资源简介 专题18 特殊四边形及圆的相关证明与计算目录一览知识目标(新课程标准提炼)中考命题趋势(分析考察方向,精准把握重难点) 重点考向(以真题为例,探究中考命题方向) 考向一 直角三角形斜边上的中线 考向二 平行四边形的判定与性质 考向三 矩形的判定与性质 考向四 菱形的判定与性质 考向五 正方形的判定与性质 考向六 垂径定理的应用 考向七 圆周角定理 考向八 圆内接四边形的性质 考向九 三角形的外接圆与外心 考向十 直线与圆的位置关系 考向十一 切线的判定与性质 考向十二 三角形的内切圆与内心 考向十三 正多边形和圆 考向十四 弧长的计算 考向十五 扇形面积的计算 考向十六 圆锥的计算 考向十七 圆的综合题 最新真题荟萃(精选最新典型真题,强化知识运用,优化解题技巧)1.理解矩形、菱形、正方形的概念,以及它们之间的关系;探索并证明矩形、菱形、正方形的性质定理和判定定理.2.探索圆周角与圆心角及其所对弧的关系,了解并证明圆周角定理及其推论;理解圆、弧、弦、圆心角、圆周角的概念,了解等圆、等弧的概念; 知道三角形的外心;3.圆内接四边形的对角互补.了解直线和圆的位置关系,掌握切线的概念,探索切线与过切点的半径关系,会用三角尺过圆上一点画圆的切线; 知道三角形的内心.4.会计算圆的弧长、扇形的面积;了解正多边形的概念及正多边形与圆的关系.特殊四边形考点内容是考查重点,年年都会考查,分值为15分左右,预计2024年各地中考还将出现,并且在选择、填空题中考查利用特殊四边形性质和判定求角度、长度问题的可能性比较大.解答题中考查特殊四边形的性质和判定,一般和三角形全等、解直角三角形、二次函数、动态问题综合应用的可能性比较大.对于本考点内容,要注重基础,反复练习,灵活运用.圆的性质及其证明与计算板块内容以考查综合题为主,也是考查重点,除了填空题和选择题外,年年都会考查综合题,对多数考生来说也是难点,分值为5分左右.预计2024年各地中考肯定还是考查的重点在选择、填空题中考查,考查形式多样,多以动点、动图的形式给出,难度较大.关键是掌握基础知识、基本方法,力争拿到全分.与切线有关的证明与计算板块内容以考查综合题为主,也是考查重点,除了填空题和选择题外,年年都会考查综合题,对多数考生来说也是难点,分值为8分左右.预计2024年各地中考肯定还是考查的重点在选择、填空题中考查,在解答题中想必还会考查切线的性质和判定,和直角三角形结合的求线段长的问题和三角函数结合的求角度的问题等知识点综合,考查形式多样,多以动点、动图的形式给出,难度较大.关键是掌握基础知识、基本方法,力争拿到全分.弧长、扇形面积相关计算板块内容以考查综合题为主,也是考查重点,除了填空题和选择题外,年年都会考查综合题,对多数考生来说也是难点,分值为5分左右.预计2024年各地中考肯定还是考查的重点在选择、填空题中考查弧长、扇形面积,考查形式多样,难度较大.关键是掌握基础知识、基本方法,力争拿到全分. 考向一 直角三角形斜边上的中线(2023 株洲)1.一技术人员用刻度尺(单位:)测量某三角形部件的尺寸.如图所示,已知,点D为边的中点,点A、B对应的刻度为1、7,则( ) A. B. C. D.(2023 荆州)2.如图,为斜边上的中线,E为的中点.若,,则 . 考向二 平行四边形的判定与性质(2023 贵州)3.如图,在中,,延长至D,使得,过点A,D分别作,,与相交于点E.下面是两位同学的对话: 小星:由题目的已知条件,若连接,则可 证明. 小红:由题目的已知条件,若连接,则可证明. (1)请你选择一位同学的说法,并进行证明;(2)连接,若,求的长.(2023 扬州)4.如图,点E、F、G、H分别是各边的中点,连接相交于点M,连接相交于点N. (1)求证:四边形是平行四边形;(2)若的面积为4,求的面积. 考向三 矩形的判定与性质(2023 雅安)5.如图,在中,.P为边上一动点,作于点D,于点E,则的最小值为 . (2023 大庆)6.如图,在平行四边形中,为线段的中点,连接,,延长,交于点,连接,. (1)求证:四边形是矩形;(2)若,,求四边形的面积. 考向四 菱形的判定与性质(2023 德阳)7.如图,的面积为12,,与交于点O.分别过点C,D作,的平行线相交于点F,点G是的中点,点P是四边形边上的动点,则的最小值是( ) A.1 B. C. D.3(2022 辽宁)8.如图,CD是△ABC的角平分线,过点D分别作AC,BC的平行线,交BC于点E,交AC于点F.若∠ACB=60°,CD=4,则四边形CEDF的周长是 . 考向五 正方形的判定与性质(2020 台州)9.下是关于某个四边形的三个结论:①它的对角线相等;②它是一个正方形;③它是一个矩形.下列推理过程正确的是( )A.由②推出③,由③推出① B.由①推出②,由②推出③C.由③推出①,由①推出② D.由①推出③,由③推出②(2017 玉林)10.如图,在等腰直角三角形ABC中,,AC=BC=4,D是AB的中点,E、F分别是AC、BC上的点(点E不与端点A、C重合),且AE=CF,连接EF并取EF的中点O,连接DO并延长至点G,使GO=DO,连接DE、DF、GE、GF.(1)求证:四边形EDFG是正方形;(2)当点E在什么位置时,四边形EDFG的面积最小?并求四边形EDFG面积的最小值. 考向六 垂径定理的应用(2023 广西)11.赵州桥是当今世界上建造最早,保存最完整的中国古代单孔敞肩石拱桥.如图,主桥拱呈圆弧形,跨度约为,拱高约为,则赵州桥主桥拱半径R约为( ) A. B. C. D.(2023 东营)12.“圆材埋壁”是我国古代著名数学著作《九章算术》中的问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用数学语言可表述为:“如图,为的直径,弦于E,寸,寸,求直径的长”.(1尺寸)则 . 考向七 圆周角定理(2023 云南)13.如图,是的直径,是上一点.若,则( ) A. B. C. D.(2023 深圳)14.如图,在中,为直径,C为圆上一点,的角平分线与交于点D,若,则 °. 考向八 圆内接四边形的性质(2023 西藏)15.如图,四边形内接于,E为BC延长线上一点.若,则的度数是( ) A. B. C. D.(2023 淮安)16.如图,四边形是的内接四边形,是的直径,,则的度数是 . 考向九 三角形的外接圆与外心(2023 自贡)17.如图,内接于,是的直径,连接,,则的度数是( )A. B. C. D.(2023 湖北)18.如图,在的正方形网格中,小正方形的顶点称为格点,顶点均在格点上的图形称为格点图形,图中的圆弧为格点外接圆的一部分,小正方形边长为1,图中阴影部分的面积为( ) A. B. C. D. 考向十 直线与圆的位置关系(2023 宿迁)19.在同一平面内,已知的半径为2,圆心O到直线l的距离为3,点P为圆上的一个动点,则点P到直线l的最大距离是( )A.2 B.5 C.6 D.8(2023 镇江)20.已知一次函数的图像经过第一、二、四象限,以坐标原点O为圆心、r为半径作.若对于符合条件的任意实数k,一次函数的图像与总有两个公共点,则r的最小值为 . 考向十一 切线的判定与性质(2023 郴州)21.如图,在中,是直径,点是圆上一点.在的延长线上取一点,连接,使. (1)求证:直线是的切线;(2)若,,求图中阴影部分的面积(结果用含的式子表示).(2023 巴中)22.如图,已知等腰,,以为直径作交于点D,过D作于点E,交延长线于点F. (1)求证:是的切线.(2)若,求图中阴影部分的面积(结果用表示) 考向十二 三角形的内切圆与内心(2023 广州)23.如图,的内切圆与,,分别相切于点D,E,F,若的半径为r,,则的值和的大小分别为( )A.2r, B.0, C.2r, D.0,(2023 攀枝花)24.已知的周长为,其内切圆的面积为,则的面积为( )A. B. C. D. 考向十三 正多边形和圆(2023 福建)25.我国魏晋时期数学家刘徽在《九章算术注》中提到了著名的“割圆术”,即利用圆的内接正多边形逼近圆的方法来近似估算,指出“割之弥细,所失弥少.割之又割,以至于不可割,则与圆周合体,而无所失矣”.“割圆术”孕育了微积分思想,他用这种思想得到了圆周率的近似值为3.1416.如图,的半径为1,运用“割圆术”,以圆内接正六边形面积近似估计的面积,可得的估计值为,若用圆内接正十二边形作近似估计,可得的估计值为( )A. B. C.3 D.(2023 衡阳)26.如图,用若干个全等的正五边形排成圆环状,图中所示的是其中3个正五边形的位置.要完成这一圆环排列,共需要正五边形的个数是 个. 考向十四 弧长的计算(2023 青岛)27.如图,四边形是的内接四边形,,.若的半径为5,则的长为( ) A. B. C. D.(2023 阜新)28.如图,四边形是正方形,曲线叫作“正方形的渐开线”,其中,,,,…的圆心依次按O,A,B,循环.当时,点的坐标是( ) A. B. C. D. 考向十五 扇形面积的计算(2023 连云港)29.如图,矩形内接于,分别以为直径向外作半圆.若,则阴影部分的面积是( ) A. B. C. D.20(2023 娄底)30.如图,正六边形的外接圆的半径为2,过圆心O的两条直线、的夹角为,则图中的阴影部分的面积为( ) A. B. C. D. 考向十六 圆锥的计算(2023 赤峰)31.某班学生表演课本剧,要制作一顶圆锥形的小丑帽.如图,这个圆锥的底面圆周长为,母线长为30,为了使帽子更美观,要粘贴彩带进行装饰,其中需要粘贴一条从点A处开始,绕侧面一周又回到点A的彩带(彩带宽度忽略不计),这条彩带的最短长度是( )v A. B. C. D.(2023 苏州)32.如图,在中,,垂足为.以点为圆心,长为半径画弧,与分别交于点.若用扇形围成一个圆锥的侧面,记这个圆锥底面圆的半径为;用扇形围成另一个圆锥的侧面,记这个圆锥底面圆的半径为,则 .(结果保留根号) 考向十七 圆的综合题(2023 杭州)33.如图,在中,直径垂直弦于点,连接,作于点,交线段于点(不与点重合),连接.(1)若,求的长.(2)求证:.(3)若,猜想的度数,并证明你的结论.(2023 枣庄)34.如图,为的直径,点C是的中点,过点C做射线的垂线,垂足为E. (1)求证:是切线;(2)若,求的长;(3)在(2)的条件下,求阴影部分的面积(用含有的式子表示).(2023 赤峰)35.如图,在中,,,.点F是中点,连接,把线段沿射线方向平移到,点D在上.则线段在平移过程中扫过区域形成的四边形的周长和面积分别是( ) A.16,6 B.18,18 C.16.12 D.12,16(2022 杭州)36.如图,在Rt△ACB中,∠ACB=90°,点M为边AB的中点,点E在线段AM上,EF⊥AC于点F,连接CM,CE.已知∠A=50°,∠ACE=30°.(1)求证:CE=CM.(2)若AB=4,求线段FC的长.(2022 德阳)37.如图,在菱形中,,过点D作的垂线,交的延长线于点H.点F从点B出发沿方向以向点D匀速运动,同时,点E从点H出发沿方向以向点D匀速运动.设点E,F的运动时间为t(单位:s),且,过F作于点G,连结.(1)求证:四边形是矩形;(2)连结,点F,E在运动过程中,与是否能够全等?若能,求出此时t的值;若不能,请说明理由.(2022 凉山州)38.在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交CE的延长线于点F.(1)求证:四边形ADBF是菱形;(2)若AB=8,菱形ADBF的面积为40,求AC的长.(2022 威海)39.如图1,在正方形中,E,F,G,H分别为边上的点,,连接,交点为O.(1)如图2,连接,试判断四边形的形状,并证明你的结论;(2)将正方形沿线段剪开,再把得到的四个四边形按图3的方式拼接成一个四边形.若正方形的边长为,,则图3中阴影部分的面积为 .(2023 苏州)40.如图,是半圆的直径,点在半圆上,,连接,过点作,交的延长线于点.设的面积为的面积为,若,则的值为( ) A. B. C. D.(2023 金昌)41.如图,内接于,是的直径,点D是上一点,,则 .(2023 辽宁)42.如图,内接于是的直径,平分交于点E,过点E作,交的延长线于点F.(1)求证:与相切;(2)若,过点E作于点M,交于点G,交于点N,求的长.(2023 镇江)43.《九章算术》中记载:“今有勾八步,股一十五步.问勾中容圆,径几何?”译文:现在有一个直角三角形,短直角边的长为8步,长直角边的长为15步.问这个直角三角形内切圆的直径是多少?书中给出的算法译文如下:如图,根据短直角边的长和长直角边的长,求得斜边的长.用直角三角形三条边的长相加作为除数,用两条直角边相乘的积再乘2作为被除数,计算所得的商就是这个直角三角形内切圆的直径.根据以上方法,求得该直径等于 步.(注:“步”为长度单位) (2023 菏泽)44.如图,正八边形的边长为4,以顶点A为圆心,的长为半径画圆,则阴影部分的面积为 (结果保留). (2023 张家界)45.如图,在平面直角坐标系中,四边形是正方形,点A的坐标为,是以点B为圆心,为半径的圆弧;是以点O为圆心,为半径的圆弧,是以点C为圆心,为半径的圆弧,是以点A为圆心,为半径的圆弧,继续以点B,O,C,A为圆心按上述作法得到的曲线称为正方形的“渐开线”,则点的坐标是 . (2023 温州)46.图1是方格绘成的七巧板图案,每个小方格的边长为,现将它剪拼成一个“房子”造型(如图2),过左侧的三个端点作圆,并在圆内右侧部分留出矩形作为题字区域(点,,,在圆上,点,在上),形成一幅装饰画,则圆的半径为 .若点,,在同一直线上,,,则题字区域的面积为 . (2023 呼和浩特)47.圆锥的高为,母线长为3,沿一条母线将其侧面展开,展开图(扇形)的圆心角是 度,该圆锥的侧面积是 (结果用含的式子表示).(2023 长春)48.【感知】如图①,点A、B、P均在上,,则锐角的大小为__________度. 【探究】小明遇到这样一个问题:如图②,是等边三角形的外接圆,点P在上(点P不与点A、C重合),连结、、.求证:.小明发现,延长至点E,使,连结,通过证明,可推得是等边三角形,进而得证.下面是小明的部分证明过程:证明:延长至点E,使,连结,四边形是的内接四边形,.,.是等边三角形.,请你补全余下的证明过程.【应用】如图③,是的外接圆,,点P在上,且点P与点B在的两侧,连结、、.若,则的值为__________.试卷第1页,共3页试卷第1页,共3页参考答案:1.B【分析】由图求得的长度,结合直角三角形斜边上的中线等于斜边的一半即可求解.【详解】解:由图可知,在中,,点D为边的中点,,故选:B.【点睛】本题考查直角三角形斜边上的中线等于斜边的一半;解题的关键是熟练掌握该性质.2.3【分析】本题考查了直角三角形斜边上的中线,勾股定理,三角形中位线定理,熟练掌握直角三角形的性质是解题的关键.根据直角三角形斜边上的中线的性质得到,根据勾股定理得到,根据三角形中位线定理即可解题.【详解】解: 为斜边上的中线,,,,,,,E为的中点,,是的中位线,,故答案为:3.3.(1)见解析(2)【分析】(1)选择小星的说法,先证四边形是平行四边形,推出,再证明四边形是矩形,即可得出;选择小红的说法,根据四边形是矩形,可得,根据四边形是平行四边形,可得,即可证明;(2)根据,可得,再用勾股定理解即可.【详解】(1)证明:①选择小星的说法,证明如下:如图,连接, ,,四边形是平行四边形,,,,又,点D在的延长线上,,四边形是平行四边形,又,四边形是矩形,;②选择小红的说法,证明如下:如图,连接,, 由①可知四边形是矩形,,四边形是平行四边形,,.(2)解:如图,连接, ,,,,在中,,,解得即的长为.【点睛】本题考查平行四边形的判定与性质,矩形的判定与性质,勾股定理等,解题的关键是掌握平行四边形和矩形的判定方法.4.(1)见解析(2)12【分析】(1)根据平行四边形的性质,线段的中点平分线段,推出四边形,四边形均为平行四边形,进而得到:,即可得证;(2)连接,推出,,进而得到,求出,再根据,即可得解.【详解】(1)证明:∵,∴,∵点E、F、G、H分别是各边的中点,∴,∴四边形为平行四边形,同理可得:四边形为平行四边形,∴,∴四边形是平行四边形;(2)解:连接, ∵为的中点,∴,∴,∴,∴,同理可得:∴,∴,∵,∴.【点睛】本题考查平行四边形的判定和性质,三角形的中位线定理,相似三角形的判定和性质,熟练掌握平行四边形的性质,以及三角形的中位线定理,证明三角形相似,是解题的关键.5.【分析】连接,利用勾股定理列式求出,判断出四边形是矩形,根据矩形的对角线相等可得,再根据垂线段最短可得时,线段的值最小,然后根据直角三角形的面积公式列出方程求解即可.【详解】解:如图,连接, ∵,∴,∵于点D,于点E,,∴四边形是矩形,∴,由垂线段最短可得时,线段的值最小,此时线段的值最小,此时,,代入数据:,∴,∴的最小值为,故答案为:.【点睛】本题考查了矩形的判定与性质,垂线段最短的性质,勾股定理,判断出时,线段的值最小是解题的关键.6.(1)见解析(2)45【分析】(1)根据平行四边形的性质,得,根据平行线的性质,得,;再根据为线段的中点,全等三角形的判定,则,根据矩形的判定,即可;(2)过点作于点,根据勾股定理,求出的长,再根据四边形的面积等于,即可.【详解】(1)∵四边形是平行四边形,∴,∴,,∵为线段的中点,∴,∴,∴,∴四边形是平行四边形,∵,∴平行四边形是矩形.(2)解:过点作于点, ∵四边形是平行四边形,∴,∵四边形是矩形,∴,∴,∵,∴,∴四边形的面积等于,∵,,∵点是对角线的中心,∴,∴,∴平行四边形的面积为:.【点睛】本题考查矩形,平行四边形,全等三角形的知识,解题的关键是矩形的判定和性质,平行四边形的判定和性质,全等三角形的判定和性质.7.A【分析】先证明,四边形是菱形,如图,连接,,而点G是的中点,可得为菱形对角线的交点,,当时,最小,再利用等面积法求解最小值即可.【详解】解:∵,,∴是矩形,∴,∵,,∴四边形是菱形,如图,连接,,而点G是的中点, ∴为菱形对角线的交点,,∴当时,最小,∵即矩形的面积为12,,∴,,∴,∴,由菱形的性质可得:,∴,∴,即的最小值为1.故选A【点睛】本题考查的是平行四边形的性质,矩形的性质与判定,菱形的判定与性质,垂线段最短的含义,理解题意,利用数形结合的方法解题是关键.8.16【分析】连接EF交CD于O,先证明四边形CFDE为菱形,从而求出CO的长度,然后根据余弦定义求出CE即可得出答案.【详解】解:连接EF交CD于O,如图:∵DEAC,DFBC,∴四边形CEDF是平行四边形,∵CD是△ABC的角平分线,∴∠FCD=∠ECD,∵DEAC,∴∠FCD=∠CDE,∴∠ECD=∠CDE,∴CE=DE,∴四边形CEDF是菱形,∴CD⊥EF,∠ECD=∠ACB=30°,OC=CD=,在Rt△COE中,CE===4,∴四边形CEDF的周长是4CE=4×4=16,故答案为:16.【点睛】本题考查了菱形的判定与性质,余弦的定义等知识,解题的关键是判断出四边形CEDF为菱形.9.A【分析】根据正方形和矩形的性质定理解题即可.【详解】根据正方形特点由②可以推理出③,再由矩形的性质根据③推出①,故选A.【点睛】此题考查正方形和矩形的性质定理,难度一般.10.(1)见解析(2)当点E为线段AC的中点时,四边形EDFG的面积最小,最小值为4【分析】(1)连接CD,根据等腰直角三角形的性质可得出∠A=∠DCF=45°、AD=CD,结合AE=CF可证出△ADE≌△CDF(SAS),根据全等三角形的性质可得出DE=DF、∠ADE=∠CDF,通过角的计算可得出∠EDF=90°,再根据O为EF的中点、GO=OD,即可得出GD⊥EF,且GD=2OD=EF,由此即可证出四边形EDFG是正方形;(2)过点D作D⊥AC于,根据等腰直角三角形的性质可得出DE′的长度,从而得出2≤DE<2,再根据正方形的面积公式即可得出四边形EDFG的面积的最小值.【详解】(1)证明:连接CD,如图1所示.∵为等腰直角三角形,,D是AB的中点,∴在和中,∴ ,∴,∵,∴,∴为等腰直角三角形.∵O为EF的中点,,∴,且,∴四边形EDFG是正方形;(2)解:过点D作于,如图2所示.∵为等腰直角三角形,,∴点为AC的中点,,∴ (点E与点重合时取等号).∴∴当点E为线段AC的中点时,四边形EDFG的面积最小,该最小值为4.【点睛】本题考查了正方形的判定与性质、等腰直角三角形以及全等三角形的判定与性质,解题的关键是:(1)找出GD⊥EF且GD=EF;(2)根据正方形的面积公式找出.11.B【分析】由题意可知,,,主桥拱半径R,根据垂径定理,得到,再利用勾股定理列方程求解,即可得到答案.【详解】解:如图,由题意可知,,,主桥拱半径R,,是半径,且,,在中,,,解得:,故选B 【点睛】本题考查了垂径定理,勾股定理,利用直角三角形求解是解题关键.12.寸【分析】本题考查了垂径定理,勾股定理;连接,根据垂径定理,由可求出的长,设的半径为x,则,表示出,在中,根据勾股定理建立关于x的方程,求出方程的解即可.【详解】解:连接, ∵寸,∴寸,设的半径为x,则,∵,∴,在中,根据勾股定理得:,解得:,∴寸,故答案为:寸.13.B【分析】根据圆周角定理即可求解.【详解】解:∵,,∴,故选:B.【点睛】本题考查了圆周角定理,熟练掌握圆周角定理是解题的关键.14.35【分析】由题意易得,,则有,然后问题可求解.【详解】解:∵是的直径,∴,∵,,∴,∴,∵平分,∴;故答案为35.【点睛】本题主要考查圆周角的性质,熟练掌握直径所对圆周角为直角是解题的关键.15.C【分析】根据邻补角互补求出的度数,再根据圆内接四边形对角互补求出的度数,最后根据圆周角定理即可求出的度数.【详解】解:∵,∴,∵四边形内接于,∴,∴,∴,故选:C.【点睛】本题考查了圆内接四边形的性质、圆周角定理,熟练掌握这些定理和性质是解题的关键.16.120【分析】本题考查的是圆内接四边形的性质、等边三角形的判定和性质,掌握圆内接四边形的对角互补是解题的关键.连接,根据等边三角形的性质得到,再根据圆内接四边形的性质计算,得到答案.【详解】解:如图,连接,∵是的直径,,∴,∴为等边三角形,∴,∵四边形是的内接四边形,∴,∴,故答案为:120.17.C【分析】由是的直径,得出,进而根据同弧所对的圆周角相等,得出,进而即可求解.【详解】解:∵是的直径,∴,∵,∴,∴,故选:C.【点睛】本题考查了圆周角定理的推论,熟练掌握圆周角定理是解题的关键.18.D【分析】根据网格的特点作的垂直平分线,作的垂直平分线,设与相交于点O,连接,则点O是外接圆的圆心,先根据勾股定理的逆定理证明是直角三角形,从而可得,然后根据,进行计算即可解答.【详解】解:如图:作的垂直平分线,作的垂直平分线,设与相交于点O,连接,则点O是外接圆的圆心, 由题意得:,,,∴,∴是直角三角形,∴,∵,∴,故选:D.【点睛】本题考查了三角形的外接圆与外心,扇形面积的计算,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.19.B【分析】过点作于点,连接,判断出当点为的延长线与的交点时,点到直线的距离最大,由此即可得.【详解】解:如图,过点作于点,连接,,,当点为的延长线与的交点时,点到直线的距离最大,最大距离为,故选:B.【点睛】本题考查了圆的性质,正确判断出点到直线的距离最大时,点的位置是解题关键.20.2【分析】由的图像经过第一、二、四象限,可知,由过定点,可知当圆经过时,由于直线呈下降趋势,因此必然与圆有另一个交点,进而可得r的最小值是2.【详解】解:∵的图像经过第一、二、四象限,∴,随的增大而减小,∵过定点,∴当圆经过时,由于直线呈下降趋势,因此必然与圆有另一个交点,∴r的临界点是2,∴r的最小值是2,故答案为:2.【点睛】本题考查了一次函数图像,直线与圆的位置关系.解题的关键在于对知识的熟练掌握与灵活运用.21.(1)见解析;(2).【分析】(1)连接,由是直径,得,再证,从而有,于是即可证明结论成立;(2)由圆周角定理求得,在中,解直角三角形得,从而利用扇形及三角形的面积公式即可求解.【详解】(1)证明:连接, ∵是直径,∴,∵,,∴,∴,∴,∵是的半径,∴直线是的切线;(2)解:∵,,∴,∴,∵在中,,,∴,解得,∴.【点睛】本题主要考查了圆周角定理,切线的判定,扇形的面积公式以及解直角三角形,熟练掌握圆周角定理,切线的判定以及扇形的面积公式是解题的关键.22.(1)见解析(2)【分析】(1)连接OD,证明,推出,即可证明结论成立;(2)连接,在中,求得利用三角形函数的定义求得,,在中,利用勾股定理列式计算求得圆的半径,利用即可求解.【详解】(1)证明:连接OD, ∵,,又,,,,,,是的切线;(2)解:连接,设半径为r在中,,,又,,,,是的直径.,,∵,∴,又,,(负值已舍),,.【点睛】本题主要考查切线的性质和判定及扇形面积的计算,掌握切线问题中的辅助线的作法及扇形的面积公式是解题的关键.23.D【分析】如图,连接.利用切线长定理,圆周角定理,切线的性质解决问题即可.【详解】解:如图,连接.∵的内切圆与,,分别相切于点D,E,F,∴,∴,,∴,∴.故选:D.【点睛】本题考查三角形的内切圆与内心,圆周角定理,切线的性质等知识,解题的关键是掌握切线的性质,属于中考常考题型.24.A【分析】由题意可得,,,由面积关系可求解.【详解】解:如图,设内切圆与相切于点,点,点,连接,,,,,,切于,,,,同理:,,,,,故选A【点睛】本题考查了三角形的内切圆与内心,掌握内切圆的性质是解题的关键.25.C【分析】根据圆内接正多边形的性质可得,根据30度的作对的直角边是斜边的一半可得,根据三角形的面积公式即可求得正十二边形的面积,即可求解.【详解】解:圆的内接正十二边形的面积可以看成12个全等的等腰三角形组成,故等腰三角形的顶角为,设圆的半径为1,如图为其中一个等腰三角形,过点作交于点于点,∵,∴,则,故正十二边形的面积为,圆的面积为,用圆内接正十二边形面积近似估计的面积可得,故选:C.【点睛】本题考查了圆内接正多边形的性质,30度的作对的直角边是斜边的一半,三角形的面积公式,圆的面积公式等,正确求出正十二边形的面积是解题的关键.26.10【分析】先求出正五边形的外角为,则,进而得出,即可求解.【详解】解:根据题意可得:∵正五边形的一个外角,∴,∴,∴共需要正五边形的个数(个),故答案为:10. 【点睛】本题主要考查了圆的基本性质,正多边形的外角,解题的关键是掌握正多边形的外角的求法.27.C【分析】连接,根据圆内接四边形的性质得出,再根据三角形的内角和求出,进而得出,最后根据弧长公式即可求解.【详解】解:连接,∵四边形是的内接四边形,,∴,∵,∴,∴,∴,故选:C. 【点睛】本题主要考查了圆的内接四边形,圆周角定理,三角形的内角和,弧长公式,解题的关键是掌握圆的内接四边形对角互补,同弧所对的圆周角是圆心角的一半,三角形的内角和为,弧长.28.A【分析】由题得点的位置每4个一循环,经计算得出在第三象限,与,,,…符合同一规律,探究出,,,...的规律即可.【详解】解:由图得,,…点C的位置每4个一循环,,∴在第三象限,与,,,…符合规律,∴坐标为.故选:A.【点睛】本题考查了点的坐标的规律的探究,理解题意求出坐标是解题关键.29.D【分析】根据阴影部分面积为2个直径分别为的半圆的面积加上矩形的面积减去直径为矩形对角线长的圆的面积即可求解.【详解】解:如图所示,连接, ∵矩形内接于,∴∴阴影部分的面积是,故选:D.【点睛】本题考查了勾股定理,矩形的性质,熟练掌握勾股定理是解题的关键.30.C【分析】如图,连接,标注直线与圆的交点,由正六边形的性质可得:,,三点共线,为等边三角形,证明扇形与扇形重合,可得,从而可得答案.【详解】解:如图,连接,标注直线与圆的交点,由正六边形的性质可得:,,三点共线,为等边三角形, ∴,,∴,∴扇形与扇形重合,∴,∵为等边三角形,,过作于,∴,,,∴;故选C【点睛】本题考查的是正多边形与圆,扇形面积的计算,勾股定理的应用,熟记正六边形的性质是解本题的关键.31.B【分析】根据圆锥的底面圆周长求得半径为,根据母线长求得展开后的扇形的圆心角为,进而即可求解.【详解】解:∵这个圆锥的底面圆周长为,∴解得:∵解得:∴侧面展开图的圆心角为如图所示,即为所求,过点作,∵,,则∵,则∴,, 故选:B.【点睛】本题考查了圆锥侧面展开图的圆心角的度数,勾股定理解直角三角形,求得侧面展开图的圆心角为解题的关键.32.##【分析】由,,,,,,,,求解,,证明,可得,再分别计算圆锥的底面半径即可.【详解】解:∵在中,,,∴,,∵,,∴,,∴,∵,∴,∴,,解得:,,∴;故答案为:【点睛】本题考查的是平行四边形的性质,勾股定理的应用,锐角三角函数的应用,扇形的弧长的计算,圆锥的底面半径的计算,熟记圆锥的侧面展开图的扇形弧长等于底面圆的周长是解本题的关键.33.(1)1(2)见解析(3)【分析】(1)由垂径定理可得,结合可得,根据圆周角定理可得,进而可得,通过证明可得;(2)证明,根据对应边成比例可得,再根据,,可证;(3)设,,可证,,通过证明,进而可得,即,则.【详解】(1)解:直径垂直弦,,,,,,由圆周角定理得,,在和中,,,;(2)证明:是的直径,,在和中,,,,,由(1)知,,又,;(3)解:,证明如下:如图,连接, ,,直径垂直弦,,,又,,,设,,则, ,,又,,,,,,,,,在和中,, ,即,,.【点睛】本题考查垂径定理,圆周角定理,全等三角形的判定与性质,相似三角形的判定与性质,等腰三角形的性质等,难度较大,解题的关键是综合应用上述知识点,特别是第3问,需要大胆猜想,再逐步论证.34.(1)见解析;(2);(3)【分析】(1)连接OC,证明,即可得到结论;(2)连接AC,证明,从而可得,再代入求值即可;(2)连接,证明,从而可得,,求出扇形的面积即可得到阴影部分的面积.【详解】(1)证明:连接, ∵点C是的中点,,∴,∴,∵,∴,∴,∴,∵,∴半径,∴是切线;(2)连接, ∵是的直径,∴,∴,∵,∴,∴,∴,∴;(3)连接, ∵,∴,∵在中,,∴,∴,∴,∴,∵,∴是等边三角形,∴,∴,∴,∴,∴,【点睛】本题主要考查了相似三角形的性质及判定、切线的判定以及扇形面积的求法,熟练掌握切线的判定定理以及扇形面积的求法是解答此题的关键.35.C【分析】先论证四边形是平行四边形,再分别求出、、,继而用平行四边形的周长公式和面积公式求解即可.【详解】由平移的性质可知:,∴四边形是平行四边形,在中,,,,∴在中,,,点F是中点∴∵,点F是中点∴,,∴点D是的中点,∴∵D是的中点,点F是中点,∴是的中位线,∴∴四边形的周长为:,四边形的面积为:.故选:C.【点睛】本题考查平移的性质,平行四边形的判定与性质,直角三角形斜边上的中线等于斜边的一半,平行线分线段成比例,三角形中位线定理等知识,推导四边形是平行四边形和是的中位线是解题的关键.36.(1)见解析(2)【分析】(1)根据直角三角形的性质可得MC=MA=MB,根据外角的性质可得∠MEC=∠A+∠ACE,∠EMC=∠B+∠MCB,根据等角对等边即可得证;(2)根据CE=CM先求出CE的长,再解直角三角形即可求出FC的长.【详解】(1)证明:∵∠ACB=90°,点M为边AB的中点,∴MC=MA=MB,∴∠MCA=∠A,∠MCB=∠B,∵∠A=50°,∴∠MCA=50°,∠MCB=∠B=40°,∴∠EMC=∠MCB+∠B=80°,∵∠ACE=30°,∴∠MEC=∠A+∠ACE=80°,∴∠MEC=∠EMC,∴CE=CM;(2)解:∵AB=4,∴CE=CM=AB=2,∵EF⊥AC,∠ACE=30°,∴FC=CE cos30°=.【点睛】本题考查了直角三角形的性质,涉及三角形外角的性质,解直角三角形等,熟练掌握并灵活运用直角三角形的性质是解题的关键.37.(1)见解析(2)能,1【分析】(1)根据平行线的判定定理得到,由题意知,推出四边形是平行四边形,根据矩形的判定定理即可得到四边形是矩形;(2)根据菱形的性质得到,求得,解直角三角形即可得到结论.【详解】(1)证明:,∴,由题意知,∵在菱形中,,∴,∴,∴,∴四边形是平行四边形,∵,∴四边形是矩形;(2)解:与能够全等,理由:∵在菱形中,,∴,∴,∵,∴,∴,在中, ,,∵,∴,∴,∴当时,,∴,∴.【点睛】本题考查了矩形的判定和性质,菱形的性质,解直角三角形,熟练掌握矩形的判定定理是解题的关键.38.(1)见解析(2)10【分析】(1)证△AEF≌△DEC(AAS),得△AEF≌△DEC(AAS),再证四边形ADBF是平行四边形,然后由直角三角形斜边中线等于斜边的一半得证AD=BD=BC,即可由菱形判定定理得出结论;(2)连接DF交AB于O,由菱形面积公式S菱形ADBF==40,求得OD长,再由菱形性质得OA=OB,证得OD是三角形的中位线,由中位线性质求解可.【详解】(1)证明:∵E是AD的中点,∴AE=DE∵AFBC,∴∠AFE=∠DCE,在△AEF和△DEB中,,∴△AEF≌△DEC(AAS),∴AF=CD,∵D是BC的中点,∴CD=BD,∴AF=BD,∴四边形ADBF是平行四边形,∵∠BAC=90°,∵D是BC的中点,∴AD=BD=BC,∴四边形ADBF是菱形;(2)解:连接DF交AB于O,如图由(1)知:四边形ADBF是菱形,∴AB⊥DF,OA=AB=×8=4, S菱形ADBF==40,∴=40,∴DF=10,∴OD=5,∵四边形ADBF是菱形,∴O是AB的中点,∵D是BC的中点,∴OD是△BAC的中位线,∴AC=2OD=2×5=10.答:AC的长为10.【点睛】本题考查平行四边形的判定,菱形的判定与性质,三角形全等的判定与性质,直角三角形斜边中线的性质,三角形中位线的性质,熟练掌握菱形的判定与性质是解题的关键.39.(1)正方形,见解析(2)1【分析】(1)先证明全等,可得出四边形是菱形,再根据全等三角形角之间的关系,又可得出菱形的一个角是直角,那么就可得出四边形是正方形.(2)根据已知条件,可以知道重新拼成的四边形是正方形(因为正方形的对角线翻到了外边,做了新拼成的正方形的边长),利用勾股定理求出和的长,所的面积是10减去4个四边形的面积就是阴影部分的面积.【详解】(1)解:四边形是正方形.证明:∵四边形是正方形,∴,∵,∴,∴,,,全等,∴,∴四边形是菱形,∵,∴,∵,∴,∴,∴四边形是正方形.(2)解:∵,∴,∵由(1)知,四边形是正方形,∴,由勾股定理得:,∵,∴,故答案为:1.【点睛】本题考查正方形的性质,折叠的性质,全等三角形的判定和性质,以及菱形的判定的综合运用.40.A【分析】如图,过作于,证明,由,即,可得,证明,可得,设,则,可得,,再利用正切的定义可得答案.【详解】解:如图,过作于, ∵,∴,∵,即,∴,∵,∴,∴,即,设,则,∴,∴,∴,∵,∴,∴;故选A【点睛】本题考查的是圆周角定理的应用,勾股定理的应用,锐角三角函数的应用,作出合适的辅助线构建直角三角形是解本题的关键.41.35【分析】本题考查了圆周角定理,三角形内角和定理.根据圆周角定理得到,,再根据三角形的内角和定理即可得到结论.【详解】解:∵是的直径,∴,∵,∴,故答案为:.42.(1)见解析(2)【分析】(1)连接,利用直径所对的圆周角为直角,角平分线的定义,圆周角定理,垂直的定义,平行线的性质和圆的切线的判定定理解答即可;(2)连接,利用同圆的半径相等,等边三角形的判定与性质,圆周角定理求得的度数,再利用圆的弧长公式计算即可.【详解】(1)证明:连接,如图,∵是的直径,∴,∵平分交于点,∴,∴,∴,∵,∴.∵为的半径,∴与相切;(2)解:连接,∵,∴,∵,∴为等边三角形,∴,∴.∵,∴,∴,∴,∵是的直径,∴,∴的长.【点睛】本题主要考查了圆的有关性质,圆周角定理,角平分线的定义,垂直的定义,平行线的性质,圆的切线的判定定理,圆的弧长公式,熟练掌握圆的有关性质是解题的关键,连接经过切点的半径是解决此类问题常添加的辅助线.43.6【分析】根据勾股定理求出直角三角形的斜边,根据直角三角形的内切圆的半径的求法确定出内切圆半径,得到直径.【详解】解:根据勾股定理得:斜边为,则该直角三角形能容纳的圆形(内切圆)半径(步),即直径为6步,故答案为:6.【点睛】此题考查了三角形的内切圆与内心,掌握中,两直角边分别为、,斜边为,其内切圆半径是解题的关键.44.【分析】先利用正八边形求出圆心角的度数,再利用扇形的面积公式求解即可.【详解】解:由题意,,∴,故答案为:.【点睛】本题考查正多边形与圆,扇形的面积等知识,解题的关键是记住扇形的面积,正多边形的每个内角度数为.45.【分析】将四分之一圆孤对应的A点坐标看作顺时针旋转,再根据A、、、、的坐标找到规律即可.【详解】解:∵,且为A点绕B点顺时针旋转所得,∴,又∵为点绕O点顺时针旋转所得,∴,又∵为点绕C点顺时针旋转所得,∴,由此可得出规律:为绕B、O、C、A四点作为圆心依次循环顺时针旋转,且半径为1、2、3、、n,每次增加1,又∵,故为以点C为圆心,半径为2022的 顺时针旋转所得,∴,故答案为:.【点睛】本题考查了点坐标规律探索问题,通过点的变化,结合画弧的方法以及部分点的坐标探索出坐标变化的规律是解题的关键.46. 5【分析】根据不共线三点确定一个圆,根据对称性得出圆心的位置,进而垂径定理、勾股定理求得,连接,取的中点,连接,在中,根据勾股定理即可求解.【详解】解:如图所示,依题意,,∵过左侧的三个端点作圆,,又,∴在上,连接,则为半径,∵,在中,∴解得:;连接,取的中点,连接,交于点,连接,, ∵,∴,∴,∵点,,在同一直线上,∴,∴,又,∴∵,∴∴∵∴∴,∵,设,则在中,即整理得即解得:或∴题字区域的面积为故答案为:;.【点睛】本题考查了垂径定理,平行线分线段成比例,勾股定理,七巧板,熟练掌握以上知识是解题的关键.47. 120【分析】根据勾股定理,先求出圆锥底面半径,进而得出底面周长,即圆锥展开图的弧长,根据圆锥母线为圆锥的侧面展开图的半径,结合扇形弧长公式和面积公式,即可求解.【详解】解:根据勾股定理可得:圆锥底面半径,∴该圆锥底面周长,∵圆锥母线长为3,∴该圆锥的侧面展开图的半径为3,∴,解得:,即展开图(扇形)的圆心角是120度,圆锥的侧面积,故答案为:120,.【点睛】本题主要考查了求圆锥地面半径,扇形面积公式和弧长公式,解题的关键是掌握弧长,扇形面积.48.感知:;探究:见解析;应用:.【分析】感知:由圆周角定理即可求解;探究:延长至点E,使,连结,通过证明,可推得是等边三角形,进而得证;应用:延长至点E,使,连结,通过证明得,可推得是等腰直角三角形,结合与可得,代入即可求解.【详解】感知:由圆周角定理可得,故答案为:;探究:证明:延长至点E,使,连结,四边形是的内接四边形,.,.是等边三角形.,,∴,,,是等边三角形,,,即;应用:延长至点E,使,连结,四边形是的内接四边形,.,.,,∴,,,是等腰直角三角形,,,即,,,,,,,故答案为:.【点睛】本题考查了圆周角定理,圆内接四边形对角互补,邻补角,全等三角形的判定和性质,等边三角形、等腰直角三角形的判定和性质,勾股定理解直角三角形;解题的关键是做辅助线构造,进行转换求解.答案第1页,共2页答案第1页,共2页 展开更多...... 收起↑ 资源预览