面积经典例题与过关练习(含答案)数学三年级下册人教版

资源下载
  1. 二一教育资源

面积经典例题与过关练习(含答案)数学三年级下册人教版

资源简介

中小学教育资源及组卷应用平台
面积经典例题与过关练习-数学三年级下册人教版
经典例题一 .一张长方形纸,如下图。 (1)它的面积是多少平方厘米? (2)如果从这张纸上剪下一个最大的正方形,这个正方形的面积是多少? 【答案】(1)630平方厘米; (2)441平方厘米 【分析】(1)根据长方形的面积计算公式,长方形的面积=长×宽,代入数据计算,注意单位;(2)从这个长方形上面剪一个最大的正方形,这个正方形的边长是宽的长度,根据正方形的面积计算公式,正方形的面积=边长×边长,据此解答。 【详解】(1)30×21=630(平方厘米) 答:它的面积是630平方厘米。 (2)这个正方形的边长是21厘米 21×21=441(平方厘米) 答:这个正方形的面积是441平方厘米。 经典例题二 .幸福社区整修需增加草坪面积,一块面积为320平方米的长方形草地,宽由原来的8米增加到32米,长不变,增加的草坪面积是多少? 【答案】960平方米 【分析】根据长方形的长=面积÷宽,可知原来长方形草地的长为(320÷8)米,增加的面积是个小长方形,小长方形的长是原来的长,宽是(32-8)米,根据长方形的面积=长×宽,即可计算增加的草坪面积。 【详解】320÷8=40(米) 40×(32-8) =40×24 =960(平方米) 答:增加的草坪面积是960平方米。 经典例题三 .下图中,每个小格边长是1cm。 图形面积(cm2)周长(cm)图①( )( )图②( )( )
(1)完成上面表格。 (2)对比图①和图②的面积和周长,你有什么发现? (3)如果从图①中拿去一个小正方形,使它的面积减少,周长变大,( )(填“有”或“没有”)可能。如果有可能,请画出变化后的图形。 【答案】(1)9;12 8;12 (2)两个图形的面积不相等,但周长相等 (3)有;画图见详解 【分析】(1)每个小格边长是1cm,则每个小格的面积是1 cm2。分别数出两个图形中有几个小格,面积就是几cm2。分别数出两个图形的边长等于几个小格的边长和,则每个图形的边长就是几cm。 (2)比较两个图形的面积和周长大小,可知两个图形的面积不相等,但周长相等。 (3)要想从图①中拿去一个小正方形,使它的面积减少,周长变大,拿掉的小正方形中应该只有1条边计入图形周长中,这样拿掉这个小正方形后,相比较原来图形的周长,减少1个小格的边长,但增加3个小格的边长,图形的周长变大,并且图形的面积减少。 【详解】(1) 图形面积(cm2)周长(cm)图①912图②812
(2)对比图①和图②的面积和周长,发现两个图形的面积不相等,但周长相等。 (3)如果从图①中拿去一个小正方形,使它的面积减少,周长变大,有可能。如下图中的右边图形: 【点睛】此题考查的目的是理解周长和面积的意义。
过关练习
1.有一块长36米,宽25米的长方形苗圃。
(1)求这块苗圃的面积。
(2)在苗圃的四周围一圈围栏,求围栏的长度。
2.社区文化中心准备在靠墙的位置修建一块休闲区(如图),这个休闲区的占地面积是多少平方分米?如果用边长3分米的正方形地砖给休闲区铺地面,需要多少块地砖?

3.一块绿地的面积为240平方米,要使宽增加到8米,长不变,扩大后的绿地面积是多少平方米?

4.动手操作。(每个小方格的边长是1厘米)

(1)请在图中画出和图1周长相等的一个长方形和一个正方形。
(2)画出的长方形的面积是( )平方厘米,正方形的面积是( )平方厘米。
5.下图是用6个相同的小长方形拼成的,1个小长方形的面积是多少平方分米?
6.王叔叔在酒店办理入住手续时,发现酒店门前有一个L型水池(如图所示)。请算出水池的面积是多少平方米?

7.一个餐厅长30米,宽20米,在它的地面贴上瓷砖,有两种瓷砖可供选择,第①种瓷砖每块4元,第②种瓷砖每块3元。应该选哪种比较划算?请你算一算。

8.一个长方形,如果长增加4米,面积就增加20平方米;如果宽减少2米,面积就减少14平方米。这个长方形原来的面积是多少平方米?
9.一辆洒水车每分钟行驶60米,洒水的宽度是12米,洒水车行驶了5分钟,洒过水的地面约多少平方米?
10.花园里有一个正方形的荷花池。它的周长是64米,面积是多少平方米?
11.王亮要从一张长10厘米、宽8厘米的纸上剪下一个最大的正方形,剩下的部分是一个什么图形?它的面积是多少平方厘米?周长呢?
12.林刚同学用一种同样规格的长方形硬纸板在桌面上玩拼图游戏,用4块硬纸板拼正方形,中间有一个小正方形没接满,小正方形的边长是6cm。(如图所示)
(1)一块长方形硬纸板的面积是多少cm2?
(2)他能用不少于4块的长方形硬纸板拼满而得到一个正方形吗?请举例说明
(提示:先画草图,再列式计算它的面积)。
参考答案:
1.(1)900平方米
(2)122米
【分析】(1)长方形的面积=长×宽,把数据代入公式计算即可。
(2)长方形的周长=(长+宽)×2,把数据代入公式计算即可。
【详解】(1)36×25=900(平方米)
答:这块苗圃的面积是900平方米。
(2)(36+25)×2
=61×2
=122(米)
答:围栏的长度是122米。
【点睛】熟记长方形的面积和周长公式是解题关键。
2.7200平方分米;800块
【分析】根据长方形的面积=长×宽,把数据代入,即可求得这个休闲区的占地面积;再根据正方形的面积=边长×边长,求出每块地砖的面积,然后根据“包含”除法的意义,用除法解答即可。
【详解】(平方米)
72平方米=7200平方分米
(平方分米)
(块)
答:这个休闲区的占地面积是72平方分米;需要800块地砖。
【点睛】本题考查长方形的面积公式、正方形面积公式的灵活运用,关键是熟记公式。
3.960平方米
【分析】由图可知原来绿地的宽是2米,而面积是240平方米,240除以2即可求出绿地的长,再乘8即可求出现在的面积。
【详解】240÷2=120(米)
120×8=960(平方米)
答:扩大后的绿地面积是960平方米。
【点睛】先逆用面积公式求出长,再求面积,此题考查学生对面积公式的应用。
4.(1)画图见详解(长方形画法不唯一)
(2)12;16
【分析】(1)图1的长方形的宽是1厘米,长是7厘米,那么图1的周长是(7+1)×2=16厘米,周长是16厘米可以画出长是6厘米,宽是2厘米的长方形,周长是16厘米可以画出边长是4厘米的正方形;据此解答。
(2)根据长方形的面积=长×宽,正方形的面积=边长×边长,计算出画出的长方形和正方形的面积即可。
【详解】(1)图1的周长:
(7+1)×2
=8×2
=16(厘米)
周长是16厘米可以画出长是6厘米,宽是2厘米的长方形,周长是16厘米可以画出边长是4厘米的正方形;画法如图:(长方形的画法不唯一)

(2)长方形的面积:6×2=12(平方厘米)
正方形的面积:4×4=16(平方厘米)
所以:画出的长方形的面积是12平方厘米,正方形的面积是16平方厘米。
【点睛】本题解答的关键是熟练掌握长方形的周长公式、正方形的周长公式及长方形的面积公式、正方形的面积公式。
5.245平方分米
【分析】根据图示可知,长方形的长是宽的5倍,因此用42分米除以5+1的和,即可计算出小长方形的宽,然后用小长方形的宽乘5,即可计算出小长方形的长,然后再根据“长方形的面积=长×宽”计算出小长方形的面积即可。
【详解】42÷(5+1)
=42÷6
=7(分米)
7×5=35(分米)
35×7=245(平方分米)
答:1个小长方形的面积是245平方分米。
【点睛】此题考查的是长方形面积的计算,先计算出长方形的长和宽,是解答此题的关键。
6.280平方米
【分析】把L型水池分割成两个长方形,根据长方形的面积=长×宽,分别算出两个长方形面积再相加即可。
【详解】
23×7=161(平方米)
17×7=119(平方米)
161+119=280(平方米)
答:水池的面积是280平方米。
【点睛】把图形分成两个长方体,再用长方形的面积公式进行计算是解决本题关键。
7.第②种瓷砖
【分析】根据长方形的面积=长×宽,求出餐厅地面的面积。先根据正方形的面积=边长×边长,求出一块①号瓷砖的面积,再用餐厅地面的面积除以一块①号瓷砖的面积,求出需要这种瓷砖的块数,再乘一块①号瓷砖的价钱,求出选择第①种瓷砖花费的钱数。同理先根据长方形的面积=长×宽,求出一块②号瓷砖的面积,再求出需要②号瓷砖的块数,进而求出选择第②种瓷砖花费的钱数。将两个钱数比较大小解答。
【详解】30×20=600(平方米)
600平方米=60000平方分米
60000÷(5×5)×4
=60000÷25×4
=2400×4
=9600(元)
60000÷(6×4)×3
=60000÷24×3
=2500×3
=7500(元)
9600>7500
答:应该选第②种瓷砖比较划算。
【点睛】本题考查长方形和正方形面积公式的应用以及面积单位的换算,关键是熟记公式,正确求出两种选法花费的钱数。
8.35平方米
【分析】如图:增加部分是一个长方形,长是原来长方形的宽,宽是4米,长方形面积=长×宽,长方形的长=面积÷宽,增加部分面积除以增加的长度,即可算出原来长方形的宽是(20÷4)米。如图:减少部分是一个长方形,长是原来长方形的长,宽是2米,长方形的长=面积÷宽,减少部分面积除以减少的长度,即可算出原来长方形的长是(14÷2)米。长方形面积=长×宽,把数据代入公式即可算出这个长方形原来的面积。
【详解】20÷4=5(米)
14÷2=7(米)
7×5=35(平方米)
答:这个长方形原来的面积是35平方米。
【点睛】熟记长方形的面积公式并灵活运用是解题关键。
9.3600平方米
【分析】用60乘12先求出洒水车1分行洒水的面积,再乘5即可求出5分钟洒水的面积。
【详解】60×12×5
=720×5
=3600(平方米)
答:洒过水的地面约是3600平方米。
【点睛】此题考查了长方形的面积公式的实际应用。
10.256平方米
【分析】正方形的边长=周长÷4,依此计算出荷花池的边长,再根据“正方形的面积=边长×边长”计算出它的面积即可。
【详解】64÷4=16(米)
16×16=256(平方米)
答:正方形荷花池的面积是256平方米。
【点睛】此题考查的是正方形的面积的计算,先计算出荷花池的边长是解答此题的关键。
11.长方形;16平方厘米;20厘米
【分析】根据题意可知,要从一个长10厘米、宽8厘米的长方形上剪下一个最大的正方形,这个正方形的边长等于长方形的宽,即8厘米;剩下的部分是一个长8厘米、宽(10-8)厘米的长方形;再根据长方形面积=长×宽、长方形周长=(长+宽)×2,即可求剩下部分的面积和周长。
【详解】根据题意可知,剪下的正方形的边长是8厘米,剩下部分是一个长8厘米、宽(10-8)厘米的长方形。
8×(10-8)
=8×2
=16(平方厘米)
[8+(10-8)]×2
=[8+2]×2
=10×2
=20(厘米)
答:剩下部分是一个长8厘米、宽2厘米的长方形,它的面积是16平方厘米,周长是20厘米。
【点睛】确定剪下的正方形的边长是解答此题的关键。
12.(1)72 cm2
(2)能;见详解
【分析】(1)根据正方形的面积=边长×边长,把数据代入公式解答。
(2)通过观察图形可知,长方形的长与宽的和是18 cm,长是宽的2倍,据此可以求出长方形的长、宽,根据密铺的方法,可以用8个这样的长方形拼成一个正方形。据此解答。
【详解】(1)6×2×6
=12×6
=72(cm2)
答:一块长方形硬纸板的面积是72 cm2。
(2)他能用不少于4块的长方形硬纸板拼满而得到一个正方形;
因为中间正方形的边长是6 cm,所以每个长方形的宽是6 cm;
每个长方形的长是18-6=12(cm);
作图如下:
12×2=24(cm)
24×24=576(cm2)
答:这个正方形的面积是576 cm2。
【点睛】此题主要考查长方形、正方形的面积公式及、密铺的方法及应用。
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网(www.21cnjy.com)

展开更多......

收起↑

资源预览