2025届高中数学人教A版一轮复习1.2 常用逻辑用语(课件+学案)(4份打包)

资源下载
  1. 二一教育资源

2025届高中数学人教A版一轮复习1.2 常用逻辑用语(课件+学案)(4份打包)

资源简介

(共77张PPT)
第一章
§1.2 常用逻辑用语
1.理解充分条件、必要条件、充要条件的意义;理解判定定理与充分条件、性质定理与必要条件、数学定义与充要条件的关系.
2.理解全称量词和存在量词的意义,能正确对两种命题进行否定.
课标要求
内容索引
第一部分 落实主干知识
第二部分 探究核心题型
课时精练
第一部分
落实主干知识
1.充分条件、必要条件与充要条件的概念
若p q,则p是q的   条件,q是p的   条件
p是q的      条件 p q且q p
p是q的      条件 p q且q p
p是q的   条件 p q
p是q的         条件 p q且q p
充分
必要
充分不必要
必要不充分
充要
既不充分也不必要
2.全称量词与存在量词
(1)全称量词:短语“所有的”“任意一个”在逻辑中通常叫做全称量词,并用符号“  ”表示.
(2)存在量词:短语“存在一个”“至少有一个”在逻辑中通常叫做存在量词,并用符号“  ”表示.


3.全称量词命题和存在量词命题
名称 全称量词命题 存在量词命题
结构 对M中任意一个x,p(x)成立 存在M中的元素x,p(x)成立
简记 _____________ _____________
否定 x∈M,綈p(x) _______________
x∈M,p(x)
x∈M,p(x)
x∈M,綈p(x)
1.充分、必要条件与对应集合之间的关系
设A={x|p(x)},B={x|q(x)}.
(1)若p是q的充分条件,则A B;
(2)若p是q的充分不必要条件,则A?B;
(3)若p是q的必要不充分条件,则B?A;
(4)若p是q的充要条件,则A=B.
2.含有一个量词命题的否定规律是“改变量词,否定结论”.
3.命题p与p的否定的真假性相反.
1.判断下列结论是否正确.(请在括号中打“√”或“×”)
(1)当p是q的充分条件时,q是p的必要条件.(  )
(2)“三角形的内角和为180°”是全称量词命题.(  )
(3)“x>1”是“x>0”的充分不必要条件.(  )
(4)命题“ x∈R, ”是真命题.(  )
×



2.(必修第一册P30例4(1)改编)(多选)已知命题p: x∈R,x+2≤0,则下列说法正确的是
A.p是真命题 B.綈p: x∈R,x+2>0
C.綈p是真命题 D.綈p: x∈R,x+2>0
当x=0时,x+2≤0不成立,故p是假命题,故A错误;
由含量词命题的否定可知,p: x∈R,x+2≤0的否定为綈p: x∈R,x+2>0,故D正确,B错误;
綈p是真命题,故C正确.


3.(必修第一册P22T2(5)改编)设x>0,y>0,则“x2>y2”是“x>y”的
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件

4.已知A=(-∞,a],B=(-∞,3),且x∈A是x∈B的充分不必要条件,则a的取值范围为__________.
(-∞,3)
由题意知,x∈A x∈B,x∈B x∈A,即A?B,所以a<3.
返回
第二部分
探究核心题型
例1 (1)(2023·葫芦岛模拟)已知向量n为平面α的一个法向量,向量m为直线l的一个方向向量,则m∥n是l⊥α的
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
题型一 充分、必要条件的判定

当m∥n时,l⊥α,
当l⊥α时,m∥n,
综上所述,m∥n是l⊥α的充要条件.
(2)在等比数列{an}中,“a1>0,且公比q>1”是“{an}为递增数列”的
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件

当a1>0,且q>1时,有an+1-an=a1qn-a1qn-1=a1qn-1(q-1)>0,所以an+1>an(n∈N*),即{an}为递增数列;当{an}为递增数列时,即对一切n∈N*,有an+1>an恒成立,所以an+1-an=a1qn-1(q-1)>0,但a1<0且00,且q>1.则“a1>0,且公比q>1”是“{an}为递增数列”的充分不必要条件.
充分、必要条件的三种判定方法
(1)定义法:根据p q,q p是否成立进行判断.
(2)集合法:根据p,q成立对应的集合之间的包含关系进行判断.
(3)等价转化法:对所给题目的条件进行一系列的等价转化,直到转化成容易判断充分、必要条件是否成立为止.
跟踪训练1 (1)(2024·贵阳模拟)已知函数f(x)=cos(2x+φ),则“φ= ”是“f(x)是奇函数”的
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件

f(x)是奇函数等价于cos(-2x+φ)=-cos(2x+φ),
即cos(-2x+φ)=cos(π-2x-φ),
故-2x+φ=π-2x-φ+2kπ,k∈Z,
(2)当命题“若p,则q”为真命题,则“由p可以推出q”,即一旦p成立,q就成立,p是q成立的充分条件.也可以这样说,若q不成立,那么p一定不成立,q对p成立也是很必要的.王安石在《游褒禅山记》中也说过一段话:“世之奇伟、瑰怪,非常之观,常在于险远,而人之所罕至焉,故非有志者不能至也”.从数学逻辑角度分析,“有志”是“能至”的
A.充分条件 B.必要条件
C.充要条件 D.既不充分也不必要条件

因为“非有志者不能至也”即“有志”不成立时“能至”一定不成立,
所以“能至”是“有志”的充分条件,“有志”是“能至”的必要条件.
例2 在①“x∈A”是“x∈B”的充分条件;②“x∈ RA”是“x∈ RB”的必要条件这两个条件中任选一个,补充到本题第(2)问的横线处,并求解下列问题.
问题:已知集合A={x|a≤x≤a+2},B={x|(x+1)(x-3)<0}.
(1)当a=2时,求A∩B;
题型二 充分、必要条件的应用
由(x+1)(x-3)<0,
解得-1所以B={x|-1当a=2时,A={x|2≤x≤4},
所以A∩B={x|2≤x<3}.
(2)若________,求实数a的取值范围.
注:如果选择多个条件分别解答,按第一个解答计分.
选①“x∈A”是“x∈B”的充分条件,则A B,
选②“x∈ RA”是“x∈ RB”的必要条件,则A B,
充分不必要条件的等价形式
p是q的充分不必要条件,等价于綈q是綈p的充分不必要条件.
微拓展
典例 已知命题p:|x|≤1,q:x<a,若綈q是綈p的充分不必要条件,则实数a的取值范围为____________.
(1,+∞)
由|x|≤1,即-1≤x≤1,由题意知p是q的充分不必要条件,所以a>1.
求参数问题的解题策略
(1)把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(或不等式组)求解.
(2)要注意区间端点值的检验.
跟踪训练2 从①“充分不必要条件”,②“必要不充分条件”这两个条件中任选一个,补充到本题第(2)问的横线处,并解答下列问题:已知集
合A= ,B={x|x2-4x+4-m2≤0,m∈R}.
(1)若m=3,求A∪B;
依题意,得2-2≤2x≤25,
解得-2≤x≤5,即A={x|-2≤x≤5},
当m=3时,解不等式x2-4x-5≤0,
得-1≤x≤5,即B={x|-1≤x≤5},
所以A∪B={x|-2≤x≤5}.
(2)若存在正实数m,使得“x∈A”是“x∈B”成立的________,求正实数m的取值范围.
注:如果选择多个条件分别解答,按第一个解答计分.
选①,由(1)知,A={x|-2≤x≤5},m>0,
解不等式x2-4x+4-m2≤0,
得2-m≤x≤2+m,即B={x|2-m≤x≤2+m},
因为“x∈A”是“x∈B”成立的充分不必要条件,
则有A?B,
所以正实数m的取值范围是m≥4.
选②,由(1)知,A={x|-2≤x≤5},m>0,
解不等式x2-4x+4-m2≤0,
得2-m≤x≤2+m,即B={x|2-m≤x≤2+m},
因为“x∈A”是“x∈B”成立的必要不充分条件,
则有B?A,
于是得-2<2-m<2+m≤5或-2≤2-m<2+m<5,
解得0所以正实数m的取值范围是0命题点1 含量词的命题的否定
例3 (1)(多选)下列说法正确的是
A.“正方形是菱形”是全称量词命题
B. x∈R,exC.命题“ x∈R,x2-2x+3=0”的否定为“ x∈R,x2-2x+3≠0”
D.命题“ x>1,都有2x+1>5”的否定为“ x≤1,使得2x+1≤5”

题型三 全称量词与存在量词


对于A,“正方形是菱形”等价于“所有的正方形都是菱形”,是全称量词命题,故A正确;
对于B,当x=1时,e对于C,命题“ x∈R,x2-2x+3=0”的否定为“ x∈R,x2-2x+3≠0”,故C正确;
对于D,命题“ x>1,都有2x+1>5”的否定为“ x>1,使得2x+1≤5”,故D不正确.
(2)写出“所有实数都不是无理数”的否定形式:______________________.
至少有一个实数是无理数
命题点2 含量词的命题的真假判断
例4 (多选)下列命题中的真命题是
A. x∈R,2x-1>0
B. x∈N*,(x-1)2>0
C. x∈R,lg x<1
D. x∈R,tan x=2



指数函数的值域为(0,+∞),
所以 x∈R,2x-1>0,故A正确;
当x=1时,(x-1)2=0,所以 x∈N*,(x-1)2>0是假命题,故B错误;
当x=1时,lg x=0<1,所以 x∈R,lg x<1,故C正确;
函数y=tan x的值域为R,所以 x∈R,tan x=2,故D正确.
命题点3 含量词的命题的应用
例5 (1)若命题“ x∈[-1,2],x2+1≥m”是真命题,则实数m的取值范围是
A.(-∞,0] B.(-∞,1]
C.(-∞,2] D.(-∞,5]

由“ x∈[-1,2],x2+1≥m”是真命题可知,
不等式m≤x2+1,对 x∈[-1,2]恒成立,
因此只需m≤(x2+1)min,x∈[-1,2],
易知函数y=x2+1在x∈[-1,2]上的最小值为1,所以m≤1.
即实数m的取值范围是(-∞,1].
(2)(多选)命题p: x∈R,x2+2x+2-m<0为假命题,则实数m的取值可以是
A.-1 B.0 C.1 D.2



若命题p: x∈R,x2+2x+2-m<0为真命题,
则Δ=22-4(2-m)=4m-4>0,解得m>1,
所以当命题p: x∈R,x2+2x+2-m<0为假命题时,m≤1,
符合条件的为A,B,C选项.
含量词命题的解题策略
(1)判定全称量词命题是真命题,需证明都成立;要判定存在量词命题是真命题,只要找到一个成立即可.当一个命题的真假不易判定时,可以先判断其否定的真假.
(2)由命题真假求参数的范围,一是直接由命题的真假求参数的范围;二是可利用等价命题求参数的范围.
跟踪训练3 (1)下列命题为真命题的是
A.任意两个等腰三角形都相似
B.所有的梯形都是等腰梯形
C. x∈R,x+|x|≥0
D. x∈R,x2-x+1=0

对于A,任意两个等腰三角形不一定相似,故A错误;
对于B,所有的梯形都是等腰梯形是假命题,故B错误;
对于C,因为 x∈R,|x|≥-x,即x+|x|≥0,故C正确;
(2)(多选)已知命题p: x∈[0,1],不等式2x-2≥m2-3m恒成立,命题q: x∈[1,3],不等式x2-ax+4≤0,则下列说法正确的是
A.命题p的否定是“ x∈[0,1],不等式2x-2B.命题q的否定是“ x∈[1,3],不等式x2-ax+4≥0”
C.当命题p为真命题时,1≤m≤2
D.当命题q为假命题时,a<4



命题p的否定是“ x∈[0,1],不等式2x-2命题q的否定是“ x∈[1,3],不等式x2-ax+4>0”,故B错误;
若命题p为真命题,则当x∈[0,1]时,(2x-2)min≥m2-3m,即m2-3m+2≤0,解得1≤m≤2,故C正确;
返回
课时精练
一、单项选择题
1.命题“ x>0,sin x-x≤0”的否定为
A. x≤0,sin x-x>0 B. x>0,sin x-x≤0
C. x>0,sin x-x>0 D. x≤0,sin x-x>0

由题意知命题“ x>0,sin x-x≤0”为存在量词命题,
其否定为全称量词命题,即 x>0,sin x-x>0.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
2.下列命题中,p是q的充分条件的是
A.p:ab≠0,q:a≠0 B.p:a2+b2≥0,q:a≥0且b≥0
C.p:x2>1,q:x>1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
对于C,x2>1 x>1或x<-1 x>1,故p不是q的充分条件;
3.设λ∈R,则“λ=1”是“直线3x+(λ-1)y=1与直线λx+(1-λ)y=2平行”的
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
若直线3x+(λ-1)y=1与直线λx+(1-λ)y=2平行,
则3(1-λ)-λ(λ-1)=0,解得λ=1或λ=-3,
经检验,当λ=1或λ=-3时,两直线平行.
即“λ=1”是“直线3x+(λ-1)y=1与直线λx+(1-λ)y=2平行”的充分不必要条件.
4.已知p: >1,q:x>m,若p是q的充分条件,则实数m的取值范围是
A.[0,+∞) B.[1,+∞)
C.(-∞,0] D.(-∞,1]

记A={x|0m},
若p是q的充分条件,
则A是B的子集,所以m≤0,
所以实数m的取值范围是(-∞,0].
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
5.下列说法正确的是
A.“对任意一个无理数x,x2也是无理数”是真命题
B.“xy>0”是“x+y>0”的充要条件
C.命题“ x∈R,使得x2+1>0”的否定是“ x∈R,x2+1<0”
D.若“1 取值范围是[1,3]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
当x=-2,y=-1时,xy>0,但x+y=-3<0,不是充要条件,B错误;
命题“ x∈R,使得x2+1>0”的否定是“ x∈R,x2+1≤0”,C错误;
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
6.设p:关于x的不等式x2+ax+1>0对一切x∈R恒成立,q:对数函数y=log(4-3a)x在(0,+∞)上单调递减,那么p是q的
A.充分不必要条件 B.充要条件
C.必要不充分条件 D.既不充分也不必要条件

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
若关于x的不等式x2+ax+1>0对一切x∈R恒成立,则Δ=a2-4<0,即-21
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
7.已知命题p: x∈R,ax2+2ax-4≥0为假命题,则实数a的取值范围是
A.-4C.-4命题p: x∈R,ax2+2ax-4≥0为假命题,即命题綈p: x∈R,ax2+2ax-4<0为真命题,
当a=0时,-4<0恒成立,符合题意;
当a≠0时,则a<0且Δ=(2a)2+16a<0,即-4综上可知,-41
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

8.(2023·新高考全国Ⅰ)记Sn为数列{an}的前n项和,设甲:{an}为等差数列;乙: 为等差数列,则
A.甲是乙的充分条件但不是必要条件
B.甲是乙的必要条件但不是充分条件
C.甲是乙的充要条件
D.甲既不是乙的充分条件也不是乙的必要条件

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
方法一 甲:{an}为等差数列,设其首项为a1,公差为d,
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
则Sn=nan+1-t·n(n+1),
有Sn-1=(n-1)an-t·n(n-1),n≥2,
两式相减得an=nan+1-(n-1)an-2tn,
即an+1-an=2t,对n=1也成立,
因此{an}为等差数列,则甲是乙的必要条件,
所以甲是乙的充要条件.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
方法二 甲:{an}为等差数列,设数列{an}的首项为a1,公差为d,
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
即Sn=nS1+n(n-1)D,
当n≥2时,Sn-1=(n-1)S1+(n-1)(n-2)D,
上边两式相减得Sn-Sn-1=S1+2(n-1)D,
所以an=a1+2(n-1)D,
当n=1时,上式成立,
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
又an+1-an=a1+2nD-[a1+2(n-1)D]=2D为常数,
因此{an}为等差数列,则甲是乙的必要条件,
所以甲是乙的充要条件.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
二、多项选择题
9.下列命题是真命题的是
A. a∈R,使函数y=2x+a·2-x在R上为偶函数
B. x∈R,函数y=sin x+cos x+ 的值恒为正数
C. x∈R,2x<x2
D. x∈(0,+∞), >
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16


1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
当a=1时,y=2x+2-x为偶函数,故A为真命题;
当x∈(2,4)时,2x<x2,故C为真命题;
当x= 时, ∈(0,1), =1,∴ ,故D为假命题.
10.下列命题中正确的是
A.“A∪B=A”是“B A”的充分不必要条件
B.“方程x2-(m-3)x+m=0有一正一负根”的充要条件是“m<0”
C.“幂函数y= 为反比例函数”的充要条件是“m=0”
D.“函数f(x)=-x2+2mx在区间[1,3]上不单调”的一个必要不充分条件是
 “1≤m≤3”
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16



对于A,由A∪B=A可得B A,故充分性成立,
由B A可得A∪B=A,故必要性成立,所以“A∪B=A”是“B A”的充要条件,故A错误;
对于B,方程x2-(m-3)x+m=0有一正一负根,设为x1,x2,
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
当m<0时,Δ=(m-3)2-4m>0,x1x2=m<0,则方程x2-(m-3)x+m=0有一正一负根,满足充分性,
所以“方程x2-(m-3)x+m=0有一正一负根”的充要条件是“m<0”,故B正确;
对于C,若幂函数y=   为反比例函数,
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
当m=0时,函数y=x-1为幂函数,也为反比例函数,满足充分性,
所以“幂函数y= 为反比例函数”的充要条件是“m=0”,故C正确;
对于D,若函数f(x)=-x2+2mx在区间[1,3]上不单调,则1所以“函数f(x)=-x2+2mx在区间[1,3]上不单调”的一个必要不充分条件是“1≤m≤3”,故D正确.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
三、填空题
11.在△ABC中,“∠A=∠B”是“sin A=sin B”的________条件.(填“充分不必要”“必要不充分”“充要”或“既不充分也不必要”)
充要
在△ABC中,∠A=∠B a=b sin A=sin B,
故“∠A=∠B”是“sin A=sin B”的充要条件.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
12.为了证明“所有的素数都是奇数”是假命题,只要证明:
______________________.
存在一个素数不是奇数
因为命题“所有的素数都是奇数”是假命题,则命题“存在一个素数不是奇数”为真命题,所以为了证明“所有的素数都是奇数”是假命题,只要证明存在一个素数不是奇数.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
13.设p:4x-3<1,q:x-2a-1<0,若p是q的充分不必要条件,则实数a的取值范围是___________.
由4x-3<1,解得x<1,即p:x<1,记A={x|x<1};
由x-(2a+1)<0,解得x<2a+1,
即q: x<2a+1,记B={x|x<2a+1},
因为p是q的充分不必要条件,所以A?B,即2a+1>1,
解得a>0,
所以a的取值范围是(0,+∞).
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
(0,+∞)
14.《墨子·经说上》上说:“小故,有之不必然,无之必不然,体也,若有端,大故,有之必然,若见之成见也.”这一段文字蕴含着十分丰富的逻辑思想,那么文中的“小故”指的是逻辑中的__________________.
(填“充分不必要条件”“必要不充分条件”“充要条件”或“既不充分也不必要条件”)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
必要不充分条件
由“小故,有之不必然,无之必不然”,
知“小故”只是构成某一结果的几个条件中的一个或一部分条件,
故“小故”是逻辑中的必要不充分条件.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
15.已知等比数列{an}的首项为1,则“a2 021A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

设等比数列的公比为q,
若a2 021则a2 021-a2 024<0,即a2 021(1-q3)<0.
因为a1=1>0,所以a2 021=a1q2 020>0,所以q3>1,所以q>1;
若a2 023因为a1=1>0,所以a2 023=a1q2 022>0,
所以q2-1>0,解得q>1或q<-1.
所以“a2 0211
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
16.已知函数f(x)=x+ ,g(x)=2x+a,若 x1∈ , x2∈[2,3],使得
f(x1)≤g(x2),则实数a的取值范围是___________.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
依题意知f(x)max≤g(x)max.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
又g(x)=2x+a在[2,3]上单调递增,
返回§1.2 常用逻辑用语
课标要求 1.理解充分条件、必要条件、充要条件的意义;理解判定定理与充分条件、性质定理与必要条件、数学定义与充要条件的关系.2.理解全称量词和存在量词的意义,能正确对两种命题进行否定.
知识梳理
1.充分条件、必要条件与充要条件的概念
若p q,则p是q的充分条件,q是p的必要条件
p是q的充分不必要条件 p q且q p
p是q的必要不充分条件 p q且q p
p是q的充要条件 p q
p是q的既不充分也不必要条件 p q且q p
2.全称量词与存在量词
(1)全称量词:短语“所有的”“任意一个”在逻辑中通常叫做全称量词,并用符号“ ”表示.
(2)存在量词:短语“存在一个”“至少有一个”在逻辑中通常叫做存在量词,并用符号“ ”表示.
3.全称量词命题和存在量词命题
名称 全称量词命题 存在量词命题
结构 对M中任意一个x,p(x)成立 存在M中的元素x,p(x)成立
简记 x∈M,p(x) x∈M,p(x)
否定 x∈M,綈p(x) x∈M,綈p(x)
常用结论
1.充分、必要条件与对应集合之间的关系
设A={x|p(x)},B={x|q(x)}.
(1)若p是q的充分条件,则A B;
(2)若p是q的充分不必要条件,则A?B;
(3)若p是q的必要不充分条件,则B?A;
(4)若p是q的充要条件,则A=B.
2.含有一个量词命题的否定规律是“改变量词,否定结论”.
3.命题p与p的否定的真假性相反.
自主诊断
1.判断下列结论是否正确.(请在括号中打“√”或“×”)
(1)当p是q的充分条件时,q是p的必要条件.( √ )
(2)“三角形的内角和为180°”是全称量词命题.( √ )
(3)“x>1”是“x>0”的充分不必要条件.( √ )
(4)命题“ x∈R,sin2+cos2=”是真命题.( × )
2.(必修第一册P30例4(1)改编)(多选)已知命题p: x∈R,x+2≤0,则下列说法正确的是(  )
A.p是真命题
B.綈p: x∈R,x+2>0
C.綈p是真命题
D.綈p: x∈R,x+2>0
答案 CD
解析 当x=0时,x+2≤0不成立,故p是假命题,故A错误;由含量词命题的否定可知,p: x∈R,x+2≤0的否定为綈p: x∈R,x+2>0,故D正确,B错误;綈p是真命题,故C正确.
3.(必修第一册P22T2(5)改编)设x>0,y>0,则“x2>y2”是“x>y”的(  )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
答案 C
4.已知A=(-∞,a],B=(-∞,3),且x∈A是x∈B的充分不必要条件,则a的取值范围为________.
答案 (-∞,3)
解析 由题意知,x∈A x∈B,x∈B x∈A,即A?B,所以a<3.
题型一 充分、必要条件的判定
例1 (1)(2023·葫芦岛模拟)已知向量n为平面α的一个法向量,向量m为直线l的一个方向向量,则m∥n是l⊥α的(  )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
答案 C
解析 当m∥n时,l⊥α,
当l⊥α时,m∥n,
综上所述,m∥n是l⊥α的充要条件.
(2)在等比数列{an}中,“a1>0,且公比q>1”是“{an}为递增数列”的(  )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
答案 A
解析 当a1>0,且q>1时,有an+1-an=a1qn-a1qn-1=a1qn-1(q-1)>0,所以an+1>an(n∈N*),即{an}为递增数列;当{an}为递增数列时,即对一切n∈N*,有an+1>an恒成立,所以an+1-an=a1qn-1(q-1)>0,但a1<0且00,且q>1.则“a1>0,且公比q>1”是“{an}为递增数列”的充分不必要条件.
思维升华 充分、必要条件的三种判定方法
(1)定义法:根据p q,q p是否成立进行判断.
(2)集合法:根据p,q成立对应的集合之间的包含关系进行判断.
(3)等价转化法:对所给题目的条件进行一系列的等价转化,直到转化成容易判断充分、必要条件是否成立为止.
跟踪训练1 (1)(2024·贵阳模拟)已知函数f(x)=cos(2x+φ),则“φ=”是“f(x)是奇函数”的(  )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
答案 A
解析 f(x)是奇函数等价于cos(-2x+φ)=-cos(2x+φ),
即cos(-2x+φ)=cos(π-2x-φ),
故-2x+φ=π-2x-φ+2kπ,k∈Z,
所以φ=+kπ,k∈Z.
则“φ=”是“f(x)是奇函数”的充分不必要条件.
(2)当命题“若p,则q”为真命题,则“由p可以推出q”,即一旦p成立,q就成立,p是q成立的充分条件.也可以这样说,若q不成立,那么p一定不成立,q对p成立也是很必要的.王安石在《游褒禅山记》中也说过一段话:“世之奇伟、瑰怪,非常之观,常在于险远,而人之所罕至焉,故非有志者不能至也”.从数学逻辑角度分析,“有志”是“能至”的(  )
A.充分条件
B.必要条件
C.充要条件
D.既不充分也不必要条件
答案 B
解析 因为“非有志者不能至也”即“有志”不成立时“能至”一定不成立,
所以“能至”是“有志”的充分条件,“有志”是“能至”的必要条件.
题型二 充分、必要条件的应用
例2 在①“x∈A”是“x∈B”的充分条件;②“x∈ RA”是“x∈ RB”的必要条件这两个条件中任选一个,补充到本题第(2)问的横线处,并求解下列问题.
问题:已知集合A={x|a≤x≤a+2},B={x|(x+1)(x-3)<0}.
(1)当a=2时,求A∩B;
(2)若________,求实数a的取值范围.
注:如果选择多个条件分别解答,按第一个解答计分.
解 (1)由(x+1)(x-3)<0,
解得-1所以B={x|-1当a=2时,A={x|2≤x≤4},
所以A∩B={x|2≤x<3}.
(2)选①“x∈A”是“x∈B”的充分条件,则A B,所以解得-1选②“x∈ RA”是“x∈ RB”的必要条件,则A B,所以解得-1充分不必要条件的等价形式
p是q的充分不必要条件,等价于綈q是綈p的充分不必要条件.
典例 已知命题p:|x|≤1,q:x<a,若綈q是綈p的充分不必要条件,则实数a的取值范围为________________________________________________________________________.
答案 (1,+∞)
解析 由|x|≤1,即-1≤x≤1,由题意知p是q的充分不必要条件,所以a>1.
思维升华 求参数问题的解题策略
(1)把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(或不等式组)求解.
(2)要注意区间端点值的检验.
跟踪训练2 从①“充分不必要条件”,②“必要不充分条件”这两个条件中任选一个,补充到本题第(2)问的横线处,并解答下列问题:已知集合A=,B={x|x2-4x+4-m2≤0,m∈R}.
(1)若m=3,求A∪B;
(2)若存在正实数m,使得“x∈A”是“x∈B”成立的________,求正实数m的取值范围.
注:如果选择多个条件分别解答,按第一个解答计分.
解 (1)依题意,得2-2≤2x≤25,
解得-2≤x≤5,即A={x|-2≤x≤5},
当m=3时,解不等式x2-4x-5≤0,
得-1≤x≤5,即B={x|-1≤x≤5},
所以A∪B={x|-2≤x≤5}.
(2)选①,由(1)知,A={x|-2≤x≤5},m>0,
解不等式x2-4x+4-m2≤0,
得2-m≤x≤2+m,即B={x|2-m≤x≤2+m},
因为“x∈A”是“x∈B”成立的充分不必要条件,
则有A?B,
于是得或解得m>4或m≥4,即有m≥4,
所以正实数m的取值范围是m≥4.
选②,由(1)知,A={x|-2≤x≤5},m>0,
解不等式x2-4x+4-m2≤0,
得2-m≤x≤2+m,即B={x|2-m≤x≤2+m},
因为“x∈A”是“x∈B”成立的必要不充分条件,
则有B?A,
于是得-2<2-m<2+m≤5或-2≤2-m<2+m<5,
解得0所以正实数m的取值范围是0题型三 全称量词与存在量词
命题点1 含量词的命题的否定
例3 (1)(多选)下列说法正确的是(  )
A.“正方形是菱形”是全称量词命题
B. x∈R,exC.命题“ x∈R,x2-2x+3=0”的否定为“ x∈R,x2-2x+3≠0”
D.命题“ x>1,都有2x+1>5”的否定为“ x≤1,使得2x+1≤5”
答案 ABC
解析 对于A,“正方形是菱形”等价于“所有的正方形都是菱形”,是全称量词命题,故A正确;
对于B,当x=1时,e对于C,命题“ x∈R,x2-2x+3=0”的否定为“ x∈R,x2-2x+3≠0”,故C正确;
对于D,命题“ x>1,都有2x+1>5”的否定为“ x>1,使得2x+1≤5”,故D不正确.
(2)写出“所有实数都不是无理数”的否定形式:________________________.
答案 至少有一个实数是无理数
命题点2 含量词的命题的真假判断
例4 (多选)下列命题中的真命题是(  )
A. x∈R,2x-1>0
B. x∈N*,(x-1)2>0
C. x∈R,lg x<1
D. x∈R,tan x=2
答案 ACD
解析 指数函数的值域为(0,+∞),
所以 x∈R,2x-1>0,故A正确;
当x=1时,(x-1)2=0,所以 x∈N*,(x-1)2>0是假命题,故B错误;
当x=1时,lg x=0<1,所以 x∈R,lg x<1,故C正确;
函数y=tan x的值域为R,所以 x∈R,tan x=2,故D正确.
命题点3 含量词的命题的应用
例5 (1)若命题“ x∈[-1,2],x2+1≥m”是真命题,则实数m的取值范围是(  )
A.(-∞,0] B.(-∞,1]
C.(-∞,2] D.(-∞,5]
答案 B
解析 由“ x∈[-1,2],x2+1≥m”是真命题可知,
不等式m≤x2+1,对 x∈[-1,2]恒成立,
因此只需m≤(x2+1)min,x∈[-1,2],
易知函数y=x2+1在x∈[-1,2]上的最小值为1,所以m≤1.
即实数m的取值范围是(-∞,1].
(2)(多选)命题p: x∈R,x2+2x+2-m<0为假命题,则实数m的取值可以是(  )
A.-1 B.0 C.1 D.2
答案 ABC
解析 若命题p: x∈R,x2+2x+2-m<0为真命题,
则Δ=22-4(2-m)=4m-4>0,解得m>1,
所以当命题p: x∈R,x2+2x+2-m<0为假命题时,m≤1,
符合条件的为A,B,C选项.
思维升华 含量词命题的解题策略
(1)判定全称量词命题是真命题,需证明都成立;要判定存在量词命题是真命题,只要找到一个成立即可.当一个命题的真假不易判定时,可以先判断其否定的真假.
(2)由命题真假求参数的范围,一是直接由命题的真假求参数的范围;二是可利用等价命题求参数的范围.
跟踪训练3 (1)下列命题为真命题的是(  )
A.任意两个等腰三角形都相似
B.所有的梯形都是等腰梯形
C. x∈R,x+|x|≥0
D. x∈R,x2-x+1=0
答案 C
解析 对于A,任意两个等腰三角形不一定相似,故A错误;对于B,所有的梯形都是等腰梯形是假命题,故B错误;对于C,因为 x∈R,|x|≥-x,即x+|x|≥0,故C正确;对于D,因为 x∈R,x2-x+1=2+≥>0,故D错误.
(2)(多选)已知命题p: x∈[0,1],不等式2x-2≥m2-3m恒成立,命题q: x∈[1,3],不等式x2-ax+4≤0,则下列说法正确的是(  )
A.命题p的否定是“ x∈[0,1],不等式2x-2B.命题q的否定是“ x∈[1,3],不等式x2-ax+4≥0”
C.当命题p为真命题时,1≤m≤2
D.当命题q为假命题时,a<4
答案 ACD
解析 命题p的否定是“ x∈[0,1],不等式2x-20”,故B错误;若命题p为真命题,则当x∈[0,1]时,(2x-2)min≥m2-3m,即m2-3m+2≤0,解得1≤m≤2,故C正确;若命题q为假命题,则 x∈[1,3],不等式x2-ax+4>0为真命题,即a课时精练
一、单项选择题
1.命题“ x>0,sin x-x≤0”的否定为(  )
A. x≤0,sin x-x>0
B. x>0,sin x-x≤0
C. x>0,sin x-x>0
D. x≤0,sin x-x>0
答案 C
解析 由题意知命题“ x>0,sin x-x≤0”为存在量词命题,
其否定为全称量词命题,即 x>0,sin x-x>0.
2.下列命题中,p是q的充分条件的是(  )
A.p:ab≠0,q:a≠0
B.p:a2+b2≥0,q:a≥0且b≥0
C.p:x2>1,q:x>1
D.p:a>b,q:>
答案 A
解析 对于A,ab≠0 a≠0,故p是q的充分条件;对于B,a2+b2≥0 a≥0且b≥0,故p不是q的充分条件;对于C,x2>1 x>1或x<-1 x>1,故p不是q的充分条件;对于D,当a>b时,若b,故p不是q的充分条件.
3.设λ∈R,则“λ=1”是“直线3x+(λ-1)y=1与直线λx+(1-λ)y=2平行”的(  )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
答案 A
解析 若直线3x+(λ-1)y=1与直线λx+(1-λ)y=2平行,
则3(1-λ)-λ(λ-1)=0,解得λ=1或λ=-3,
经检验,当λ=1或λ=-3时,两直线平行.
即“λ=1”是“直线3x+(λ-1)y=1与直线λx+(1-λ)y=2平行”的充分不必要条件.
4.已知p:>1,q:x>m,若p是q的充分条件,则实数m的取值范围是(  )
A.[0,+∞) B.[1,+∞)
C.(-∞,0] D.(-∞,1]
答案 C
解析 由>1可得x(x-1)<0,解得0记A={x|0m},
若p是q的充分条件,
则A是B的子集,所以m≤0,
所以实数m的取值范围是(-∞,0].
5.下列说法正确的是(  )
A.“对任意一个无理数x,x2也是无理数”是真命题
B.“xy>0”是“x+y>0”的充要条件
C.命题“ x∈R,使得x2+1>0”的否定是“ x∈R,x2+1<0”
D.若“1答案 D
解析 是无理数,x2=2是有理数,A错误;
当x=-2,y=-1时,xy>0,但x+y=-3<0,不是充要条件,B错误;
命题“ x∈R,使得x2+1>0”的否定是“ x∈R,x2+1≤0”,C错误;
“16.设p:关于x的不等式x2+ax+1>0对一切x∈R恒成立,q:对数函数y=log(4-3a)x在(0,+∞)上单调递减,那么p是q的(  )
A.充分不必要条件
B.充要条件
C.必要不充分条件
D.既不充分也不必要条件
答案 C
解析 若关于x的不等式x2+ax+1>0对一切x∈R恒成立,则Δ=a2-4<0,即-27.已知命题p: x∈R,ax2+2ax-4≥0为假命题,则实数a的取值范围是(  )
A.-4C.-4答案 C
解析 命题p: x∈R,ax2+2ax-4≥0为假命题,即命题綈p: x∈R,ax2+2ax-4<0为真命题,
当a=0时,-4<0恒成立,符合题意;
当a≠0时,则a<0且Δ=(2a)2+16a<0,即-4综上可知,-48.(2023·新高考全国Ⅰ)记Sn为数列{an}的前n项和,设甲:{an}为等差数列;乙:为等差数列,则(  )
A.甲是乙的充分条件但不是必要条件
B.甲是乙的必要条件但不是充分条件
C.甲是乙的充要条件
D.甲既不是乙的充分条件也不是乙的必要条件
答案 C
解析 方法一 甲:{an}为等差数列,设其首项为a1,公差为d,
则Sn=na1+d,=a1+d=n+a1-,-=,
因此为等差数列,则甲是乙的充分条件;
反之,乙:为等差数列,
即-==为常数,设为t,
即=t,
则Sn=nan+1-t·n(n+1),
有Sn-1=(n-1)an-t·n(n-1),n≥2,
两式相减得an=nan+1-(n-1)an-2tn,
即an+1-an=2t,对n=1也成立,
因此{an}为等差数列,则甲是乙的必要条件,
所以甲是乙的充要条件.
方法二 甲:{an}为等差数列,设数列{an}的首项为a1,公差为d,
即Sn=na1+d,
则=a1+d=n+a1-,
因此为等差数列,即甲是乙的充分条件;
反之,乙:为等差数列,
设数列的公差为D,
则-=D,=S1+(n-1)D,
即Sn=nS1+n(n-1)D,
当n≥2时,Sn-1=(n-1)S1+(n-1)(n-2)D,
上边两式相减得Sn-Sn-1=S1+2(n-1)D,
所以an=a1+2(n-1)D,
当n=1时,上式成立,
又an+1-an=a1+2nD-[a1+2(n-1)D]=2D为常数,
因此{an}为等差数列,则甲是乙的必要条件,
所以甲是乙的充要条件.
二、多项选择题
9.下列命题是真命题的是(  )
A. a∈R,使函数y=2x+a·2-x在R上为偶函数
B. x∈R,函数y=sin x+cos x+的值恒为正数
C. x∈R,2x<x2
D. x∈(0,+∞),x>
答案 AC
解析 当a=1时,y=2x+2-x为偶函数,故A为真命题;y=sin x+cos x+=sin+,当sin=-1时,y=0,故B为假命题;当x∈(2,4)时,2x<x2,故C为真命题;当x=时,∈(0,1),=1,∴,故D为假命题.
10.下列命题中正确的是(  )
A.“A∪B=A”是“B A”的充分不必要条件
B.“方程x2-(m-3)x+m=0有一正一负根”的充要条件是“m<0”
C.“幂函数y=为反比例函数”的充要条件是“m=0”
D.“函数f(x)=-x2+2mx在区间[1,3]上不单调”的一个必要不充分条件是“1≤m≤3”
答案 BCD
解析 对于A,由A∪B=A可得B A,故充分性成立,
由B A可得A∪B=A,故必要性成立,所以“A∪B=A”是“B A”的充要条件,故A错误;
对于B,方程x2-(m-3)x+m=0有一正一负根,设为x1,x2,
则解得m<0,满足必要性,
当m<0时,Δ=(m-3)2-4m>0,x1x2=m<0,则方程x2-(m-3)x+m=0有一正一负根,满足充分性,
所以“方程x2-(m-3)x+m=0有一正一负根”的充要条件是“m<0”,故B正确;
对于C,若幂函数y=为反比例函数,则解得m=0,满足必要性,
当m=0时,函数y=x-1为幂函数,也为反比例函数,满足充分性,
所以“幂函数y=为反比例函数”的充要条件是“m=0”,故C正确;
对于D,若函数f(x)=-x2+2mx在区间[1,3]上不单调,则1所以“函数f(x)=-x2+2mx在区间[1,3]上不单调”的一个必要不充分条件是“1≤m≤3”,故D正确.
三、填空题
11.在△ABC中,“∠A=∠B”是“sin A=sin B”的________条件.(填“充分不必要”“必要不充分”“充要”或“既不充分也不必要”)
答案 充要
解析 在△ABC中,∠A=∠B a=b sin A=sin B,
故“∠A=∠B”是“sin A=sin B”的充要条件.
12.为了证明“所有的素数都是奇数”是假命题,只要证明:________________.
答案 存在一个素数不是奇数
解析 因为命题“所有的素数都是奇数”是假命题,则命题“存在一个素数不是奇数”为真命题,所以为了证明“所有的素数都是奇数”是假命题,只要证明存在一个素数不是奇数.
13.设p:4x-3<1,q:x-2a-1<0,若p是q的充分不必要条件,则实数a的取值范围是________.
答案 (0,+∞)
解析 由4x-3<1,解得x<1,即p:x<1,记A={x|x<1};
由x-(2a+1)<0,解得x<2a+1,
即q: x<2a+1,记B={x|x<2a+1},
因为p是q的充分不必要条件,所以A?B,即2a+1>1,
解得a>0,
所以a的取值范围是(0,+∞).
14.《墨子·经说上》上说:“小故,有之不必然,无之必不然,体也,若有端,大故,有之必然,若见之成见也.”这一段文字蕴含着十分丰富的逻辑思想,那么文中的“小故”指的是逻辑中的________________.(填“充分不必要条件”“必要不充分条件”“充要条件”或“既不充分也不必要条件”)
答案 必要不充分条件
解析 由“小故,有之不必然,无之必不然”,
知“小故”只是构成某一结果的几个条件中的一个或一部分条件,
故“小故”是逻辑中的必要不充分条件.
15.已知等比数列{an}的首项为1,则“a2 021A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
答案 A
解析 设等比数列的公比为q,
若a2 021则a2 021-a2 024<0,即a2 021(1-q3)<0.
因为a1=1>0,所以a2 021=a1q2 020>0,
所以q3>1,所以q>1;
若a2 023即a2 023(1-q2)<0.
因为a1=1>0,所以a2 023=a1q2 022>0,
所以q2-1>0,解得q>1或q<-1.
所以“a2 02116.已知函数f(x)=x+,g(x)=2x+a,若 x1∈, x2∈[2,3],使得f(x1)≤g(x2),则实数a的取值范围是________.
答案 
解析 依题意知f(x)max≤g(x)max.
∵f(x)=x+在上单调递减,
∴f(x)max=f =.
又g(x)=2x+a在[2,3]上单调递增,
∴g(x)max=8+a,因此≤8+a,则a≥.一、单项选择题
1.命题“ x>0,sin x-x≤0”的否定为(  )
A. x≤0,sin x-x>0
B. x>0,sin x-x≤0
C. x>0,sin x-x>0
D. x≤0,sin x-x>0
2.下列命题中,p是q的充分条件的是(  )
A.p:ab≠0,q:a≠0
B.p:a2+b2≥0,q:a≥0且b≥0
C.p:x2>1,q:x>1
D.p:a>b,q:>
3.设λ∈R,则“λ=1”是“直线3x+(λ-1)y=1与直线λx+(1-λ)y=2平行”的(  )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
4.已知p:>1,q:x>m,若p是q的充分条件,则实数m的取值范围是(  )
A.[0,+∞) B.[1,+∞)
C.(-∞,0] D.(-∞,1]
5.下列说法正确的是(  )
A.“对任意一个无理数x,x2也是无理数”是真命题
B.“xy>0”是“x+y>0”的充要条件
C.命题“ x∈R,使得x2+1>0”的否定是“ x∈R,x2+1<0”
D.若“16.设p:关于x的不等式x2+ax+1>0对一切x∈R恒成立,q:对数函数y=log(4-3a)x在(0,+∞)上单调递减,那么p是q的(  )
A.充分不必要条件
B.充要条件
C.必要不充分条件
D.既不充分也不必要条件
7.已知命题p: x∈R,ax2+2ax-4≥0为假命题,则实数a的取值范围是(  )
A.-4C.-48.(2023·新高考全国Ⅰ)记Sn为数列{an}的前n项和,设甲:{an}为等差数列;乙:为等差数列,则(  )
A.甲是乙的充分条件但不是必要条件
B.甲是乙的必要条件但不是充分条件
C.甲是乙的充要条件
D.甲既不是乙的充分条件也不是乙的必要条件
二、多项选择题
9.下列命题是真命题的是(  )
A. a∈R,使函数y=2x+a·2-x在R上为偶函数
B. x∈R,函数y=sin x+cos x+的值恒为正数
C. x∈R,2x<x2
D. x∈(0,+∞),x>
10.下列命题中正确的是(  )
A.“A∪B=A”是“B A”的充分不必要条件
B.“方程x2-(m-3)x+m=0有一正一负根”的充要条件是“m<0”
C.“幂函数y=为反比例函数”的充要条件是“m=0”
D.“函数f(x)=-x2+2mx在区间[1,3]上不单调”的一个必要不充分条件是“1≤m≤3”
三、填空题
11.在△ABC中,“∠A=∠B”是“sin A=sin B”的________条件.(填“充分不必要”“必要不充分”“充要”或“既不充分也不必要”)
12.为了证明“所有的素数都是奇数”是假命题,只要证明:________________.
13.设p:4x-3<1,q:x-2a-1<0,若p是q的充分不必要条件,则实数a的取值范围是________.
14.《墨子·经说上》上说:“小故,有之不必然,无之必不然,体也,若有端,大故,有之必然,若见之成见也.”这一段文字蕴含着十分丰富的逻辑思想,那么文中的“小故”指的是逻辑中的________________.(填“充分不必要条件”“必要不充分条件”“充要条件”或“既不充分也不必要条件”)
15.已知等比数列{an}的首项为1,则“a2 021A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
16.已知函数f(x)=x+,g(x)=2x+a,若 x1∈, x2∈[2,3],使得f(x1)≤g(x2),则实数a的取值范围是________.
1.C 2.A 3.A 4.C 5.D 6.C
7.C [命题p: x∈R,ax2+2ax-4≥0为假命题,即命题綈p: x∈R,ax2+2ax-4<0为真命题,
当a=0时,-4<0恒成立,符合题意;
当a≠0时,则a<0且Δ=(2a)2+16a<0,即-4综上可知,-48.C [方法一 甲:{an}为等差数列,设其首项为a1,公差为d,
则Sn=na1+d,=a1+d=n+a1-,-=,
因此为等差数列,则甲是乙的充分条件;
反之,乙:为等差数列,
即-==为常数,
设为t,即=t,
则Sn=nan+1-t·n(n+1),有
Sn-1=(n-1)an-t·n(n-1),n≥2,
两式相减得an=nan+1-(n-1)an-2tn,
即an+1-an=2t,对n=1也成立,
因此{an}为等差数列,则甲是乙的必要条件,所以甲是乙的充要条件.
方法二 甲:{an}为等差数列,设数列{an}的首项为a1,公差为d,
即Sn=na1+d,
则=a1+d=n+a1-,
因此为等差数列,即甲是乙的充分条件;
反之,乙:为等差数列,
设数列的公差为D,
则-=D,=S1+(n-1)D,
即Sn=nS1+n(n-1)D,
当n≥2时,Sn-1=(n-1)S1+(n-1)(n-2)D,
上边两式相减得Sn-Sn-1=S1+2(n-1)D,所以an=a1+2(n-1)D,
当n=1时,上式成立,
又an+1-an=a1+2nD-[a1+2(n-1)D]=2D为常数,
因此{an}为等差数列,则甲是乙的必要条件,
所以甲是乙的充要条件.]
9.AC [当a=1时,y=2x+2-x为偶函数,故A为真命题;y=sin x+cos x+=sin+,当sin=-1时,y=0,故B为假命题;当x∈(2,4)时,2x<x2,故C为真命题;当x=时,∈(0,1),=1,∴,故D为假命题.]
10.BCD [对于A,由A∪B=A可得B A,故充分性成立,
由B A可得A∪B=A,故必要性成立,所以“A∪B=A”是“B A”的充要条件,故A错误;
对于B,方程x2-(m-3)x+m=0有一正一负根,设为x1,x2,
则解得m<0,满足必要性,
当m<0时,Δ=(m-3)2-4m>0,x1x2=m<0,则方程x2-(m-3)x+m=0有一正一负根,满足充分性,
所以“方程x2-(m-3)x+m=0有一正一负根”的充要条件是“m<0”,故B正确;
对于C,若幂函数y=为反比例函数,则
解得m=0,满足必要性,
当m=0时,函数y=x-1为幂函数,也为反比例函数,满足充分性,
所以“幂函数y=为反比例函数”的充要条件是“m=0”,故C正确;
对于D,若函数f(x)=-x2+2mx在区间[1,3]上不单调,则1所以“函数f(x)=-x2+2mx在区间[1,3]上不单调”的一个必要不充分条件是“1≤m≤3”,故D正确.]
11.充要
解析 在△ABC中,∠A=∠B a=b sin A=sin B,故“∠A=∠B”是“sin A=sin B”的充要条件.
12.存在一个素数不是奇数
解析 因为命题“所有的素数都是奇数”是假命题,则命题“存在一个素数不是奇数”为真命题,所以为了证明“所有的素数都是奇数”是假命题,只要证明存在一个素数不是奇数.
13.(0,+∞)
14.必要不充分条件
15.A [设等比数列的公比为q,
若a2 021即a2 021(1-q3)<0.
因为a1=1>0,
所以a2 021=a1q2 020>0,
所以q3>1,所以q>1;
若a2 023即a2 023(1-q2)<0.
因为a1=1>0,
所以a2 023=a1q2 022>0,
所以q2-1>0,解得q>1或q<-1.
所以“a2 02116.
解析 依题意知f(x)max≤g(x)max.
∵f(x)=x+在上单调递减,
∴f(x)max=f =.
又g(x)=2x+a在[2,3]上单调递增,
∴g(x)max=8+a,
因此≤8+a,则a≥.§1.2 常用逻辑用语
课标要求 1.理解充分条件、必要条件、充要条件的意义;理解判定定理与充分条件、性质定理与必要条件、数学定义与充要条件的关系.2.理解全称量词和存在量词的意义,能正确对两种命题进行否定.
知识梳理
1.充分条件、必要条件与充要条件的概念
若p q,则p是q的____________条件,q是p的____________条件
p是q的____________条件 p q且q p
p是q的____________条件 p q且q p
p是q的____________条件 p q
p是q的________________条件 p q且q p
2.全称量词与存在量词
(1)全称量词:短语“所有的”“任意一个”在逻辑中通常叫做全称量词,并用符号“__________”表示.
(2)存在量词:短语“存在一个”“至少有一个”在逻辑中通常叫做存在量词,并用符号“________”表示.
3.全称量词命题和存在量词命题
名称 全称量词命题 存在量词命题
结构 对M中任意一个x,p(x)成立 存在M中的元素x,p(x)成立
简记
否定 x∈M,綈p(x)
常用结论
1.充分、必要条件与对应集合之间的关系
设A={x|p(x)},B={x|q(x)}.
(1)若p是q的充分条件,则A B;
(2)若p是q的充分不必要条件,则A?B;
(3)若p是q的必要不充分条件,则B?A;
(4)若p是q的充要条件,则A=B.
2.含有一个量词命题的否定规律是“改变量词,否定结论”.
3.命题p与p的否定的真假性相反.
自主诊断
1.判断下列结论是否正确.(请在括号中打“√”或“×”)
(1)当p是q的充分条件时,q是p的必要条件.(  )
(2)“三角形的内角和为180°”是全称量词命题.(  )
(3)“x>1”是“x>0”的充分不必要条件.(  )
(4)命题“ x∈R,sin2+cos2=”是真命题.(  )
2.(必修第一册P30例4(1)改编)(多选)已知命题p: x∈R,x+2≤0,则下列说法正确的是(  )
A.p是真命题
B.綈p: x∈R,x+2>0
C.綈p是真命题
D.綈p: x∈R,x+2>0
3.(必修第一册P22T2(5)改编)设x>0,y>0,则“x2>y2”是“x>y”的(  )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
4.已知A=(-∞,a],B=(-∞,3),且x∈A是x∈B的充分不必要条件,则a的取值范围为________________________.
题型一 充分、必要条件的判定
例1 (1)(2023·葫芦岛模拟)已知向量n为平面α的一个法向量,向量m为直线l的一个方向向量,则m∥n是l⊥α的(  )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
(2)在等比数列{an}中,“a1>0,且公比q>1”是“{an}为递增数列”的(  )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
思维升华 充分、必要条件的三种判定方法
(1)定义法:根据p q,q p是否成立进行判断.
(2)集合法:根据p,q成立对应的集合之间的包含关系进行判断.
(3)等价转化法:对所给题目的条件进行一系列的等价转化,直到转化成容易判断充分、必要条件是否成立为止.
跟踪训练1 (1)(2024·贵阳模拟)已知函数f(x)=cos(2x+φ),则“φ=”是“f(x)是奇函数”的(  )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
(2)当命题“若p,则q”为真命题,则“由p可以推出q”,即一旦p成立,q就成立,p是q成立的充分条件.也可以这样说,若q不成立,那么p一定不成立,q对p成立也是很必要的.王安石在《游褒禅山记》中也说过一段话:“世之奇伟、瑰怪,非常之观,常在于险远,而人之所罕至焉,故非有志者不能至也”.从数学逻辑角度分析,“有志”是“能至”的(  )
A.充分条件
B.必要条件
C.充要条件
D.既不充分也不必要条件
题型二 充分、必要条件的应用
例2 在①“x∈A”是“x∈B”的充分条件;②“x∈ RA”是“x∈ RB”的必要条件这两个条件中任选一个,补充到本题第(2)问的横线处,并求解下列问题.
问题:已知集合A={x|a≤x≤a+2},B={x|(x+1)(x-3)<0}.
(1)当a=2时,求A∩B;
(2)若________,求实数a的取值范围.
注:如果选择多个条件分别解答,按第一个解答计分.
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
充分不必要条件的等价形式
p是q的充分不必要条件,等价于綈q是綈p的充分不必要条件.
典例 已知命题p:|x|≤1,q:x<a,若綈q是綈p的充分不必要条件,则实数a的取值范围为________________________________________________________________________.
跟踪训练2 从①“充分不必要条件”,②“必要不充分条件”这两个条件中任选一个,补充到本题第(2)问的横线处,并解答下列问题:已知集合A=,B={x|x2-4x+4-m2≤0,m∈R}.
(1)若m=3,求A∪B;
(2)若存在正实数m,使得“x∈A”是“x∈B”成立的________,求正实数m的取值范围.
注:如果选择多个条件分别解答,按第一个解答计分.
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
题型三 全称量词与存在量词
命题点1 含量词的命题的否定
例3 (1)(多选)下列说法正确的是(  )
A.“正方形是菱形”是全称量词命题
B. x∈R,exC.命题“ x∈R,x2-2x+3=0”的否定为“ x∈R,x2-2x+3≠0”
D.命题“ x>1,都有2x+1>5”的否定为“ x≤1,使得2x+1≤5”
(2)写出“所有实数都不是无理数”的否定形式:
________________________________________________________________________.
________________________________________________________________________
________________________________________________________________________
命题点2 含量词的命题的真假判断
例4 (多选)下列命题中的真命题是(  )
A. x∈R,2x-1>0
B. x∈N*,(x-1)2>0
C. x∈R,lg x<1
D. x∈R,tan x=2
命题点3 含量词的命题的应用
例5 (1)若命题“ x∈[-1,2],x2+1≥m”是真命题,则实数m的取值范围是(  )
A.(-∞,0] B.(-∞,1]
C.(-∞,2] D.(-∞,5]
(2)(多选)命题p: x∈R,x2+2x+2-m<0为假命题,则实数m的取值可以是(  )
A.-1 B.0 C.1 D.2
跟踪训练3 (1)下列命题为真命题的是(  )
A.任意两个等腰三角形都相似
B.所有的梯形都是等腰梯形
C. x∈R,x+|x|≥0
D. x∈R,x2-x+1=0
(2)(多选)已知命题p: x∈[0,1],不等式2x-2≥m2-3m恒成立,命题q: x∈[1,3],不等式x2-ax+4≤0,则下列说法正确的是(  )
A.命题p的否定是“ x∈[0,1],不等式2x-2B.命题q的否定是“ x∈[1,3],不等式x2-ax+4≥0”
C.当命题p为真命题时,1≤m≤2
D.当命题q为假命题时,a<4

展开更多......

收起↑

资源列表