°,∴∠KGF=∠AGF﹣∠AGH=90°﹣60°=30°,又∵∠ADK=∠ADC﹣∠GDC=90°﹣60=30°,KF∥AD,∴∠HKF=∠ADK=30°,∴∠FKG=∠KGF=30°,∴FG=FK,在Rt△CED与Rt△CGF中,,∴Rt△CED≌Rt△CFG,∴GF=ED,∴ED=FK,∴四边形EDFK是平行四边形,∴EH=HF;解法二:连接CH,证明∠CHE=90°,可得结论.(3)解:依题意,如图所示,延长AP,DQ交于点R,由(2)可知△DCG是等边三角形,∴∠EDG=30°,∵将△AEG沿AG所在直线翻折至△ABC所在平面内,得到△APG,将△DEG沿DG所在直线翻折至△ABC所在平面内,得到△DQG,∴∠PAG=∠EAG=30°,∠QDG=∠EDG=30°,∴∠PAE=∠QDE=60°,∴△ADR是等边三角形,∴∠QDC=∠ADC﹣∠ADQ=90°﹣60°=30°,由(2)可得Rt△CED≌Rt△CFG,∴DE=GF,∴DE=DQ,∴GF=DQ,∵∠GBC=∠QDC=30°,∴GF∥DQ,∴四边形GDQF是平行四边形,∴QF=DG=AC=2,由(2)可知G是AC的中点,则GA=GD,∴∠GAD=∠GDA=30°,∴∠AGD=120°,∵折叠,∴∠AGP+∠DGQ=∠AGE+∠DGE=∠AGD=120°,∴∠PGQ=360°﹣2∠AGD=120°,又PG=GE=GQ,∴PQ=PG=GQ,∴当GQ取得最小值时,即GQ⊥DR时,PQ取得最小值,此时如图所示,∴GQ=GC=DC=1,∴PQ=,∴PQ+QF=+2.解法二:由两次翻折,推得∠PGQ=360°﹣240°=120°,则PQ=PG=EG,由QF=DG=2,推出PQ1+QF的最小值,只需要求出EG的最小值,当EG⊥AD时,EG的值最小,最小值为1,∴PQ+QF的最小值为+2.【点睛】本题考查了等边三角形的性质,旋转的性质,轴对称的性质,勾股定理,平行四边形的性质与判定,全等三角形的性质与判定,熟练掌握以上知识是解题的关键.3.(2023 岳阳)如图1,在△ABC中,AB=AC,点M,N分别为边AB,BC的中点,连接MN.初步尝试:(1)MN与AC的数量关系是 MN=AC ,MN与AC的位置关系是 MN∥AC .特例研讨:(2)如图2,若∠BAC=90°,BC=4,先将△BMN绕点B顺时针旋转α(α为锐角),得到△BEF,当点A,E,F在同一直线上时,AE与BC相交于点D,连接CF.①求∠BCF的度数;②求CD的长.深入探究:(3)若∠BAC<90°,将△BMN绕点B顺时针旋转α,得到△BEF,连接AE,CF.当旋转角α满足0°<α<360°,点C,E,F在同一直线上时,利用所提供的备用图探究∠BAE与∠ABF的数量关系,并说明理由.【答案】(1);MN∥AC;(2)①∠BCF=30°;②;(3)∠BAE=∠ABF 或∠BAE+∠ABF=180°.【点拨】(1)AB=AC,点M,N分别为边AB,BC的中点,则MN是△ABC的中位线,即可得出结论;(2)特例研讨:①连接EM,MN,NF,证明△BME是等边三角形,△BNF是等边三角形,得出∠FCB=30°;②连接AN,证明△ADN∽△BDE,则 ,设DE=x,则,在Rt△ABE中,BE=2,,则,在Rt△ADN中,AD2=DN2+AN2,勾股定理求得,则;(3)当点C,E,F在同一直线上时,且点E在FC上时,设∠ABC=∠ACB=θ,则∠BAC=180°﹣2θ,得出∠BEC+∠BAC=180°,则A.B,E,C 在同一个圆上,进而根据圆周角定理得出∠EAC=∠EBC=α﹣θ,表示∠BAE与∠ABF,即可求解;当F在EC上时,可得A,B,E,C在同一个圆上,设∠ABC=∠ACB=θ,则∠BAC=∠BEF=180°﹣2θ,设∠NBF=β,则∠EBM=β,则 α+β=360°,表示∠BAE 与∠ABF,即可求解.【解析】解:(1)∵AB=AC,点M,N分别为边AB,BC的中点,∴MN是△ABC的中位线,∴,MN∥AC;故答案为:MN=AC,MN∥AC;(2)特例研讨:①如图所示,连接EM,MN,NF,∵MN是△BAC的中位线,∴MN∥AC,∴∠BMN=∠BAC=90°,∵将△BMN绕点B顺时针旋转α(α为锐角),得到△BEF,∴BE=BM,BF=BN;∠BEF=∠BMN=90°,∵点A,E,F在同一直线上,∴∠AEB=∠BEF=90°,在Rt△ABE中,M是斜边AB的中点,∴,∴BM=ME=BE,∴△BME是等边三角形,∴∠ABE=60°,即旋转角α=60°,∴∠NBF=60°,BN=BF,∴△BNF是等边三角形,又∵BN=NC,BN=NF,∴NF=NC,∴∠NCF=∠NFC,∴∠BNF=∠NCF+∠NFC=2∠NFC=60°,∴∠FCB=30°;(2)如图所示,连接AN,∵AB=AC,∠BAC=90° ,∴,∠ACB=∠ABC=45°,∵∠ADN=∠BDE,∠ANB=∠BED=90°,∴△ADN∽△BDE,∴,设DE=x,则,在Rt△ABE中,,则,在Rt△ADN中,AD2=DN2+AN2,∴,解得: 或 (舍去),∴;(3)如图所示,当点C,E,F在同一直线上时,且点E在FC上时,∵AB=AC,∴∠ABC=∠ACB,设∠ABC=∠ACB=θ,则∠BAC=180°﹣2θ,∵MN是△ABC的中位线,∴MN∥AC,∴∠MNB=∠MBN=θ,∵将△BMN绕点B顺时针旋转α,得到△BEF,∴△EBF≌△MBN,∠MBE=∠NBF=α,∴∠EBF=∠EFB=θ,∴∠BEF=180°﹣2θ,∵点C,E,F在同一直线上,∴∠BEC=2θ,∴∠BEC+∠BAC=180°,∴A,B,E,C在同一个圆上,∴∠EAC=∠EBC=α﹣θ,∴∠BAE=∠BAC﹣∠EAC=(180°﹣2θ)﹣(α﹣θ)=180°﹣α﹣θ,∵∠ABF=α+θ,∴∠BAE+∠ABF=180°,如图所示,当F在EC上时,∵∠BEF=∠BAC,BC=BC,∴A,B,E,C在同一个圆上,设∠ABC=∠ACB=θ,则∠BAC=∠BEF=180°﹣2θ,将△BMN绕点B顺时针旋转α,得到△BEF,设∠NBF=β,则∠EBM=β,则 α+β=360°,∴∠ABF=θ﹣β,∵∠BFE=∠EBF=θ,∠EFB=∠FBC+∠FCB,∴∠ECB=∠FCB=∠EFB﹣∠FBC=θ﹣β,∵,∴∠EAB=∠ECB=θ﹣β,∴∠BAE=∠ABF,综上所述,∠BAE=∠ABF或∠BAE+∠ABF=180°.【点睛】本题属于几何变换综合题,考查了圆周角定理,圆内接四边形对角互补,相似三角形的性质与判定,旋转的性质,中位 线的性质与判定,等腰三角形的性质与判定,三角形内角和定理,三角形外角的性质,勾股定理,熟练掌握 以上知识是解题的关键.4.(2023 贵州)如图①,小红在学习了三角形相关知识后,对等腰直角三角形进行了探究,在等腰直角三角形ABC中,CA=CB,∠C=90°,过点B作射线BD⊥AB,垂足为B,点P在CB上.(1)【动手操作】如图②,若点P在线段CB上,画出射线PA,并将射线PA绕点P逆时针旋转90°与BD交于点E,根据题意在图中画出图形,图中∠PBE的度数为 135 度;(2)【问题探究】根据(1)所画图形,探究线段PA与PE的数量关系,并说明理由;(3)【拓展延伸】如图③,若点P在射线CB上移动,将射线PA绕点P逆时针旋转90°与BD交于点E,探究线段BA,BP,BE之间的数量关系,并说明理由.【答案】(1)画出图形见解析,135;(2)PA=PE,理由见解答过程;(3)当P在线段BC上时,AB=BP+BE;当P在线段CB的延长线上时,BE=BA+BP,理由见解答过程.【点拨】(1)根据题意画出图形,由CA=CB,∠C=90°,得∠ABC=45°,而BD⊥AB,即得∠PBE=∠ABC+∠ABD=135°;(2)过P作PM∥AB交AC于M,证明△PCM是等腰直角三角形,得CP=CM,∠PMC=45°,即可证△APM≌△PEB(ASA),故PA=PE;(3)当P在线段BC上时,过P作PM∥AB交AC于M,结合(2)可得AB=BP+BE;当P在线段CB的延长线上时,过P作PN⊥BC交BE于N,证明△BPN是等腰直角三角形,可得∠ABP=135°,BP=NP,BN=BP,∠PNB=45°,即可证△EPN≌△APB(ASA),EN=BA,根据BE=EN+BN,即得BE=BA+BP.【解析】解:(1)画出图形如下:∵CA=CB,∠C=90°,∴∠ABC=45°,∵BD⊥AB,∴∠ABD=90°,∴∠PBE=∠ABC+∠ABD=45°+90°=135°;故答案为:135;(2)PA=PE,理由如下:过P作PM∥AB交AC于M,如图:∴∠MPC=∠ABC=45°,∴△PCM是等腰直角三角形,∴CP=CM,∠PMC=45°,∴CA﹣CM=CB﹣CP,即AM=BP,∠AMP=135°=∠PBE,∵∠APE=90°,∴∠EPB=90°﹣∠APC=∠PAC,∴△APM≌△PEB(ASA),∴PA=PE;(3)当P在线段BC上时,过P作PM∥AB交AC于M,如图:由(2)可知,BE=PM,BP=AM,∵AB=(AM+CM),∴AB=BP+CM,∵PM=CM,∴AB=BP+BE;当P在线段CB的延长线上时,过P作PN⊥BC交BE于N,如图:∵∠ABD=90°,∠ABC=45°,∴∠PBN=180°﹣∠ABC﹣∠ABD=45°,∴△BPN是等腰直角三角形,∠ABP=135°,∴BP=NP,BN=BP,∠PNB=45°,∴∠PNE=135°=∠ABP,∵∠APE=90°,∴∠EPN=90°﹣∠APN=∠APB,∴△EPN≌△APB(ASA),∴EN=BA,∵BE=EN+BN,∴BE=BA+BP;综上所述,当P在线段BC上时,AB=BP+BE;当P在线段CB的延长线上时,BE=BA+BP.【点睛】本题考查几何变换综合应用,涉及等腰直角三角形,旋转变换,全等三角形的判定与性质等知识,解题的关键是作辅助线,构造全等三角形解决问题.5.(2023 辽宁)在Rt△ABC中,∠ACB=90°,CA=CB,点O为AB的中点,点D在直线AB上(不与点A,B重合),连接CD,线段CD绕点C逆时针旋转90°,得到线段CE,过点B作直线l⊥BC,过点E作EF⊥l,垂足为点F,直线EF交直线OC于点G.(1)如图1,当点D与点O重合时,请直接写出线段AD与线段EF的数量关系;(2)如图2,当点D在线段AB上时,求证:CG+BD=BC;(3)连接DE,△CDE的面积记为S1,△ABC的面积记为S2,当EF:BC=1:3时,请直接写出的值.【答案】(1)AD=EF,理由见解析;(2)证明见解析;(3)的值为或.【点拨】(1)连接BE,由∠ACB=90°,CA=CB,得∠A=45°,根据线段CD绕点C逆时针旋转90°,得到线段CE,有CD=CE,∠DCE=90°,可得△BCE≌△ACD(SAS),从而BE=AD,∠A=∠CBE=45°,知△BEF是等腰直角三角形,BE=EF,故AD=EF;(2)由∠ACB=90°,CA=CB,O为AB的中点,得∠COB=90°,AB=BC,证明△CEG≌△DCA(AAS),得CG=AD,根据AD+BD=AB,即得CG+BD=BC;(3)由EF:BC=1:3,设EF=m,则BC=AC=3m,分两种情况:当D在线段AB上时,延长AC交GF于K,由△CEG≌△DCA,得GE=AC=3m,而四边形BCKF是矩形,有KF=BC=3m,∠CKG=90°,根据勾股定理可得CE2=CK2+KE2=m2+(2m)2=5m2,故S1=CD CE=CE2=,S2=AC BC=,即得=;当D在射线BA上时,延长EG交AC于T,同理可得=.【解析】(1)解:AD=EF,理由如下:连接BE,如图:∵∠ACB=90°,CA=CB,∴∠A=45°,∵线段CD绕点C逆时针旋转90°,得到线段CE,∴CD=CE,∠DCE=90°,∴∠BCE=90°﹣∠BCD=∠ACD,∴△BCE≌△ACD(SAS),∴BE=AD,∠A=∠CBE=45°,∵直线l⊥BC,∴∠EBF=45°,∴△BEF是等腰直角三角形,∴BE=EF,∴AD=EF;(2)证明:如图,∵∠ACB=90°,CA=CB,O为AB的中点,∴∠COB=90°,AB=BC,∵∠BFG=90°,∴∠G=360°﹣∠COB﹣∠OBF﹣∠BFG=45°=∠A,∵BC⊥直线l,EF⊥直线l,∴BC∥GF,∴∠CEG=∠BCE,∵∠BCE=90°﹣∠BCD=∠ACD,∴∠CEG=∠ACD,∵CE=CD,∴△CEG≌△DCA(AAS),∴CG=AD,∵AD+BD=AB,∴CG+BD=BC;(3)解:由EF:BC=1:3,设EF=m,则BC=AC=3m,当D在线段AB上时,延长AC交GF于K,如图:由(2)知△CEG≌△DCA,∴GE=AC=3m,∵∠CBF=∠BFE=∠BCK=90°,∴四边形BCKF是矩形,∴KF=BC=3m,∠CKG=90°,∴KE=KF﹣EF=2m,∴GK=GE﹣KE=m,∵∠G=45°,∴CK=GK=m,∴CE2=CK2+KE2=m2+(2m)2=5m2,∴S1=CD CE=CE2=,∵AC=BC=3m,∴S2=AC BC=,∴=;当D在射线BA上时,延长EG交AC于T,如图:同理可得BC=AC=EG=3m,∴FG=EG﹣EF=2m,∵TF=BC=3m,∴TG=TF﹣FG=m,∵∠ACB=90°,CA=CB,O为AB的中点,∴∠AOC=45°,∵BC∥EF,∴∠ETC=90°,∴CT=TG=m,∴CE2=CT2+TE2=m2+(m+3m)2=17m2,∴S1=,∴=;综上所述,的值为或.【点睛】本题考查等腰直角三角形中的旋转问题,涉及三角形全等的判定与性质,矩形的判定与性质,三角形面积等知识,解题的关键是分类讨论思想的应用.21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)HYPERLINK "http://21世纪教育网(www.21cnjy.com)" 21世纪教育网(www.21cnjy.com) 展开更多...... 收起↑ 资源列表 专题28 旋转问题(学生版).doc 专题28 旋转问题(解析版).doc