资源简介 中小学教育资源及组卷应用平台备考2024中考二轮数学《高频考点冲刺》(全国通用)专题30 线动问题与面动问题考点扫描☆聚焦中考动态几何中的线动问题与面动问题是近几年各地中考中以选择题、填空题、解答题的形式进行考查,多数题目难度较大,属于压轴题,考查涉及到的知识点包括三角形基本性质、相似三角形、三角函数、四边形的性质、圆的基本性质等,考查的热点有线的对称与旋转、面的平移、面的对称、面的旋转等。考点剖析☆典型例题例1 (2021 郴州)如图1,在等腰直角三角形ABC中,∠BAC=90°,点E,F分别为AB,AC的中点,H为线段EF上一动点(不与点E,F重合),将线段AH绕点A逆时针方向旋转90°得到AG,连接GC,HB.(1)证明:△AHB≌△AGC;(2)如图2,连接GF,HG,HG交AF于点Q.①证明:在点H的运动过程中,总有∠HFG=90°;②若AB=AC=4,当EH的长度为多少时△AQG为等腰三角形?例2(2023 衢州)如图1,点O为矩形ABCD的对称中心,AB=4,AD=8,点E为AD边上一点(0<AE<3),连结EO并延长,交BC于点F.四边形ABFE与A′B′FE关于EF所在直线成轴对称,线段B′F交AD边于点G.(1)求证:GE=GF.(2)当AE=2DG时,求AE的长.(3)令AE=a,DG=b.①求证:(4﹣a)(4﹣b)=4.②如图2,连结OB′,OD,分别交AD,B′F于点H,K.记四边形OKGH的面积为S1,△DGK的面积为S2,当a=1时,求的值.例3(2022 黄石)如图,正方形OABC的边长为,将正方形OABC绕原点O顺时针旋转45°,则点B的对应点B1的坐标为( )A.(﹣,0) B.(,0) C.(0,) D.(0,2)考点过关☆专项突破类型一 线的对称与旋转问题1.(2023 宿迁)【问题背景】由光的反射定律知:反射角等于入射角(如图①,即∠CEF=∠AEF).小军测量某建筑物高度的方法如下:在地面点E处平放一面镜子,经调整自己位置后,在点D处恰好通过镜子看到建筑物AB的顶端A.经测得,小军的眼睛离地面的距离CD=1.7m,BE=20m,DE=2m,求建筑物AB的高度;【活动探究】观察小军的操作后,小明提出了一个测量广告牌高度的做法(如图②):他让小军站在点D处不动,将镜子移动至E1处,小军恰好通过镜子看到广告牌顶端G,测出DE1=2m;再将镜子移动至E2处,恰好通过镜子看到广告牌的底端A,测出DE2=3.4m.经测得,小军的眼睛离地面距离CD=1.7m,BD=10m,求这个广告牌AG的高度;【应用拓展】小军和小明讨论后,发现用此方法也可测量出斜坡上信号塔AB的高度.他们给出了如下测量步骤(如图③):①让小军站在斜坡的底端D处不动(小军眼睛离地面距离CD=1.7m),小明通过移动镜子(镜子平放在坡面上)位置至E处,让小军恰好能看到塔顶B;②测出DE=2.8m;③测出坡长AD=17m;④测出坡比为8:15(即).通过他们给出的方案,请你算出信号塔AB的高度(结果保留整数).2.(2021 郴州)如图1,在等腰直角三角形ABC中,∠BAC=90°,点E,F分别为AB,AC的中点,H为线段EF上一动点(不与点E,F重合),将线段AH绕点A逆时针方向旋转90°得到AG,连接GC,HB.(1)证明:△AHB≌△AGC;(2)如图2,连接GF,HG,HG交AF于点Q.①证明:在点H的运动过程中,总有∠HFG=90°;②若AB=AC=4,当EH的长度为多少时△AQG为等腰三角形?3.(2023 河北)如图1和图2,平面上,四边形ABCD中,AB=8,,CD=12,DA=6.∠A=90°,点M在AD边上,且DM=2.将线段MA绕点M顺时针旋转n°(0<n≤180)到MA',∠A′MA的平分线MP所在直线交折线AB﹣BC于点P,设点P在该折线上运动的路径长为x(x>0),连接A′P.(1)若点P在AB上,求证:A'P=AP;(2)如图2,连接BD.①求∠CBD的度数,并直接写出当n=180时,x的值;②若点P到BD的距离为2,求tan∠A′MP的值;(3)当0<x≤8时,请直接写出点A′到直线AB的距离(用含x的式子表示).4.(2023 南充)如图,正方形ABCD中,点M在边BC上,点E是AM的中点,连接ED,EC.(1)求证:ED=EC;(2)将BE绕点E逆时针旋转,使点B的对应点B′落在AC上,连接MB′.当点M在边BC上运动时(点M不与B,C重合),判断△CMB′的形状,并说明理由.(3)在(2)的条件下,已知AB=1,当∠DEB′=45°时,求BM的长.5.(2023 朝阳)如图,在正方形ABCD中,点E是对角线BD上一点,连接EA,将线段EA绕点E逆时针旋转,使点A落在射线CB上的点F处,连接EC.【问题引入】(1)请你在图1或图2中证明EF=EC(选择一种情况即可);【探索发现】(2)在(1)中你选择的图形上继续探索:延长FE交直线CD于点M.将图形补充完整,猜想线段DM和线段BF的数量关系,并说明理由;【拓展应用】(3)如图3,AB=3,延长AE至点N,使NE=AE,连接DN.当△ADN的周长最小时,请你直接写出线段DE的长..6.(2023 阜新)如图,在正方形ABCD中,线段CD绕点C逆时针旋转到CE处,旋转角为α,点F在直线DE上,且AD=AF,连接BF.(1)如图1,当0°<α<90°时,①求∠BAF的大小(用含α的式子表示).②求证:EF=BF.(2)如图2,取线段EF的中点G,连接AG,已知AB=2,请直接写出在线段CE旋转过程中(0°<α<360°)△ADG面积的最大值.7.(2023 衡阳)[问题探究](1)如图1,在正方形ABCD中,对角线AC、BD相交于点O.在线段AO上任取一点P(端点除外),连接PD、PB.①求证:PD=PB;②将线段DP绕点P逆时针旋转,使点D落在BA的延长线上的点Q处.当点P在线段AO上的位置发生变化时,∠DPQ的大小是否发生变化?请说明理由;③探究AQ与OP的数量关系,并说明理由.[迁移探究](2)如图2,将正方形ABCD换成菱形ABCD,且∠ABC=60°,其他条件不变.试探究AQ与CP的数量关系,并说明理由.8.(2023 牡丹江) ABCD中,AE⊥BC,垂足为E,连接DE,将ED绕点E逆时针旋转90°,得到EF,连接BF.(1)当点E在线段BC上,∠ABC=45°时,如图①,求证:AE+EC=BF;(2)当点E在线段BC延长线上,∠ABC=45°时,如图②;当点E在线段CB延长线上,∠ABC=135°时,如图③,请猜想并直接写出线段AE,EC,BF的数量关系;(3)在(1)、(2)的条件下,若BE=3,DE=5,则CE= .9.(2022 临沂)已知△ABC是等边三角形,点B,D关于直线AC对称,连接AD,CD.(1)求证:四边形ABCD是菱形;(2)在线段AC上任取一点P(端点除外),连接PD.将线段PD绕点P逆时针旋转,使点D落在BA延长线上的点Q处.请探究:当点P在线段AC上的位置发生变化时,∠DPQ的大小是否发生变化?说明理由.(3)在满足(2)的条件下,探究线段AQ与CP之间的数量关系,并加以证明.类型二 面的平移问题1.(2022 常州)如图,在Rt△ABC中,∠C=90°,AC=9,BC=12.在Rt△DEF中,∠F=90°,DF=3,EF=4.用一条始终绷直的弹性染色线连接CF,Rt△DEF从起始位置(点D与点B重合)平移至终止位置(点E与点A重合),且斜边DE始终在线段AB上,则Rt△ABC的外部被染色的区域面积是 .2.(2023 天津)在平面直角坐标系中,O为原点,菱形ABCD的顶点A(,0),B(0,1),D(2,1),矩形EFGH的顶点E(0,),,H(0,).(1)填空:如图①,点C的坐标为 ,点G的坐标为 ;(2)将矩形EFGH沿水平方向向右平移,得到矩形E′FG′H′,点E,F,G,H的对应点分别为E′,F′,G′,H′,设EE′=t,矩形E′F′G′H′与菱形ABCD重叠部分的面积为S.①如图②,当边E′F′与AB相交于点M、边G′H′与BC相交于点N,且矩形E′F′G′H′与菱形ABCD重叠部分为五边形时,试用含有t的式子表示S,并直接写出t的取值范围;②当时,求S的取值范围(直接写出结果即可).类型三 面的对称问题1.(2023 长春)如图,将正五边形纸片ABCDE折叠,使点B与点E重合,折痕为AM,展开后,再将纸片折叠,使边AB落在线段AM上,点B的对应点为点B',折痕为AF,则∠AFB'的大小为 度.2.(2023 扬州)如图,已知正方形ABCD的边长为1,点E、F分别在边AD、BC上,将正方形沿着EF翻折,点B恰好落在CD边上的点B′处,如果四边形ABFE与四边形EFCD的面积比为3:5,那么线段FC的长为 .3.(2022 南充)如图,正方形ABCD边长为1,点E在边AB上(不与A,B重合),将△ADE沿直线DE折叠,点A落在点A1处,连接A1B,将A1B绕点B顺时针旋转90°得到A2B,连接A1A,A1C,A2C.给出下列四个结论:①△ABA1≌△CBA2;②∠ADE+∠A1CB=45°;③点P是直线DE上动点,则CP+A1P的最小值为;④当∠ADE=30°时,△A1BE的面积为.其中正确的结论是 .(填写序号)4.(2022 新疆)如图,在△ABC中,∠ABC=30°,AB=AC,点O为BC的中点,点D是线段OC上的动点(点D不与点O,C重合),将△ACD沿AD折叠得到△AED,连接BE.(1)当AE⊥BC时,∠AEB= °;(2)探究∠AEB与∠CAD之间的数量关系,并给出证明;(3)设AC=4,△ACD的面积为x,以AD为边长的正方形的面积为y,求y关于x的函数解析式.5.(2023 盐城)综合与实践【问题情境】如图1,小华将矩形纸片ABCD先沿对角线BD折叠,展开后再折叠,使点B落在对角线BD上,点B的对应点记为B′,折痕与边AD,BC分别交于点E,F.【活动猜想】(1)如图2,当点B′与点D重合时,四边形BEDF是哪种特殊的四边形?答: .【问题解决】(2)如图3,当AB=4,AD=8,BF=3时,求证:点A′,B′,C在同一条直线上.【深入探究】(3)如图4,当AB与BC满足什么关系时,始终有A′B′与对角线AC平行?请说明理由.(4)在(3)的情形下,设AC与BD,EF分别交于点O,P,试探究三条线段AP,B′D,EF之间满足的等量关系,并说明理由.6.(2023 沈阳)如图1,在 ABCD纸片中,AB=10,AD=6,∠DAB=60°,点E为BC边上的一点(点E不与点C重合),连接AE,将 ABCD纸片沿AE所在直线折叠,点C,D的对应点分别为C′,D′,射线C′E与射线AD交于点F.(1)求证:AF=EF;(2)如图2,当EF⊥AF时,DF的长为 ;(3)如图3,当CE=2时,过点F作FM⊥AE,垂足为点M,延长FM交C′D′于点N,连接AN,EN,求△ANE的面积.7.(2022 深圳)(1)发现:如图①所示,在正方形ABCD中,E为AD边上一点,将△AEB沿BE翻折到△BEF处,延长EF交CD边于G点.求证:△BFG≌△BCG;(2)探究:如图②,在矩形ABCD中,E为AD边上一点,且AD=8,AB=6.将△AEB沿BE翻折到△BEF处,延长EF交BC边于G点,延长BF交CD边于点H,且FH=CH,求AE的长.(3)拓展:如图③,在菱形ABCD中,AB=6,E为CD边上的三等分点,∠D=60°.将△ADE沿AE翻折得到△AFE,直线EF交直线BC于点P,求PC的长.类型四 面的旋转问题1.(2023 东营)如图,在平面直角坐标系中,菱形OABC的边长为2,点B在x轴的正半轴上,且∠AOC=60°,将菱形OABC绕原点O逆时针方向旋转60°,得到四边形OA′B′C′(点A′与点C重合),则点B′的坐标是( )A.(3,3) B.(3,3) C.(3,6) D.(6,3)2.(2022 广西)如图,在△ABC中,CA=CB=4,∠BAC=α,将△ABC绕点A逆时针旋转2α,得到△AB′C′,连接B′C并延长交AB于点D,当B′D⊥AB时,的长是( )A.π B.π C.π D.π3.(2022 镇江)如图,在等腰△ABC中,∠BAC=120°,BC=6,⊙O同时与边BA的延长线、射线AC相切,⊙O的半径为3.将△ABC绕点A按顺时针方向旋转α(0°<α≤360°),B、C的对应点分别为B′、C′,在旋转的过程中边B′C′所在直线与⊙O相切的次数为( )A.1 B.2 C.3 D.44.(2021 黑龙江)如图,矩形ABCD的边CD上有一点E,∠DAE=22.5°,EF⊥AB,垂足为F,将△AEF绕着点F顺时针旋转,使得点A的对应点M落在EF上,点E恰好落在点B处,连接BE.下列结论:①BM⊥AE;②四边形EFBC是正方形;③∠EBM=30°;④S四边形BCEM:S△BFM=(2+1):1.其中结论正确的序号是( )A.①② B.①②③ C.①②④ D.③④5.(2022 山西)综合与实践问题情境:在Rt△ABC中,∠BAC=90°,AB=6,AC=8.直角三角板EDF中∠EDF=90°,将三角板的直角顶点D放在Rt△ABC斜边BC的中点处,并将三角板绕点D旋转,三角板的两边DE,DF分别与边AB,AC交于点M,N.猜想证明:(1)如图①,在三角板旋转过程中,当点M为边AB的中点时,试判断四边形AMDN的形状,并说明理由;问题解决:(2)如图②,在三角板旋转过程中,当∠B=∠MDB时,求线段CN的长;(3)如图③,在三角板旋转过程中,当AM=AN时,直接写出线段AN的长.6.(2022 达州)某校一数学兴趣小组在一次合作探究活动中,将两块大小不同的等腰直角三角形ABC和等腰直角三角形CDE,按如图1的方式摆放,∠ACB=∠ECD=90°,随后保持△ABC不动,将△CDE绕点C按逆时针方向旋转α(0°<α<90°),连接AE,BD,延长BD交AE于点F,连接CF.该数学兴趣小组进行如下探究,请你帮忙解答:【初步探究】(1)如图2,当ED∥BC时,则α= ;(2)如图3,当点E,F重合时,请直接写出AF,BF,CF之间的数量关系: ;【深入探究】(3)如图4,当点E,F不重合时,(2)中的结论是否仍然成立?若成立,请给出推理过程;若不成立,请说明理由.【拓展延伸】(4)如图5,在△ABC与△CDE中,∠ACB=∠DCE=90°,若BC=mAC,CD=mCE(m为常数).保持△ABC不动,将△CDE绕点C按逆时针方向旋转α(0°<α<90°),连接AE,BD,延长BD交AE于点F,连接CF,如图6.试探究AF,BF,CF之间的数量关系,并说明理由.7.(2022 菏泽)如图1,在△ABC中,∠ABC=45°,AD⊥BC于点D,在DA上取点E,使DE=DC,连接BE、CE.(1)直接写出CE与AB的位置关系;(2)如图2,将△BED绕点D旋转,得到△B′E′D(点B′、E′分别与点B、E对应),连接CE′、AB′,在△BED旋转的过程中CE′与AB′的位置关系与(1)中的CE与AB的位置关系是否一致?请说明理由;(3)如图3,当△BED绕点D顺时针旋转30°时,射线CE′与AD、AB′分别交于点G、F,若CG=FG,DC=,求AB′的长.8.(2022 岳阳)如图,△ABC和△DBE的顶点B重合,∠ABC=∠DBE=90°,∠BAC=∠BDE=30°,BC=3,BE=2.(1)特例发现:如图1,当点D,E分别在AB,BC上时,可以得出结论:= ,直线AD与直线CE的位置关系是 ;(2)探究证明:如图2,将图1中的△DBE绕点B顺时针旋转,使点D恰好落在线段AC上,连接EC,(1)中的结论是否仍然成立?若成立,请证明;若不成立,请说明理由;(3)拓展运用:如图3,将图1中的△DBE绕点B顺时针旋转α(19°<α<60°),连接AD、EC,它们的延长线交于点F,当DF=BE时,求tan(60°﹣α)的值.9.(2023 镇江)[发现]如图1,有一张三角形纸片ABC,小宏做如下操作:①取AB、AC的中点D、E,在边BC上作MN=DE.②连接EM,过点D、N作DG⊥EM、NH⊥EM,垂足分别为G、H.③将四边形BDGM剪下,绕点D旋转180°至四边形ADPQ的位置,将四边形CEHN剪下,绕点E旋转180°至四边形AEST的位置.④延长PQ、ST交于点F.小宏发现并证明了以下几个结论是正确的:①点Q、A、T在一条直线上;②四边形FPGS是矩形;③△FQT≌△HMN;④四边形FPGS与△ABC的面积相等.[任务1]请你对结论①进行证明.[任务2]如图2,四边形ABCD中,AD∥BC,P、Q分别是AB、CD的中点,连接PQ.求证:PQ=(AD+BC).[任务3]如图3,有一张四边形纸片ABCD,AD∥BC,AD=2,BC=8,CD=9,sin∠DCB=,小丽分别取AB、CD的中点P、Q,在边BC上作MN=PQ,连接MQ,她仿照小宏的操作,将四边形ABCD分割、拼成了矩形.如果她拼成的矩形恰好是正方形,求BM的长.10.(2023 湘潭)问题情境:小红同学在学习了正方形的知识后,进一步进行以下探究活动:在正方形ABCD的边BC上任意取一点G,以BG为边长向外作正方形BEFG,将正方形BEFG绕点B顺时针旋转.特例感知:(1)当BG在BC上时,连接DF,AC相交于点P,小红发现点P恰为DF的中点,如图①.针对小红发现的结论,请给出证明;(2)小红继续连接EG,并延长与DF相交,发现交点恰好也是DF中点P,如图②.根据小红发现的结论,请判断△APE的形状,并说明理由;规律探究:(3)如图③,将正方形BEFG绕点B顺时针旋转α,连接DF,点P是DF中点,连接AP,EP,AE,△APE的形状是否发生改变?请说明理由.21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)HYPERLINK "http://21世纪教育网(www.21cnjy.com)" 21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台备考2024中考二轮数学《高频考点冲刺》(全国通用)专题30 线动问题与面动问题考点扫描☆聚焦中考动态几何中的线动问题与面动问题是近几年各地中考中以选择题、填空题、解答题的形式进行考查,多数题目难度较大,属于压轴题,考查涉及到的知识点包括三角形基本性质、相似三角形、三角函数、四边形的性质、圆的基本性质等,考查的热点有线的对称与旋转、面的平移、面的对称、面的旋转等。考点剖析☆典型例题例1 (2021 郴州)如图1,在等腰直角三角形ABC中,∠BAC=90°,点E,F分别为AB,AC的中点,H为线段EF上一动点(不与点E,F重合),将线段AH绕点A逆时针方向旋转90°得到AG,连接GC,HB.(1)证明:△AHB≌△AGC;(2)如图2,连接GF,HG,HG交AF于点Q.①证明:在点H的运动过程中,总有∠HFG=90°;②若AB=AC=4,当EH的长度为多少时△AQG为等腰三角形?【答案】(1)证明见解析;(2)①证明见解析;②当EH的长度为或2时,△AQG为等腰三角形.【点拨】(1)根据SAS可证明△AHB≌△AGC;(2)①证明△AEH≌△AFG(SAS),可得∠AFG=∠AEH=45°,从而根据两角的和可得结论;②分两种情况:i)如图3,AQ=QG时,ii)如图4,当AG=QG时,分别根据等腰三角形的性质可得结论.【解析】(1)证明:如图1,由旋转得:AH=AG,∠HAG=90°,∵∠BAC=90°,∴∠BAH=∠CAG,∵AB=AC,∴△ABH≌△ACG(SAS);(2)①证明:如图2,在等腰直角三角形ABC中,∠BAC=90°,∴∠ABC=∠ACB=45°,∵点E,F分别为AB,AC的中点,∴EF是△ABC的中位线,∴EF∥BC,AE=AB,AF=AC,∴AE=AF,∠AEF=∠ABC=45°,∠AFE=∠ACB=45°,∵∠EAH=∠FAG,AH=AG,∴△AEH≌△AFG(SAS),∴∠AFG=∠AEH=45°,∴∠HFG=45°+45°=90°;②分两种情况:i)如图3,AQ=QG时,∵AQ=QG,∴∠QAG=∠AGQ,∵∠HAG=∠HAQ+∠QAG=∠AHG+∠AGH=90°,∴∠QAH=∠AHQ,∴AQ=QH=QG,∵AH=AG,∴AQ⊥GH,∵∠AFG=∠AFH=45°,∴∠FGQ=∠FHQ=45°,∴∠HFG=∠AGF=∠AHF=90°,∴四边形AHFG是正方形,∵AC=4,∴AF=2,∴FG=EH=,∴当EH的长度为时,△AQG为等腰三角形;ii)如图4,当AG=QG时,∠GAQ=∠AQG,∵∠AEH=∠AGQ=45°,∠EAH=∠GAQ,∴∠AHE=∠AQG=∠EAH,∴EH=AE=2,∴当EH的长度为2时,△AQG为等腰三角形;综上,当EH的长度为或2时,△AQG为等腰三角形.【点睛】本题是三角形的综合题,考查了旋转的性质,等腰直角三角形的性质和判定,等腰三角形的性质和判定,也考查了全等三角形的判定与性质,第二问要注意分类讨论,不要丢解.例2(2023 衢州)如图1,点O为矩形ABCD的对称中心,AB=4,AD=8,点E为AD边上一点(0<AE<3),连结EO并延长,交BC于点F.四边形ABFE与A′B′FE关于EF所在直线成轴对称,线段B′F交AD边于点G.(1)求证:GE=GF.(2)当AE=2DG时,求AE的长.(3)令AE=a,DG=b.①求证:(4﹣a)(4﹣b)=4.②如图2,连结OB′,OD,分别交AD,B′F于点H,K.记四边形OKGH的面积为S1,△DGK的面积为S2,当a=1时,求的值.【答案】(1)证明见解析;(2)AE的长为6﹣2;(3)①证明见解析;②的值为.【点拨】(1)由四边形ABCD是矩形,可得∠GEF=∠BFE,而四边形ABFE与A′B′FE关于EF所在直线成轴对称,有∠BFE=∠GFE,故∠GEF=∠GFE,GE=GF;(2)过G作GH⊥BC于H,设DG=x,可知AE=2x,GE=AD﹣AE﹣DG=8﹣3x=GF,根据点O为矩形ABCD的对称中心,可得CF=AE=2x,故FH=CF﹣CH=x,在Rt△GFH中,x2+42=(8﹣3x)2,解得x的值从而可得AE的长为6﹣2;(3)①过O作OQ⊥AD于Q,连接OA,OD,OG,由点O为矩形ABCD的对称中心,EF过点O,可得O为EF中点,OA=OD,OQ=AB=2,证明△GOQ∽△OEQ,得=,即GQ EQ=OQ2,故GQ EQ=4,即可得(4﹣a)(4﹣b)=4;②连接B'D,OG,OB,证明B'F=DE,OD=OB=OB',可得△DOG≌△B'OG(SSS),∠ODG=∠OB'G,从而△DGK≌△B'GH(ASA),DK=B'H,GK=GH,即可证△OGK≌△OGH(SSS),得S△OGK=S△OGH,有=,而∠EGF=∠DGB',GE=GF,GD=GB',知EF∥B'D,可得△OKF∽△DKB',△EGF∽△DGB',得=,====,又△EGF∽△DGB',有=,当a=1时,b=,即AE=1,DG=,即可得====.【解析】(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∴∠GEF=∠BFE,∵四边形ABFE与A′B′FE关于EF所在直线成轴对称,∴∠BFE=∠GFE,∴∠GEF=∠GFE,∴GE=GF;(2)解:过G作GH⊥BC于H,如图:设DG=x,则AE=2x,∴GE=AD﹣AE﹣DG=8﹣3x=GF,∵∠GHC=∠C=∠D=90°,∴四边形GHCD是矩形,∴GH=CD=AB=4,CH=DG=x,∵点O为矩形ABCD的对称中心,∴CF=AE=2x,∴FH=CF﹣CH=x,在Rt△GFH中,FH2+GH2=GF2,∴x2+42=(8﹣3x)2,解得x=3+(此时AE大于AD,舍去)或x=3﹣,∴AE=2x=6﹣2;∴AE的长为6﹣2;(3)①证明:过O作OQ⊥AD于Q,连接OA,OD,OG,如图:∵点O为矩形ABCD的对称中心,EF过点O,∴O为EF中点,OA=OD,OQ=AB=2,∵GE=GF,∴OG⊥EF,∴∠GOQ=90°﹣∠EOQ=∠QEO,∵∠GQO=90°=∠OQE,∴△GOQ∽△OEQ,∴=,即GQ EQ=OQ2,∴GQ EQ=4,∵OA=OD,OQ⊥AD,∴AQ=DQ=AD=4,∴EQ=AQ﹣AE=4﹣a,GQ=DQ﹣GD=4﹣b,∴(4﹣a)(4﹣b)=4;②解:连接B'D,OG,OB,如图:∵四边形ABFE与A′B′FE关于EF所在直线成轴对称,∴BF=B'F,∵点O为矩形ABCD的对称中心,∴BF=DE,∴B'F=DE,同理OD=OB=OB',由(1)知GF=GE,∴B'F﹣GF=DE﹣GE,即B'G=DG,∵OG=OG,∴△DOG≌△B'OG(SSS),∴∠ODG=∠OB'G,∵DG=B'G,∠DGK=∠B'GH,∴△DGK≌△B'GH(ASA),∴DK=B'H,GK=GH,∴OD﹣DK=OB'﹣B'H,即OK=OH,∵OG=OG,∴△OGK≌△OGH(SSS),∴S△OGK=S△OGH,∴S1=2S△OGK,∴=,∵∠EGF=∠DGB',GE=GF,GD=GB',∴∠GEF=∠GFE=∠GDB'=∠GB'D,∴EF∥B'D,∴△OKF∽△DKB',△EGF∽△DGB',∴=,∵=,∴====,∵△EGF∽△DGB',∴=,当a=1时,由①知(4﹣1)×(4﹣b)=4,∴b=,∴AE=1,DG=,∴GE=AD﹣AE﹣DG=,∴====,∴的值为.【点睛】本题考查四边形综合应用,涉及轴对称变换,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理及应用等知识,解题的关键是作辅助线,构造全等三角形和相似三角形解决问题.例3(2022 黄石)如图,正方形OABC的边长为,将正方形OABC绕原点O顺时针旋转45°,则点B的对应点B1的坐标为( )A.(﹣,0) B.(,0) C.(0,) D.(0,2)【答案】D【点拨】连接OB,由正方形的性质和勾股定理得OB=2,再由旋转的性质得B1在y轴正半轴上,且OB1=OB=2,即可得出结论.【解析】解:如图,连接OB,∵正方形OABC的边长为,∴OC=BC=,∠BCO=90°,∠BOC=45°,∴OB===2,∵将正方形OABC绕原点O顺时针旋转45°后点B旋转到B1的位置,∴B1在y轴正半轴上,且OB1=OB=2,∴点B1的坐标为(0,2),故选:D.【点睛】本题考查了正方形的性质、旋转的性质、坐标与图形性质以及勾股定理等知识,熟练掌握正方形的性质和旋转的性质是解题的关键.考点过关☆专项突破类型一 线的对称与旋转问题1.(2023 宿迁)【问题背景】由光的反射定律知:反射角等于入射角(如图①,即∠CEF=∠AEF).小军测量某建筑物高度的方法如下:在地面点E处平放一面镜子,经调整自己位置后,在点D处恰好通过镜子看到建筑物AB的顶端A.经测得,小军的眼睛离地面的距离CD=1.7m,BE=20m,DE=2m,求建筑物AB的高度;【活动探究】观察小军的操作后,小明提出了一个测量广告牌高度的做法(如图②):他让小军站在点D处不动,将镜子移动至E1处,小军恰好通过镜子看到广告牌顶端G,测出DE1=2m;再将镜子移动至E2处,恰好通过镜子看到广告牌的底端A,测出DE2=3.4m.经测得,小军的眼睛离地面距离CD=1.7m,BD=10m,求这个广告牌AG的高度;【应用拓展】小军和小明讨论后,发现用此方法也可测量出斜坡上信号塔AB的高度.他们给出了如下测量步骤(如图③):①让小军站在斜坡的底端D处不动(小军眼睛离地面距离CD=1.7m),小明通过移动镜子(镜子平放在坡面上)位置至E处,让小军恰好能看到塔顶B;②测出DE=2.8m;③测出坡长AD=17m;④测出坡比为8:15(即).通过他们给出的方案,请你算出信号塔AB的高度(结果保留整数).【答案】【问题背景】17m;【活动探究】3.5m;【应用拓展】信号塔AB的高度约为20m.【点拨】【问题背景】证△AEB∽△CED,得=,即可解决问题;【活动探究】过点E1作E1F⊥BD,过点E2作E2H⊥BD,证△GE1B∽△CE1D,△AE2B∽△CE2D,得=,=,再由BE1=BD﹣DE1=8m,BE2=BD﹣DE2=6.6m,然后求出GB、AB的长,即可解决问题;【应用拓展】过点B作BM⊥AD于点M,过点C作CN⊥AD于点N,证△DCN∽△ABM,得=,再由锐角三角函数定义得tan∠ABM==,设DN=a m,AM=b m,则CN=,BM=,进而由勾股定理求出a=0.8m,然后由相似三角形的性质得=,即可解决问题.【解析】解:【问题背景】由题意得:AB⊥BD,CD⊥BD,EF⊥BD,∴∠ABE=∠CDE=∠FEB=∠FED=90°,∵∠CEF=∠AEF,∴∠FEB﹣∠AEF=∠FED﹣∠CEF,即∠AEB=∠CED,∴△AEB∽△CED,∴=,∴AB===17(m),答:建筑物AB的高度为17m;【活动探究】如图②,过点E1作E1F⊥BD,过点E2作E2H⊥BD,由题意得:GB⊥BD,CD⊥BD,∴∠GBE1=∠CDE1=∠ABE2=∠CDE2=∠FE1B=∠FE1D=∠HE2B=∠HE2D=90°,∵∠CE2H=∠AE2H,∠CE1F=∠GE1F,∴∠FE1B﹣∠GE1F=∠FE1D﹣∠CE1F,∠HE2B﹣∠AE2H=∠HE2D﹣∠CE2H,即∠GE1B=∠CE1D,∠AE2B=∠CE2D,∴△GE1B∽△CE1D,△AE2B∽△CE2D,∴=,=,∴BE1=BD﹣DE1=10﹣2=8(m),BE2=BD﹣DE2=10﹣3.4=6.6(m),∴GB===6.8(m),AB===3.3(m),∴AG=GB﹣AB=6.8﹣3.3=3.5(m),答:这个广告牌AG的高度为3.5m;【应用拓展】如图,过点B作BM⊥AD于点M,过点C作CN⊥AD于点N,由题意得:BG⊥DG,CD⊥DG,∴∠AGD=∠CDG=∠BMA=∠CND=90°,∵∠BAM=∠GAD,∴90°﹣∠BAM=90°﹣∠GAD,即∠ABM=∠ADG,∵∠ADG+∠DAG=90°,∠ADG+∠CDN=90°,∴∠CDN=∠DAG,∴90°﹣∠CDN=90°﹣∠DAG,即∠DCN=∠ADG,∴∠DCN=∠ADG=∠ABM,∴△DCN∽△ABM,∴=,由题意得:AE=AD﹣DE=17﹣2.8=14.2(m),∵tan∠ADG=,∴tan∠DCN==,tan∠ABM==,设DN=a m,AM=b m,则CN=,BM=,∵CN2+DN2=CD2,∴()2+a2=1.72,解得:a=0.8(m)(负值已舍去),∴EN=DE﹣DN=2.8﹣0.8=2(m),CN==1.5(m),∴=,∴AB=,同【问题背景】得:△BME∽△CNE,∴=,∴=,解得:b=(m),∴AB=×≈20(m),答:信号塔AB的高度约为20m.【点睛】本题是三角形综合题目,考查了相似三角形的判定与性质、直角三角形的性质、勾股定理、锐角三角函数定义等知识,本题综合性强,熟练掌握直角三角形的性质和锐角三角函数定义,证明三角形相似是解题的关键,属于中考常考题型.2.(2021 郴州)如图1,在等腰直角三角形ABC中,∠BAC=90°,点E,F分别为AB,AC的中点,H为线段EF上一动点(不与点E,F重合),将线段AH绕点A逆时针方向旋转90°得到AG,连接GC,HB.(1)证明:△AHB≌△AGC;(2)如图2,连接GF,HG,HG交AF于点Q.①证明:在点H的运动过程中,总有∠HFG=90°;②若AB=AC=4,当EH的长度为多少时△AQG为等腰三角形?【答案】(1)证明见解析;(2)①证明见解析;②当EH的长度为或2时,△AQG为等腰三角形.【点拨】(1)根据SAS可证明△AHB≌△AGC;(2)①证明△AEH≌△AFG(SAS),可得∠AFG=∠AEH=45°,从而根据两角的和可得结论;②分两种情况:i)如图3,AQ=QG时,ii)如图4,当AG=QG时,分别根据等腰三角形的性质可得结论.【解析】(1)证明:如图1,由旋转得:AH=AG,∠HAG=90°,∵∠BAC=90°,∴∠BAH=∠CAG,∵AB=AC,∴△ABH≌△ACG(SAS);(2)①证明:如图2,在等腰直角三角形ABC中,∠BAC=90°,∴∠ABC=∠ACB=45°,∵点E,F分别为AB,AC的中点,∴EF是△ABC的中位线,∴EF∥BC,AE=AB,AF=AC,∴AE=AF,∠AEF=∠ABC=45°,∠AFE=∠ACB=45°,∵∠EAH=∠FAG,AH=AG,∴△AEH≌△AFG(SAS),∴∠AFG=∠AEH=45°,∴∠HFG=45°+45°=90°;②分两种情况:i)如图3,AQ=QG时,∵AQ=QG,∴∠QAG=∠AGQ,∵∠HAG=∠HAQ+∠QAG=∠AHG+∠AGH=90°,∴∠QAH=∠AHQ,∴AQ=QH=QG,∵AH=AG,∴AQ⊥GH,∵∠AFG=∠AFH=45°,∴∠FGQ=∠FHQ=45°,∴∠HFG=∠AGF=∠AHF=90°,∴四边形AHFG是正方形,∵AC=4,∴AF=2,∴FG=EH=,∴当EH的长度为时,△AQG为等腰三角形;ii)如图4,当AG=QG时,∠GAQ=∠AQG,∵∠AEH=∠AGQ=45°,∠EAH=∠GAQ,∴∠AHE=∠AQG=∠EAH,∴EH=AE=2,∴当EH的长度为2时,△AQG为等腰三角形;综上,当EH的长度为或2时,△AQG为等腰三角形.【点睛】本题是三角形的综合题,考查了旋转的性质,等腰直角三角形的性质和判定,等腰三角形的性质和判定,也考查了全等三角形的判定与性质,第二问要注意分类讨论,不要丢解.3.(2023 河北)如图1和图2,平面上,四边形ABCD中,AB=8,,CD=12,DA=6.∠A=90°,点M在AD边上,且DM=2.将线段MA绕点M顺时针旋转n°(0<n≤180)到MA',∠A′MA的平分线MP所在直线交折线AB﹣BC于点P,设点P在该折线上运动的路径长为x(x>0),连接A′P.(1)若点P在AB上,求证:A'P=AP;(2)如图2,连接BD.①求∠CBD的度数,并直接写出当n=180时,x的值;②若点P到BD的距离为2,求tan∠A′MP的值;(3)当0<x≤8时,请直接写出点A′到直线AB的距离(用含x的式子表示).【答案】(1)见解析;(2)①∠CBD=90°,x=13; ②或;(3).【点拨】(1)根据旋转的性质和角平分线的概念得到A′M=AM,∠A′MP=∠AMP,然后证明出△A′MP≌△AMP(SAS),即可得到A′P=AP;(2)①首先根据勾股定理得到 ,然后利用勾股定理的逆定理即可求出∠CBD=90°;画出图形,然后证明出△DNM∽△DBA,利用相似三角形的性质求出 ,然后证明出△PBN∽△DMN,利用相似三角形的性质得到PB=5,进而求解即可;②当P点在AB上时,PQ=2,∠A′MP=∠AMP,分别求得BP,AP,根据正切的定义即可求解;当P在BC上时,则PB=2,过点P作PQ⊥ABAB的延长线于点Q,延长MP交AB的延长线于点H,证明△PQB∽BAD,得 ,进而求得AQ,证明△HPQ∽△HMA,即可求解;(3)如图所示,过点A′作A′F⊥AD于点F,过点P作PE⊥A′F于点E,则四边形AFEP是矩形,证明△A′PE∽△MA′F,根据相似三角形的性质即可求解.【解析】(1)证明:∵将线段MA绕点M顺时针旋转n° (0<n≤180)得到MA′,∴A′M=AM,∵∠A′MA的平分线MP所在的直线交折线AB﹣BC于点P,∴∠A′MP=∠AMP,∵PM=PM,∴△A′MP≌△AMP(SAS),∴A′P=AP;(2)解:①∵AB=8,DA=6,∠A=90°,∴BD==10,又∵,CD=12,∴BD2+BC2=100+44=144,CD2=144,∴BD2+BC2=CD2,∴∠CBD=90°;如图2所示,当n=180时,设MP交BD与点N.∵PM平分∠A′MA.∠PMA=90°,∴PM∥AB,∴△DNM∽△DBA,∴,∵DM=2,DA=6,∴,∴,∴,∵∠PBN=∠NMD=90°,∠PNB=∠DNM,∴△PBN∽△DMN,∴,即 ,∴PB=5,∴x=AB+PB=8+5=13.②如图所示,当P点在AB上时,PQ=2,∠A′MP=∠AMP,∴AB=8,DA=6,∠A=90°,∴,∴,∴BP===,∴,∴tan∠AMP===,如图所示,当P在BC上时,则PB=2,过点P作PQ⊥AB交AB的延长线于点Q,延长MP交AB的延长线于点H,∵∠PQB=∠CBD=∠DAB=90°,∴∠QPB=90°﹣∠PBQ=∠DBA,∴△PQB∽△BAD,∴,即 ,∴,,∴,∵PQ⊥AB,DA⊥AB,∴PQ∥AD,∴△HPQ∽△HMA,∴,∴,解得:,∴tan∠AMP=tan∠QPH===,综上所述,tan∠A′MP的值为或;(3)解:∵当0<x≤8时,∴P在AB上,如图所示,过点A′作A′F⊥AD于点F,过点P作PE⊥A′F于点E,则四边形AFEP是矩形,由△A′PE∽△MA'F,∴==,∵A′P=AP=x,MA′=MA=4,设 A′F=y,PE=h,即∴,4(x﹣y)=x(h﹣4),∴,整理得 ,即点A′到直线AB的距离为.解法二:连接AA′交PM于点G,过点A′作A′H⊥AB于点H.∵MA=MA′,∠PMA=∠PMA′,∴PM⊥AA′,GA=GA′,∵AP=x,AM=4,∴PM=,∴AG==,∴AA′=2AG=,∵PG=PA coS∠APM=,∵PA A′H= AA′ PG,∴A′H==.【点睛】本题属于三角形综合题,考查了全等三角形的性质与判定,相似三角形的性质与判定,折叠的性质,求正切值,熟练掌握以上知识且分类讨论是解题的关键.4.(2023 南充)如图,正方形ABCD中,点M在边BC上,点E是AM的中点,连接ED,EC.(1)求证:ED=EC;(2)将BE绕点E逆时针旋转,使点B的对应点B′落在AC上,连接MB′.当点M在边BC上运动时(点M不与B,C重合),判断△CMB′的形状,并说明理由.(3)在(2)的条件下,已知AB=1,当∠DEB′=45°时,求BM的长.【答案】(1)证明见解析;(2)△CMB′是等腰直角三角形,理由见解析;(3)BM=.【点拨】(1)根据正方形的性质和直角三角形斜边中线的性质可证△EAD≌△EBC(SAS),根据全等三角形的性质即可得证;(2)根据折叠的性质可得根据旋转的性质可得,EB′=EB,再根据直角三角形斜边的中线的性质可得EB′=AE=ME,进一步可得∠AB′M=90°,可得∠CB′M=90°,再根据正方形的性质可得∠B′CM=45°,进一步可得B′M=B′C,可证△MB′C是等腰直角三角形;(3)延长BE交AD于点F,根据三角形外角的性质可得∠BEB′=90°,进一步可得∠DEF=45°,根据△EAD≌△EBC,可得∠AED=∠BEC,进一步可得∠CEM=∠DEF=45°,再证明△CME∽△AMC,根据相似三角形的性质可得CM:AM=EM:CM,可得,设BM=x,则CM=1﹣x,根据勾股定理,AM2=1+x2,列方程求解即可.【解析】(1)证明:在正方形ABCD中,AD=BC,∠BAD=∠ABC=90°,∵E为AM的中点,∴AE=BE,∴∠EAB=∠EBA,∴∠EAD=∠EBC,在△EAD和△EBC中,,∴△EAD≌△EBC(SAS),∴ED=EC;(2)解:△CMB′是等腰直角三角形,理由如下:根据旋转的性质可得,EB′=EB,∵EB=AE=ME,∴EB′=AE=ME,∴∠EAB′=∠EB′A,∠EMB′=∠EB′M,∵∠EAB′+∠EB′A+∠EB′M+∠EMB′=180°,∴∠AB′M=90°,∴∠MB′C=90°,在正方形ABCD中,∠ACB=45°,∴∠B′MC=45°,∴B′M=B′C,∴△CMB′是等腰直角三角形;(3)解:延长BE交AD于点F,如图所示:∵∠BEM=2∠BAE,∠B′EM=2∠B′AE,∵∠BAB′=45°,∴∠BEB′=90°,∴∠B′EF=90°,∵∠DEB′=45°,∴∠DEF=45°,∵△EAD≌△EBC,∴∠AED=∠BEC,∵∠AEF=∠BEM,∴∠CEM=∠DEF=45°,∵∠MCA=45°,∴∠CEM=∠MCA,又∵∠CME=∠AMC,∴△CME∽△AMC,∴CM:AM=EM:CM,∵EM=AM,∴,在正方形ABCD中,BC=AB=1,设BM=x,则CM=1﹣x,根据勾股定理,AM2=1+x2,∴=(1﹣x)2,解得x=或x=2+(舍去),∴BM=.【点睛】本题考查了四边形的综合题,涉及正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,旋转的性质,等腰直角三角形的判定和性质,直角三角形斜边中线的性质,勾股定理等,本题综合性较强,难度较大.5.(2023 朝阳)如图,在正方形ABCD中,点E是对角线BD上一点,连接EA,将线段EA绕点E逆时针旋转,使点A落在射线CB上的点F处,连接EC.【问题引入】(1)请你在图1或图2中证明EF=EC(选择一种情况即可);【探索发现】(2)在(1)中你选择的图形上继续探索:延长FE交直线CD于点M.将图形补充完整,猜想线段DM和线段BF的数量关系,并说明理由;【拓展应用】(3)如图3,AB=3,延长AE至点N,使NE=AE,连接DN.当△ADN的周长最小时,请你直接写出线段DE的长..【答案】(1)证明见解析;(2)DM=BF.理由见解析;(3)DE=.【点拨】(1)选择图1,根据正方形性质可得:BA=BC,∠ABE=∠CBE=45°,进而证得△BEA≌△BEC(SAS),结合旋转的性质即可证得结论;选择图2,同理可证得结论;(2)猜想DM=BF,选择图1,过点F作FH⊥BC交BD于点H,则∠HFB=90°,利用正方形的性质即可证得△HEF≌△DEM(ASA),再利用等腰三角形性质即可得出答案;选择图2,同理可证得结论;(3)取AD的中点G,连接EG,根据三角形中位线定理可得EG=DN,由△ADN的周长=AD+DN+AN=3+2(AE+EG),可得当△ADN的周长最小时,AE+EG最小,此时,C、E、G三点共线,利用勾股定理可得BD=3,再证得△DEG∽△BEC,可得==,即BE=2DE,利用BE+DE=BD,即可求得答案.【解析】(1)证明:选择图1,∵四边形ABCD是正方形,∴BA=BC,∠ABE=∠CBE=45°,∵BE=BE,∴△BEA≌△BEC(SAS),∴EA=EC,由旋转得:EA=EF,∴EF=EC.选择图2,∵四边形ABCD是正方形,∴BA=BC,∠ABE=∠CBE=45°,∵BE=BE,∴△BEA≌△BEC(SAS),∴EA=EC,由旋转得:EA=EF,∴EF=EC.(2)解:猜想DM=BF.理由如下:选择图1,过点F作FH⊥BC交BD于点H,则∠HFB=90°,∵四边形ABCD是正方形,∴∠BCD=90°,∴∠HFB=∠BCD,∴FH∥CD,∴∠HFE=∠M,∵EF=EC,∴∠EFC=∠ECF,∵∠FCD=90°,∴∠EFC+∠M=90°,∠ECD+∠ECF=90°,∴∠M=∠ECM,∴EC=EM,∴EF=EM,∵∠HEF=∠DEM,∴△HEF≌△DEM(ASA),∴DM=FH,∵∠HBF=45°,∠BFH=90°,∴∠BHF=45°,∴BF=FH,∴DM=BF.若选择图2,过点F作FH⊥BC交DB的延长线于点H,则∠HFB=90°,∵四边形ABCD是正方形,∴∠BCD=90°,∴∠HFB=∠BCD,∴FH∥CD,∴∠H=∠EDM,∵EF=EC,∴∠EFC=∠ECF,∵∠EFC+∠FMC=90°,∠ECF+∠ECM=90°,∴∠FMC=∠ECM,∴EC=EM,∴EF=EM,∵∠HEF=∠DEM,∴△HEF≌△DEM(AAS),∴FH=DM,∵∠DBC=45°,∴∠FBH=45°,∴∠H=45°,∴BF=FH,∴DM=BF.(3)解:如图3,取AD的中点G,连接EG,∵NE=AE,∴点E是AN的中点,∴EG=DN,∵△ADN的周长=AD+DN+AN=3+2(AE+EG),∴当△ADN的周长最小时,AE+EG最小,此时,C、E、G三点共线,如图4,∵四边形ABCD是正方形,∴AB=AD=BC=3,AD∥BC,∠BAD=90°,在Rt△ABD中,BD=3,∵点G是AD的中点,∴DG=AD=,=,∵AD∥BC,∴△DEG∽△BEC,∴==,∴BE=2DE,∵BE+DE=BD=3,∴2DE+DE=3,即3DE=3,∴DE=.【点睛】本题是正方形综合题,考查了正方形性质,勾股定理,全等三角形的判定和性质,三角形中位线定理,相似三角形的判定和性质,旋转变换的性质等,熟练掌握全等三角形的判定和性质、相似三角形的判定和性质、三角形中位线定理等是解题关键.6.(2023 阜新)如图,在正方形ABCD中,线段CD绕点C逆时针旋转到CE处,旋转角为α,点F在直线DE上,且AD=AF,连接BF.(1)如图1,当0°<α<90°时,①求∠BAF的大小(用含α的式子表示).②求证:EF=BF.(2)如图2,取线段EF的中点G,连接AG,已知AB=2,请直接写出在线段CE旋转过程中(0°<α<360°)△ADG面积的最大值.【答案】(1)①∠BAF=90°﹣α;②见解析;(2)△ADG面积的最大值为1+.【点拨】(1)①利用等腰三角形的性质,三角形内角和定理计算得到∠FAD=180°﹣α,据此求解即可;②连接BE,计算得到∠BCE=90°﹣α=∠BAF,利用SAS证明△BCE≌△BAF,推出△EBF是等腰直角三角形,据此即可证明EF=BF;(2)过点G作AD的垂直,交直线AD于点H,连接AC,BD相交于点,连接OG,利用直角三角形的性质推出点G在以点O为圆心,OB为半径的一段弧上,得到当点H、O、G在同一直线上时,GH有最大值,则△ADG面积的最大值,据此求解即可.【解析】(1)解:①∵四边形ABCD是正方形,∴AB=BC=CD=DA.∠ADC=∠BCD=∠DAB=90°,由题意得CD=CE,∠DCE=α:∴∠CDE=∠CED=(180°﹣α)=90°﹣α.∴∠ADF=90°﹣∠CDE=90°﹣(90°﹣α)=α,∵AD=AF,∴∠ADF=∠AFD=α,∴∠FAD=180°﹣∠ADF﹣∠AFD=180°﹣α,∴∠BAF=∠FAD﹣∠BAD=180°﹣α﹣90°=90°﹣α;②连接BE.∵∠DCE=α,∴∠BCE﹣90°﹣α=∠BAF,∵CD=CE=AD=AF=BC,∴△BCE≌△BAF(SAS),∴BF=BE,∠ABF=∠CBE.∵∠ABC=90°,∴∠EBF=90°∴△EBF是等腰直角三角形,∴EF=BF;(2)解:过点G作AD的垂线,交直线AD于点H,连接AC,BD相交于点,O,连接OG,由(1)得△EBF是等腰直角三角形,又点G为斜边EF的中点,∴BG⊥EF,即∠BGD=90°,∵四边形ABCD是正方形,∴OB=OD.∴OB=OD=OG,∴点G在以点O为圆心,OB为半径的一段弧上,当点H、O、G在同一直线上时,GH有最大值,则△ADG面积的最大值,∴GH=AB+OG=AB+BD=×2+×2=1+.∴△ADG面积的最大值为AD×GH=1+.【点睛】本题考查的是正方形的判定和性质、全等三角形的判定和性质、等腰直角三角形的判定和性质、直角三角形的性质、勾股定理,掌握相关的判定定理和性质定理是解题的关键.7.(2023 衡阳)[问题探究](1)如图1,在正方形ABCD中,对角线AC、BD相交于点O.在线段AO上任取一点P(端点除外),连接PD、PB.①求证:PD=PB;②将线段DP绕点P逆时针旋转,使点D落在BA的延长线上的点Q处.当点P在线段AO上的位置发生变化时,∠DPQ的大小是否发生变化?请说明理由;③探究AQ与OP的数量关系,并说明理由.[迁移探究](2)如图2,将正方形ABCD换成菱形ABCD,且∠ABC=60°,其他条件不变.试探究AQ与CP的数量关系,并说明理由.【答案】见解析【点拨】(1)①根据正方形的性质证明△DCP≌△BCP,即可得到结论;②作PM⊥AB,PN⊥AD,垂足分别为点M、N,如图,可得PM=PN,证明四边形AMPN是矩形,推出∠MPN=90°,证明Rt△DPN≌Rt△QPM(HL),得出∠DPN=∠QPM,进而可得结论;③作PE⊥AO交AB于点E,作EF⊥OB于点F,如图,证明AQ=BE,BE=EF即可得出结论;.(2)先证明PQ=PB,作PE∥BC交AB于点E,EG∥AC交BC于点G,如图,则四边形PEGC是平行四边形,可得EG=PC,△APE,△BEG都是等边三角形,进一步即可证得结论.【解析】(1)①证明:∵四边形ABCD是正方形,∴CD=CB,∠DCA=∠BCA=45°.∵CP=CP,∴△DCP≌△BCP,∴PD=PB;②解:∠DPQ的大小不发生变化,∠DPQ=90°;理由:作PM⊥AB,PN⊥AD,垂足分别为点M、N,如图,∵四边形ABCD是正方形,∴∠DAC=∠BAC=45°,∠DAB=90°,∴四边形AMPN是矩形,PM=PN,∴∠MPN=90°..∵PD=PQ,PM=PN,∴Rt△DPN≌Rt△QPM(HL),∴∠DPN=∠QPM,∴∠QPN+∠QPM=90°.∴∠QPN+∠DPN=90°,即∠DPQ=90°;③解:AQ=OP;理由:作PE⊥AO交AB于点E,作EF⊥OB于点F,如图,∵四边形ABCD是正方形,∴∠BAC=45°,∠AOB=90°,∴∠AEP=45°,四边形OPEF是矩形,∴∠PAE=∠PEA=45°,EF=OP,∴PA=PE,∵PD=PB,PD=PQ,∴PQ=PB,作PM⊥AE于点M,则QM=BM,AM=EM,∴AQ=BE,∵∠EFB=90°,∠EBF=45°,∴BE=EF,∴AQ=OP;(2)解:AQ=CP;理由:四边形ABCD是菱形,∠ABC=60°,∴AB=BC,AC⊥BD,DO=BO,∴△ABC是等边三角形,AC垂直平分BD,∴∠BAC=60°,PD=PB,∵PD=PQ,∴PQ=PB,作PE∥BC交AB于点E,EG∥AC交BC于点G,如图,则四边形PEGC是平行四边形,∠GEB=∠BAC=60°,∠AEP=∠ABC=60°,∴EG=PC,△APE,△BEG都是等边三角形,∴BE=EG=PC,作PM⊥AB于点M,则QM=MB,AM=EM,∴QA=BE,∴AQ=CP.【点睛】本题是四边形综合题,主要考查了正方形、菱形的性质,矩形、平行四边形、等边三角形的判定和性质,全等三角形的判定和性质以及解直角三角形等知识,熟练掌握相关图形的判定和性质、正确添加辅助线是解题的关键.8.(2023 牡丹江) ABCD中,AE⊥BC,垂足为E,连接DE,将ED绕点E逆时针旋转90°,得到EF,连接BF.(1)当点E在线段BC上,∠ABC=45°时,如图①,求证:AE+EC=BF;(2)当点E在线段BC延长线上,∠ABC=45°时,如图②;当点E在线段CB延长线上,∠ABC=135°时,如图③,请猜想并直接写出线段AE,EC,BF的数量关系;(3)在(1)、(2)的条件下,若BE=3,DE=5,则CE= 1或7 .【答案】(1)证明见解析;(2)图②,AE﹣EC=BF;图③,EC﹣AE=BF;(3)1或7.【点拨】(1)由∠AEB=90°,∠ABC=45°,得∠BAE=∠ABC=45°,则BE=AE,由旋转得∠DEF=90°,EF=ED,则∠BEF=∠AED=90°﹣∠AEF,即可证明△BEF≌△AED,得BF=AD,由平行四边形的性质得BC=AD,则AE+EC=BE+EC=BC=AD=BF;(2)当点E在线段BC延长线上,则∠AEB=90°,所以∠BAE=∠ABC=45°,则BE=AE,而∠DEF=90°,EF=ED,则∠BEF=∠AED=90°﹣∠AEF,即可证明△BEF≌△AED,所以BF=AD,则AE﹣EC=BE﹣EC=BC=AD=BF;当点E在线段CB延长线上,∠ABC=135°时,则∠AEB=90°,∠ABE=180°﹣∠ABC=45°,所以∠BAE=∠ABE=45°,仍可证明△BEF≌△AED,得BF=AD,所以EC﹣AE=EC﹣BE=BC=AD=BF;(3)分三种情况,一是点E在BC边上,由AD∥BC,得∠DAE=∠AEB=90°,则AD==4,所以BC=AD=4,则CE=BC﹣BE=1;二是点E在线段BC延长线上,仍可求得AD===4,则BF=AD=4,由AE﹣EC=BF,得EC=AE﹣BF=﹣1,即CE=﹣1,不符合题意,舍去;三是点E在线段CB延长线上,∠ABC=135°,可求得AD==4,则BC=AD=4,所以CE=BE﹣BC+3+4=7,于是得到问题的答案.【解析】(1)证明:如图①,∵AE⊥BC于点E,∴∠AEB=90°,∵∠ABC=45°,∴∠BAE=∠ABC=45°,∴BE=AE,∵将ED绕点E逆时针旋转90°,得到EF,∴∠DEF=90°,EF=ED,∴∠BEF=∠AED=90°﹣∠AEF,∵BE=AE,∠BEF=∠AED,EF=ED,∴△BEF≌△AED(SAS),∴BF=AD,∵四边形ABCD是平行四边形,∴BC=AD,∴AE+EC=BE+EC=BC=AD,∴AE+EC=BF.(2)解:图②,AE﹣EC=BF;图③,EC﹣AE=BF,理由:如图②,AE⊥BC交BC的延长线于点E,∴∠AEB=90°,∵∠ABC=45°,∴∠BAE=∠ABC=45°,∴BE=AE,∵将ED绕点E逆时针旋转90°,得到EF,∴∠DEF=90°,EF=ED,∴∠BEF=∠AED=90°﹣∠AEF,∵BE=AE,∠BEF=∠AED,EF=ED,∴△BEF≌△AED(SAS),∴BF=AD,∵BC=AD,∴AE﹣EC=BE﹣EC=BC=AD,∴AE﹣EC=BF;如图③,AE⊥BC交CB的延长线于点E,∴∠AEB=90°,∵∠ABC=135°,∴∠ABE=180°﹣∠ABC=45°,∴∠BAE=∠ABE=45°,∴BE=AE,∵将ED绕点E逆时针旋转90°,得到EF,∴∠DEF=90°,EF=ED,∴∠BEF=∠AED=90°﹣∠BED,∵BE=AE,∠BEF=∠AED,EF=ED,∴△BEF≌△AED(SAS),∴BF=AD,∴BC=AD,∴EC﹣AE=EC﹣BE=BC=AD,∴EC﹣AE=BF.(3)解:如图①,∵AD∥BC,∴∠DAE=∠AEB=90°,∵AE=BE=3,DE=5,∴AD===4,∴BC=AD=4,∴CE=BC﹣BE=4﹣3=1;如图②,∵AD∥BC,∴∠DAE=∠AEB=90°,∵AE=BE=3,DE=5,∴AD===4,∴BF=AD=4,∵AE﹣EC=BF,∴EC=AE﹣BF=3﹣4=﹣1,即CE=﹣1,不符合题意,舍去;如图③,∵AD∥BC,∴∠DAE=180°﹣∠AEB=90°,∵AE=BE=3,DE=5,∴AD===4,∴BC=AD=4,∴CE=BE﹣BC+3+4=7,综上所述,CE=1或CE=7,故答案为:1或7.【点睛】此题重点考查平行四边形的性质、旋转的性质、全等三角形的判定与性质、勾股定理等知识,此题综合性强,难度较大,证明△BEF≌△AED是解题的关键.9.(2022 临沂)已知△ABC是等边三角形,点B,D关于直线AC对称,连接AD,CD.(1)求证:四边形ABCD是菱形;(2)在线段AC上任取一点P(端点除外),连接PD.将线段PD绕点P逆时针旋转,使点D落在BA延长线上的点Q处.请探究:当点P在线段AC上的位置发生变化时,∠DPQ的大小是否发生变化?说明理由.(3)在满足(2)的条件下,探究线段AQ与CP之间的数量关系,并加以证明.【答案】(1)见解析;(2)不会发生变化,证明见解析;(3)AQ=CP.【点拨】(1)根据菱形的判定定理和轴对称图形的性质解答即可;(2)连接PB,过点P分别作PE∥CB交AB于点E,PF⊥AB于点F,根据全等三角形的判定定理,等腰三角形的性质,轴对称图形的性质解答即可;(3)根据等腰三角形的性质解答即可.【解析】(1)证明:连接BD,等边△ABC中,AB=BC=AC,∵点B、D关于直线AC对称,∴DC=BC,AD=AB,∴AB=BC=CD=DA,∴四边形ABCD是菱形;(2)解:当点P在线段AC上的位置发生变化时,∠DPQ的大小不发生变化,始终等于60°,理由如下:∵将线段PD绕点P逆时针旋转,使点D落在BA延长线上的点Q处,∴PQ=PD,等边△ABC中,AB=BC=AC,∠BAC=∠ABC=∠ACB=60°,连接PB,过点P分别作PE∥CB交AB于点E,PF⊥AB于点F,如图则∠APE=∠ACB=60°,∠AEP=∠ABC=60°,∴∠BAC=∠APE=∠AEP=60°,∴△APE是等边三角形,∴AP=EP=AE,而PF⊥AB,∴∠APF=∠EPF,∵点B,D关于直线AC对称,点P在线段AC上,∴PB=PD,∠DPA=∠BPA,∴PQ=PB,∴∠PDA=∠PBA,∠PBA=∠PQA,∴∠PDA=∠PQB∴∠DPQ=∠DAQ=60°;解法二:连接BP,通过证明△ADP≌△ABP,利用旋转和全等三角形的性质分析求解;(3)解:在满足(2)的条件下,线段AQ与CP之间的数量关系是AQ=CP,证明如下:∵AC=AB,AP=AE,∴AC﹣AP=AB﹣AE,即CP=BE,∵AP=EP,PF⊥AB,∴AF=FE,∵PQ=PB,PF⊥AB,∴QF=BF,∴QF﹣AF=BF﹣EF,即AQ=BE,∴AQ=CP.【点睛】本题主要考查了菱形的判定定理,等腰三角形的性质,轴对称图形的性质,等边三角形的判定定理,熟练掌握相关性质和定理是解答本题的关键.类型二 面的平移问题1.(2022 常州)如图,在Rt△ABC中,∠C=90°,AC=9,BC=12.在Rt△DEF中,∠F=90°,DF=3,EF=4.用一条始终绷直的弹性染色线连接CF,Rt△DEF从起始位置(点D与点B重合)平移至终止位置(点E与点A重合),且斜边DE始终在线段AB上,则Rt△ABC的外部被染色的区域面积是 21 .【答案】见解析【点拨】如图,连接CF交AB于点M,连接CF′交AB于点N,过点F作FG⊥AB于点G,过点F′作F′H⊥AB于点H,连接FF′,则四边形FGHF′是矩形,Rt△ABC的外部被染色的区域是梯形MFF′N.求出梯形的上下底以及高,可得结论.【解析】解:如图,连接CF交AB于点M,连接CF′交AB于点N,过点F作FG⊥AB于点H,过点F′作F′H⊥AB于点G,连接FF′,则四边形FGHF′是矩形,Rt△ABC的外部被染色的区域是梯形MFF′N.在Rt△DEF中,DF=3,EF=4,∴DE===5,在Rt△ABC中,AC=9,BC=12,∴AB===15,∵ DF EF= DE GF,∴FG=,∴BG===,∴GE=BE﹣BG=,AH=GE=,∴F′H=FG=,∴FF′=GH=AB﹣BG﹣AH=15﹣5=10,∵BF∥AC,∴==,∴BM=AB=,同法可证AN=AB=,∴MN=15﹣﹣=,∴Rt△ABC的外部被染色的区域的面积=×(10+)×=21,故答案为:21.【点睛】本题考查勾股定理,梯形的面积,平行线分线段成比例定理等知识,解题的关键是理解题意,学会添加常用辅助线,构造直角三角形解决问题,属于中考填空题在的压轴题.2.(2023 天津)在平面直角坐标系中,O为原点,菱形ABCD的顶点A(,0),B(0,1),D(2,1),矩形EFGH的顶点E(0,),,H(0,).(1)填空:如图①,点C的坐标为 (,2) ,点G的坐标为 (﹣,) ;(2)将矩形EFGH沿水平方向向右平移,得到矩形E′FG′H′,点E,F,G,H的对应点分别为E′,F′,G′,H′,设EE′=t,矩形E′F′G′H′与菱形ABCD重叠部分的面积为S.①如图②,当边E′F′与AB相交于点M、边G′H′与BC相交于点N,且矩形E′F′G′H′与菱形ABCD重叠部分为五边形时,试用含有t的式子表示S,并直接写出t的取值范围;②当时,求S的取值范围(直接写出结果即可).【答案】(1)(,2),(﹣,);(2)①<t≤,②.【点拨】(1)根据矩形及菱形的性质可进行求解;(2)①由题意易得EF=EF'=,EH=EH'=1,然后可得∠ABO=60°,则有EM=,进而根据割补法可进行求解面积S;②由①及题意可知当≤t≤时,矩形E'F'G'H'和菱形ABCD重叠部分的面积S是增大的,当<t≤时,矩形E'F'G'H'和菱形ABCD重叠部分的面积S是减小的,然后根据题意画出图形计算面积的最大值和最小值即可.【解析】(1)解:四边形EFGH是矩形,且E(0,).F(﹣,)(0,),∴EF=GH=,EH=FG=1,∴G(﹣,);连接AC,BD,交于一点H,如图所示:∵四边形ABCD是菱形,且A(,0),B(0,1),D(2,1),AB=AD=,AC⊥BD,CM=AM=OB=1,BM﹣MD=OA=,∴AC=2,∴C(,2),故答案为(,2),(﹣,);(2)解:①∵点E(0,),点F(﹣,),点H(0,),∴矩形EFGH中,EF∥x轴,E'H'⊥x轴,EF=,EH=1,∴矩形E'F'G'H'中,E'F'∥x轴,E'H'⊥x轴,E'F'=,E'H'=1,由点A(,0),点B(0,1),得OA=,OB=1,在Rt△ABO中,tan∠ABO=,得∠ABO=60°,在Rt△BME中,由EM=EB×tan60°,EB=1﹣=,得EM=,∴S△BME=EB×EM=,同理,得S△BNH=,∵EE'=t,得S矩形EE'H'H=EE'×EH=t,又S=S矩形EE'H'H﹣S△BME﹣S△BNH,∴S=t﹣,当EE'=EM=时,则矩形E'F'G'H'和菱形ABCD重叠部分为△BE'H',∴t的取值范围是<t≤,②由①及题意可知当≤t时,矩形E'F'G'H'和菱形ABCD重叠部分的面积S是增大的,当时,矩E'F'G'H'和菱形ABCD重叠部分的面积S是减小的,∴当t=时,矩形E'F'G'H'和菱形ABCD重叠部分如图所示:此时面积S最大,最大值为S=1×=;当t=时,矩形E'F'G'H'和菱形ABCD重叠部分如图所示:由(1)可知B、D之间的水平距离为2,则有点D到G'F'的距离为,由①可知:∠D=∠B=60°,∴矩形E'F'G'H'和菱形ABCD重叠部分为等边三角形,∴该等边三角形的边长为2×,∴此时面积S最小,最小值为,综上所述:当时,则.【点睛】本题主要考查矩形、菱形的性质及三角函数、图形与坐标,熟练掌握矩形、菱形的性质及三角函数、图形与坐标是解题的关键.类型三 面的对称问题1.(2023 长春)如图,将正五边形纸片ABCDE折叠,使点B与点E重合,折痕为AM,展开后,再将纸片折叠,使边AB落在线段AM上,点B的对应点为点B',折痕为AF,则∠AFB'的大小为 45 度.【答案】45【点拨】由多边形的内角和及轴对称的性质和三角形内角和可得出结论.【解析】解:∵五边形的内角和为(5﹣2)×180°=540°,∴∠B=∠BAE=108°,由图形的折叠可知,∠BAM=∠EAM=∠BAE=54°,∠BAF=∠FAB'=∠BAM=27°,∠AFB'=∠AFB=180°﹣∠B﹣∠BAF=180°﹣108°﹣27°=45°.故答案为:45.【点睛】本题考查了多边形的内角和,三角形的内角和定理,图形的折叠的性质,掌握这些知识点是解题的关键.2.(2023 扬州)如图,已知正方形ABCD的边长为1,点E、F分别在边AD、BC上,将正方形沿着EF翻折,点B恰好落在CD边上的点B′处,如果四边形ABFE与四边形EFCD的面积比为3:5,那么线段FC的长为 .【答案】.【点拨】连接BB',过点F作FH⊥AD,设CF=x,则DH=x,BF=1﹣x,根据已知条件,分别表示出AE、EH、HD,证明△EHF≌△B'CB,得出EH=B'C=﹣2x,在Rt△B'FC中,根据勾股定理建立方程即可解答.【解析】解:如图,连接BB',过点F作FH⊥AD,∵已知正方形ABCD的边长为1,四边形ABFE与四边形EFCD的面积比为3:5,∴S四边形ABFE=,设CF=x,则DH=x,BF=1﹣x,∴S四边形ABFE=,即,解得AE=x﹣,∴DE=1﹣AE=,∴EH=ED﹣HD=,由折叠的性质可得BB'⊥EF,∴∠1+∠2=∠BGF=90°,∵∠2+∠3=90°,∴∠1=∠3,又FH=BC=1,∠EHF=∠C,∴△EHF≌△B'CB(ASA),∴EH=B'C=,在Rt△B'FC中,B'F2=B'C2+CF2,∴(1﹣x)2=x2+()2,解得x=.故答案为:.【点睛】本题主要考查了正方形的性质,全等三角形的判定与性质,勾股定理,轴对称的性质,熟练掌握正方形的性质是解题的关键.3.(2022 南充)如图,正方形ABCD边长为1,点E在边AB上(不与A,B重合),将△ADE沿直线DE折叠,点A落在点A1处,连接A1B,将A1B绕点B顺时针旋转90°得到A2B,连接A1A,A1C,A2C.给出下列四个结论:①△ABA1≌△CBA2;②∠ADE+∠A1CB=45°;③点P是直线DE上动点,则CP+A1P的最小值为;④当∠ADE=30°时,△A1BE的面积为.其中正确的结论是 ①②③ .(填写序号)【答案】①②③.【点拨】①正确.根据SAS证明三角形全等即可;②正确.过点D作DT⊥CA1于点T,证明∠ADE+∠CDT=45°,∠CDT=∠BCA1即可;③正确.连接PA,AC.因为A,A1关于DE对称,推出PA=PA1,推出PA1+PC=PA+PC≥AC=,可得结论;④错误.过点A1作A1H⊥AB于点H,求出EB,A1H,可得结论.【解析】解:∵四边形ABCD是正方形,∴BA=BC,∠ABC=90°,∵∠A1BA2=∠ABC=90°,∴∠ABA1=∠CBA2,∵BA1=BA2,∴△ABA1≌△CBA2(SAS),故①正确,过点D作DT⊥CA1于点T,∵CD=DA1,∴∠CDT=∠A1DT,∵∠ADE=∠A1DE,∠ADC=90°,∴∠ADE+∠CDT=45°,∵∠CDT+∠DCT=90°,∠DCT+∠BCA1=90°,∴∠CDT=∠BCA1,∴∠ADE+∠BCA1=45°,故②正确.连接PA,AC.∵A,A1关于DE对称,∴PA=PA1,∴PA1+PC=PA+PC≥AC=,∴PA1+PC的最小值为,故③正确,过点A1作A1H⊥AB于点H,∵∠ADE=30°,∴AE=A1E=AD tan30°=,∴EB=AB﹣AE=1﹣,∵∠A1EB=60°,∴A1H=A1E sin60°=×=,∴=×(1﹣)×=,故④错误.故答案为:①②③.【点睛】本题考查正方形的性质,解直角三角形,翻折变换,全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.4.(2022 新疆)如图,在△ABC中,∠ABC=30°,AB=AC,点O为BC的中点,点D是线段OC上的动点(点D不与点O,C重合),将△ACD沿AD折叠得到△AED,连接BE.(1)当AE⊥BC时,∠AEB= 60 °;(2)探究∠AEB与∠CAD之间的数量关系,并给出证明;(3)设AC=4,△ACD的面积为x,以AD为边长的正方形的面积为y,求y关于x的函数解析式.【答案】(1)60;(2)∠AEB=30°+∠CAD,理由见解析;(3)y=(2﹣x)2+4.【点拨】(1)由折叠的性质可得AC=AE=AB,由等腰三角形的性质可求解;(2)由折叠的性质可得AE=AC,∠CAD=∠EAD,由等腰三角形的性质可求解;(3)由等腰直角三角形的性质和直角三角形的性质可求AO的长,由勾股定理可求OD的长,由面积和差关系可求解.【解析】解:(1)∵∠ABC=30°,AB=AC,AE⊥BC,∴∠BAE=60°,∵将△ACD沿AD折叠得到△AED,∴AC=AE,∴AB=AE,∴∠AEB=60°,故答案为:60;(2)∠AEB=30°+∠CAD,理由如下:∵将△ACD沿AD折叠得到△AED,∴AE=AC,∠CAD=∠EAD,∵∠ABC=30°,AB=AC,∴∠BAC=120°,∴∠BAE=120°﹣2∠CAD,∵AB=AE=AC,∴∠AEB==30°+∠CAD;(3)如图,连接OA,∵AB=AC,点O是BC的中点,∴OA⊥BC,∵∠ABC=∠ACB=30°,AC=4,∴AO=2,OC=2,∵OD2=AD2﹣AO2,∴OD=,∵S△ADC=×OC×AO﹣×OD×OA,∴x=×2×2﹣×2×,∴y=(2﹣x)2+4.【点睛】本题是四边形综合题,考查了等腰直角三角形的性质,直角三角形的性质,折叠的性质等知识,灵活运用这些性质解决问题是解题的关键.5.(2023 盐城)综合与实践【问题情境】如图1,小华将矩形纸片ABCD先沿对角线BD折叠,展开后再折叠,使点B落在对角线BD上,点B的对应点记为B′,折痕与边AD,BC分别交于点E,F.【活动猜想】(1)如图2,当点B′与点D重合时,四边形BEDF是哪种特殊的四边形?答: 菱形 .【问题解决】(2)如图3,当AB=4,AD=8,BF=3时,求证:点A′,B′,C在同一条直线上.【深入探究】(3)如图4,当AB与BC满足什么关系时,始终有A′B′与对角线AC平行?请说明理由.(4)在(3)的情形下,设AC与BD,EF分别交于点O,P,试探究三条线段AP,B′D,EF之间满足的等量关系,并说明理由.【答案】(1)菱形.(2)证明见解析;(3)当BC=AB时,始终有A′B′与对角线AC平行.证明见解答;(4)EF=2(AP+B′D),证明见解答.【点拨】(1)由折叠可得:EF⊥BD,OB=OD,再证得△BFO≌△DEO(ASA),可得OE=OF,利用菱形的判定定理即可得出答案;(2)设EF与BD交于点M,过点B′作B′K⊥BC于K,利用勾股定理可得BD=4,再证明△BFM∽△BDC,可求得BM=,进而可得BB′=,再由△BB′K∽△BDC,可求得B′K=,BK=,CK=BC﹣BK=8﹣=,运用勾股定理可得B′C=4,运用勾股定理逆定理可得∠CB′F=90°,进而可得∠A′B′F+∠CB′F=90°+90°=180°,即可证得结论;(3)设∠OAB=∠OBA=α,则∠OBC=90°﹣α,利用折叠的性质和平行线性质可得:∠AB′B=∠AOB=α,再运用三角形内角和定理即可求得α=60°,利用解直角三角形即可求得答案;(4)过点E作EG⊥BC于G,设EF交BD于H,设AE=m,EF=n,利用解直角三角形可得B′D=BD﹣BB′=n﹣(m+n)=n﹣m,AP=2AE cos30°=m,即可得出结论.【解析】(1)解:当点B′与点D重合时,四边形BEDF是菱形.理由:设EF与BD交于点O,如图,由折叠得:EF⊥BD,OB=OD,∴∠BOF=∠DOE=90°,∵四边形ABCD是矩形,∴AD∥BC,∴∠OBF=∠ODE,∴△BFO≌△DEO(ASA),∴OE=OF,∴四边形BEDF是菱形.故答案为:菱形.(2)证明:∵四边形ABCD是矩形,AB=4,AD=8,BF=3,∴BC=AD=8,CD=AB=4,∠BCD=90°,∴CF=BC﹣BF=8﹣3=5,∴BD===4,如图,设EF与BD交于点M,过点B′作B′K⊥BC于K,由折叠得:∠A′B′F=∠ABF=∠BMF=∠B′MF=90°,B′F=BF=3,BB′=2BM,∴∠BMF=∠BCD,∵∠FBM=∠DBC,∴△BFM∽△BDC,∴=,即=,∴BM=,∴BB′=,∵∠BKB′=∠BCD,∠B′BK=∠DBC,∴△BB′K∽△BDC,∴==,即==,∴B′K=,BK=,∴CK=BC﹣BK=8﹣=,∴B′C===4,∵B′F2+B′C2=32+42=25,CF2=52=25,∴B′F2+B′C2=CF2,∴∠CB′F=90°,∴∠A′B′F+∠CB′F=90°+90°=180°,∴点A′,B′,C在同一条直线上.(3)解:当BC=AB时,始终有A′B′与对角线AC平行.理由:如图,设AC、BD交于点O,∵四边形ABCD是矩形,∴OA=OB,∠ABC=90°,∵BC=AB,∴tan∠BAC==,∴∠BAC=60°,∴△OAB是等边三角形,∴∠ABO=∠AOB=60°,由折叠得:∠A′B′B=∠ABO=60°,∴∠A′B′B=∠AOB,∴A′B′∥AC,故当BC=AB时,始终有A′B′与对角线AC平行.(4)解:EF=2(AP+B′D),理由如下:如图,过点E作EG⊥BC于G,设EF交BD于H,由折叠得:EF⊥BD,B′F=BF,∠BFE=∠B′FE,设AE=m,EF=n,由(3)得:∠BAC=60°=∠ABD,∴∠BB′F=∠DBC=30°,∴∠BFE=∠B′FE=60°,∴EG=EF sin60°=n,FG=EF cos60°=n,∵∠EAB=∠ABG=∠BGE=90°,∴四边形ABGE是矩形,∴AB=EG=n,BG=AE=m,AD∥BC,∴BF=B′F=m+n,∴BH=BF cos30°=(m+n),∴BB′=2BH=(m+n),∵BD=2AB=n,∴B′D=BD﹣BB′=n﹣(m+n)=n﹣m,∵AD∥BC,∴∠DEF=∠EFG=60°,∴∠APE=∠DEF﹣∠DAC=60°﹣30°=30°=∠DAC,∴AP=2AE cos30°=m,∴AP+B′D=m+(n﹣m)=n,∴AP+B′D=EF,即EF=2(AP+B′D).【点睛】本题是四边形综合题,考查了矩形的性质和判定,菱形的判定,勾股定理,直角三角形性质,等腰三角形性质,平行线性质,全等三角形的判定和性质,相似三角形的判定和性质,解直角三角形等,涉及知识点多,综合性强,难度较大.6.(2023 沈阳)如图1,在 ABCD纸片中,AB=10,AD=6,∠DAB=60°,点E为BC边上的一点(点E不与点C重合),连接AE,将 ABCD纸片沿AE所在直线折叠,点C,D的对应点分别为C′,D′,射线C′E与射线AD交于点F.(1)求证:AF=EF;(2)如图2,当EF⊥AF时,DF的长为 5 ;(3)如图3,当CE=2时,过点F作FM⊥AE,垂足为点M,延长FM交C′D′于点N,连接AN,EN,求△ANE的面积.【答案】(1)证明过程见解析;(2)5﹣6;(3)13.【点拨】(1)可推出∠FAE+∠AEC=180°,∠AEC′=∠AEC,从而∠FAE+∠AEC′=180°,因为∠AEF+∠AEC′=180°,所以∠FAE=∠AEF;(2)作AG⊥CB,交CB的延长线于G,可推出矩形AGFE是正方形,可得出AF=AG=AB sin∠ABG=10×=5,进而得出结果;(3)作AQ⊥CB,交CB的延长线于Q,作MT⊥AF于T,交HD的延长线于G,作HR⊥MT于R,解直角三角形ABQ,依次求得BQ、AQ、EQ、AE的值,进而求得AM的值,根据cos∠DAE=cos∠AEQ得出,从而求得AT=,同样求得MT=,从而得出DT的值,解Rt△DGT求得GT,从而得出MG的值,根据tan∠FMT=tan∠DAE=tan∠AEQ得出,从而设HR=5k,RM=9k,进而表示出GR=HR=,进而根据GR+RM=MG列出15k+9k=4,从而得出k=,进一步得出结果.【解析】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠FAE+∠AEC=180°,由折叠得:∠AEC′=∠AEC,∴∠FAE+∠AEC′=180°,∵∠AEF+∠AEC′=180°,∴∠FAE=∠AEF,∴AF=EF;(2)解:如图1,作AG⊥CB,交CB的延长线于G,在 ABCD中,AD∥BC,∴∠ABG=∠DAB=60°,∠FEG=180°﹣∠F=90°,∴AG=AB sin∠ABG=10×=5,四边形AGEF是矩形,由(1)知:AF=EF,∴矩形AGFE是正方形,∴AF=AG=5,∴DF=AF﹣AD=5﹣6,故答案为:5﹣6;(3)解:如图2,作AQ⊥CB,交CB的延长线于Q,作MT⊥AF于T,交HD的延长线于G,作HR⊥MT于R,∵CB∥AD,∴∠ABQ=∠DAB=60°,∴BQ=AB cos60°=10×=5,AQ=10 sin60°=5,∴EQ=BE+BQ=9,∴AE=,由(1)知:AF=EF,∵FM⊥AE,∴AM=EM=AE=,又∵ ABCD纸片沿AE所在直线折叠,点C,D的对应点分别为C′,D′,∴HM=MN,∵cos∠DAE=cos∠AEQ,∴,∴,∴AT=,同理可得:MT=,∴DT=AD﹣AT=6﹣=,在Rt△DGT中,∠GDT=∠DAB=60°,DT=,∴GT=,∴MG=GT+MT=,∵tan∠FMT=tan∠DAE=tan∠AEQ,∴,∴设HR=5k,RM=9k,∵tan∠GHR=tan∠GDT,∴=,∴GR=HR=,由GR+RM=MG得,15k+9k=4,∴k=,∴HR=5k=,∵sin∠FMT=sin∠DAE=sin∠AEQ,∴,∴,∴HM=,∴MN=,∴S△ANE==13.【点睛】本题考查了平行四边形的性质,矩形、正方形的判定和性质,解直角三角形,轴对称的性质等知识,解决问题的关键是作辅助线,熟练运用解直角三角形.7.(2022 深圳)(1)发现:如图①所示,在正方形ABCD中,E为AD边上一点,将△AEB沿BE翻折到△BEF处,延长EF交CD边于G点.求证:△BFG≌△BCG;(2)探究:如图②,在矩形ABCD中,E为AD边上一点,且AD=8,AB=6.将△AEB沿BE翻折到△BEF处,延长EF交BC边于G点,延长BF交CD边于点H,且FH=CH,求AE的长.(3)拓展:如图③,在菱形ABCD中,AB=6,E为CD边上的三等分点,∠D=60°.将△ADE沿AE翻折得到△AFE,直线EF交直线BC于点P,求PC的长.【答案】(1)证明见解析;(2)AE的长为;(3)CP的长为或.【点拨】(1)根据将△AEB沿BE翻折到△BEF处,四边形ABCD是正方形,得AB=BF,∠BFE=∠A=90°,即得∠BFG=90°=∠C,可证Rt△BFG≌Rt△BCG(HL);(2)延长BH,AD交于Q,设FH=HC=x,在Rt△BCH中,有82+x2=(6+x)2,得x=,DH=DC﹣HC=,由△BFG∽△BCH,得==,BG=,FG=,而EQ∥GB,DQ∥CB,可得=,即=,DQ=,设AE=EF=m,则DE=8﹣m,因=,有=,即解得AE的长为;(3)分两种情况:(Ⅰ)当DE=DC=2时,延长FE交AD于Q,过Q作QH⊥CD于H,设DQ=x,QE=y,则AQ=6﹣x,CP=2x,由AE是△AQF的角平分线,有=①,在Rt△HQE中,(2﹣x)2+(x)2=y2②,可解得x=,CP=2x=;(Ⅱ)当CE=DC=2时,延长FE交AD延长线于Q',过Q'作Q'H'⊥CD交CD延长线于H',同理解得x'=,CP=.【解析】(1)证明:∵将△AEB沿BE翻折到△BEF处,四边形ABCD是正方形,∴AB=BF,∠BFE=∠A=90°,∴∠BFG=90°=∠C,∵AB=BC=BF,BG=BG,∴Rt△BFG≌Rt△BCG(HL);(2)解:延长BH,AD交于Q,如图:设FH=HC=x,在Rt△BCH中,BC2+CH2=BH2,∴82+x2=(6+x)2,解得x=,∴DH=DC﹣HC=,∵∠BFG=∠BCH=90°,∠HBC=∠FBG,∴△BFG∽△BCH,∴==,即==,∴BG=,FG=,∵EQ∥GB,DQ∥CB,∴△EFQ∽△GFB,△DHQ∽△CHB,∴=,即=,∴DQ=,设AE=EF=m,则DE=8﹣m,∴EQ=DE+DQ=8﹣m+=﹣m,∵△EFQ∽△GFB,∴=,即=,解得m=,∴AE的长为;方法2:连接GH,如图:∵CH=FH,GH=GH,∴Rt△FGH≌Rt△CGH(HL),∴CG=FG,设CG=FG=x,则BG=8﹣x,在Rt△BFG中,BF2+FG2=BG2,∴62+x2=(8﹣x)2,解得x=,∴BG=BC﹣x=,∵∠GBE=∠AEB=∠FEB,∴EG=BG=,∴EF=EG﹣FG=;∴AE=;(3)解:方法一:(Ⅰ)当DE=DC=2时,延长FE交AD于Q,过Q作QH⊥CD于H,如图:设DQ=x,QE=y,则AQ=6﹣x,∵CP∥DQ,∴△CPE∽△QDE,∴==2,∴CP=2x,∵△ADE沿AE翻折得到△AFE,∴EF=DE=2,AF=AD=6,∠QAE=∠FAE,∴AE是△AQF的角平分线,∴=,即=①,∵∠D=60°,∴DH=DQ=x,HE=DE﹣DH=2﹣x,HQ=DH=x,在Rt△HQE中,HE2+HQ2=EQ2,∴(2﹣x)2+(x)2=y2②,联立①②可解得x=,∴CP=2x=;(Ⅱ)当CE=DC=2时,延长FE交AD延长线于Q',过Q'作Q'H'⊥CD交CD延长线于H',如图:设DQ'=x',Q'E=y',则AQ'=6+x',同理∠Q'AE=∠EAF,∴=,即=,由H'Q'2+H'E2=Q'E2得:(x')2+(x'+4)2=y'2,可解得x'=,∴CP=x'=,综上所述,CP的长为或.方法二:(Ⅰ)当DE=DC=2时,连接CF,过P作PK⊥CD于K,如图:∵四边形ABCD是菱形,∠D=60°,∴△ABC,△ADC是等边三角形,∴∠ACB=∠ACD=60°,AD=AC,∴∠PCK=60°,∵将△ADE沿AE翻折得到△AFE,∴∠AFE=∠D=60°=∠ACB,AF=AD=AC,EF=DE=2,∴∠AFC=∠ACF,∴∠PFC=∠PCF,∴PF=PC,设PF=PC=2m,在Rt△PCK中,CK=m,PK=m,∴EK=EC﹣CK=4﹣m,在Rt△PEK中,EK2+PK2=PE2,∴(4﹣m)2+(m)2=(2+2m)2,解得m=,∴PC=2m=;(Ⅱ)当CE=DC=2时,连接CF,过P作PT⊥CD交DC延长线于T,如图:同(Ⅰ)可证AC=AD=AF,∠ACB=60°=∠D=∠AFE,∴∠ACF=∠AFC,∴∠ACF﹣∠ACB=∠AFC﹣∠AFE,即∠PCF=∠PFC,∴PC=PF,设PC=PF=2n,在Rt△PCT中,CT=n,PT=n,∴ET=CE+CT=2+n,EP=EF﹣PF=DE﹣PF=4﹣2n,在Rt△PET中,PT2+ET2=PE2,∴(n)2+(2+n)2=(4﹣2n)2,解得n=,∴PC=2n=,综上所述,CP的长为或.【点睛】本题考查四边形的综合应用,涉及全等三角形的判定,相似三角形的判定与性质,三角形角平分线的性质,勾股定理及应用等知识,解题的关键是方程思想的应用.类型四 面的旋转问题1.(2023 东营)如图,在平面直角坐标系中,菱形OABC的边长为2,点B在x轴的正半轴上,且∠AOC=60°,将菱形OABC绕原点O逆时针方向旋转60°,得到四边形OA′B′C′(点A′与点C重合),则点B′的坐标是( )A.(3,3) B.(3,3) C.(3,6) D.(6,3)【答案】B【点拨】如图,过B′作B′D⊥y轴于D,连接OB′,根据旋转的性质得到OC′=C′B′=2,∠C′OB′=∠COA=60°,B′C′∥OC,根据平行线的性质得到∠DC′B′=∠C′OC=60°,求得∠DB′C′=30°,根据直角三角形的性质即可得到结论.【解析】解:如图,过B′作B′D⊥y轴于D,连接OB′,∵将菱形OABC绕原点O逆时针方向旋转60°,得到四边形OA′B′C′,∠AOC=60°,菱形OABC的边长为2,∴OC′=C′B′=2,∠C′OB′=∠C′OC=30°,B′C′∥OC,∴∠DC′B′=∠C′OC=60°,∴∠DB′C′=30°,∴,DB′=B′C′=3,∴,∴B′的坐标是(3,3),故选:B.【点睛】本题考查了菱形的性质,坐标与图形变化﹣旋转,直角三角形的性质,正确地作出辅助线是解题的关键.2.(2022 广西)如图,在△ABC中,CA=CB=4,∠BAC=α,将△ABC绕点A逆时针旋转2α,得到△AB′C′,连接B′C并延长交AB于点D,当B′D⊥AB时,的长是( )A.π B.π C.π D.π【答案】B【点拨】证明α=30°,根据已知可算出AD的长度,根据弧长公式即可得出答案.【解析】解:∵CA=CB,CD⊥AB,∴AD=DB=AB′.∴∠AB′D=30°,∴α=30°,∵AC=4,∴AD=AC cos30°=4×=2,∴,∴的长度l==π.故选:B.【点睛】本题主要考查了弧长的计算及旋转的性质,熟练掌握弧长的计算及旋转的性质进行求解是解决本题的关键.3.(2022 镇江)如图,在等腰△ABC中,∠BAC=120°,BC=6,⊙O同时与边BA的延长线、射线AC相切,⊙O的半径为3.将△ABC绕点A按顺时针方向旋转α(0°<α≤360°),B、C的对应点分别为B′、C′,在旋转的过程中边B′C′所在直线与⊙O相切的次数为( )A.1 B.2 C.3 D.4【答案】C【点拨】设⊙O与边BA的延长线、射线AC分别相切于点T、点G,连接OA交⊙O于点L,连接OT,作AE⊥BC于点E,OH⊥BC于点H,先求得BE=CE=3,∠B=∠ACB=30°,则AE=BE tan30°=3,再证明OA∥BC,则OH=AE=OT=OL=3,可证明直线BC与⊙O相切,再求得OA=2OT=6,则AL=3,作AK⊥B′C′于点K,由旋转得AK=AE=3,∠AKB′=∠AEB=90°,直线B′C′与⊙O相切存在三种情况,一是△ABC绕点A旋转到点K与点L重合,二是△ABC绕点A旋转到B′C′∥OA,三是△ABC绕点A旋转到B′C′与BC重合,即旋转角α=360°,分别加以说明即可.【解析】解:如图1,由题意可知⊙O同时与边BA的延长线、射线AC相切,⊙O的半径为3,设⊙O与边BA的延长线、射线AC分别相切于点T、点G,连接OA交⊙O于点L,连接OT,∴AT⊥OT,OT=3,作AE⊥BC于点E,OH⊥BC于点H,则∠AEB=90°,∵AB=AC,∠BAC=120°,BC=6,∴BE=CE=BC=3,∠B=∠ACB=(∠180﹣∠BAC)=30°,∴AE=BE tan30°=3×=3,∵∠TAC=180°﹣∠BAC=60°,∴∠OAG=∠OAT=∠TAC=30°,∴∠OAG=∠ACB,∴OA∥BC,∴OH=AE=OT=OL=3,∴直线BC与⊙O相切,∵∠ATO=90°,∴OA=2OT=6,∴AL=3,作AK⊥B′C′于点K,由旋转得AK=AE=3,∠AKB′=∠AEB=90°,如图2,△ABC绕点A旋转到点K与点L重合,∵∠OLB′=180°﹣∠ALB′=180°﹣∠AKB′=90°,∴B′C′⊥OL,∵OL为⊙O的半径,∴B′C′与⊙O相切;如图3,△ABC绕点A旋转到B′C′∥OA,作OR⊥B′C′交C′B′的延长线于点R,∵OR=AK=3,∴B′C′与⊙O相切;当△ABC绕点A旋转到B′C′与BC重合,即旋转角α=360°,则B′C′与⊙O相切,综上所述,在旋转的过程中边B′C′所在直线与⊙O相切3次,故选:C.【点睛】此题重点考查等腰三角形的性质、圆的切线的判定、锐角三角函数以及数形结合与分类讨论数学思想的运用等知识与方法,画出图形并且正确地作出所需要的辅助线是解题的关键.4.(2021 黑龙江)如图,矩形ABCD的边CD上有一点E,∠DAE=22.5°,EF⊥AB,垂足为F,将△AEF绕着点F顺时针旋转,使得点A的对应点M落在EF上,点E恰好落在点B处,连接BE.下列结论:①BM⊥AE;②四边形EFBC是正方形;③∠EBM=30°;④S四边形BCEM:S△BFM=(2+1):1.其中结论正确的序号是( )A.①② B.①②③ C.①②④ D.③④【答案】C【点拨】延长BM交AE于N,连接AM,由垂直的定义可得∠AFE=∠EFB=90°,根据直角三角形的两个锐角互余得∠EAF=67.5°,从而有∠EAF+∠FBM=90°,得到①正确;根据三个角是直角可判断四边形EFBC是矩形,再由EF=BF可知是正方形,故②正确,计算出∠EBM=22.5°得③错误;根据等腰直角三角形的性质可知AM=FM,推导得出AM=EM=FM,从而EF=EM+FM=(+1)FM,得到S△EFB:S△BFM=( ):1,再由S四边形BCEF=2S△EFB,得S四边形BCEM:S△BFM=(2+1):1,判断出④正确.【解析】解:如图,延长BM交AE于N,连接AM,∵EF⊥AB,∴∠AFE=∠EFB=90°,∵∠DAE=22.5°,∴∠EAF=90°﹣∠DAE=67.5°,∵将△AEF绕着点F顺时针旋转得△MFB,∴MF=AF,FB=FE,∠FBM=∠AEF=∠DAE=22.5°,∴∠EAF+∠FBM=90°,∴∠ANB=90°,∴BM⊥AE,故①正确;∵四边形ABCD是矩形,∴∠ABC=∠C=90°,∵∠EFB=90°,∴四边形EFBC是矩形,又∵EF=BF,∴矩形EFBC是正方形,故②正确;∴∠EBF=45°,∴∠EBM=∠EBF﹣∠FBM=45°﹣22.5°=22.5°,故③错误;∵∠AFM=90°,AF=FM,∴∠MAF=45°,AM=,∴∠EAM=67.5°﹣45°=22.5°,∴∠AEM=∠MAE,∴EM=AM=FM,∴EF=EM+FM=(+1)FM,∴S△EFB:S△BFM=( ):1,又∵四边形BCEF是正方形,∴S四边形BCEF=2S△EFB,∴S四边形BCEM:S△BFM=(2+1):1,故④正确,∴正确的是:①②④,故选:C.【点睛】本题考查了矩形的性质、旋转的性质、勾股定理和正方形的判定与性质,掌握常用辅助线的添加方法,灵活运用相关知识是解题的关键.5.(2022 山西)综合与实践问题情境:在Rt△ABC中,∠BAC=90°,AB=6,AC=8.直角三角板EDF中∠EDF=90°,将三角板的直角顶点D放在Rt△ABC斜边BC的中点处,并将三角板绕点D旋转,三角板的两边DE,DF分别与边AB,AC交于点M,N.猜想证明:(1)如图①,在三角板旋转过程中,当点M为边AB的中点时,试判断四边形AMDN的形状,并说明理由;问题解决:(2)如图②,在三角板旋转过程中,当∠B=∠MDB时,求线段CN的长;(3)如图③,在三角板旋转过程中,当AM=AN时,直接写出线段AN的长.【答案】(1)四边形AMDN是矩形,理由见解析;(2)CN=;(3).【点拨】(1)由三角形中位线定理可得MD∥AC,可证∠A=∠AMD=∠MDN=90°,即可求解;(2)由勾股定理可求BC的长,由中点的性质可得CG的长,由锐角三角函数可求解;(3)利用对角互补模型可证点A,点M,点D,点N四点共圆,可得∠ADN=∠AMN=45°,由直角三角形的性质可求HN的长,即可求解.【解析】解:(1)四边形AMDN是矩形,理由如下:∵点D是BC的中点,点M是AB的中点,∴MD∥AC,∴∠A+∠AMD=180°,∵∠BAC=90°,∴∠AMD=90°,∵∠A=∠AMD=∠MDN=90°,∴四边形AMDN是矩形;(2)如图2,过点N作NG⊥CD于G,∵AB=6,AC=8,∠BAC=90°,∴BC==10,∵点D是BC的中点,∴BD=CD=5,∵∠MDN=90°=∠A,∴∠B+∠C=90°,∠BDM+∠1=90°,∴∠1=∠C,∴DN=CN,又∵NG⊥CD,∴DG=CG=,∵cosC=,∴,∴CN=;(3)如图③,连接MN,AD,过点N作HN⊥AD于H,∵AM=AN,∠MAN=90°,∴∠AMN=∠ANM=45°,∵∠BAC=∠EDF=90°,∴点A,点M,点D,点N四点共圆,∴∠ADN=∠AMN=45°,∵NH⊥AD,∴∠ADN=∠DNH=45°,∴DH=HN,∵BD=CD=5,∠BAC=90°,∴AD=CD=5,∴∠C=∠DAC,∴tanC=tan∠DAC==,∴AH=HN,∵AH+HD=AD=5,∴DH=HN=,AH=,∴AN===.解法二:如图,延长MD到T,使得MD=DT,连接NT,CT.设AM=AN=a.证明CT=BM=6﹣a,NM=NT=a,∠NCT=90°,由NT2=CN2+CT2,可得(a)2=(8﹣a)2+(6﹣a)2,解得a=.解法三:也可以通过D向AC和AB分别作垂线DQ和DP,通过△DPM∽△DQN相似来算.【点睛】本题是三角形综合题,考查了矩形的判定,直角三角形的性质,勾股定理,锐角三角函数,圆的有关知识,灵活运用这些性质解决问题是解题的关键.6.(2022 达州)某校一数学兴趣小组在一次合作探究活动中,将两块大小不同的等腰直角三角形ABC和等腰直角三角形CDE,按如图1的方式摆放,∠ACB=∠ECD=90°,随后保持△ABC不动,将△CDE绕点C按逆时针方向旋转α(0°<α<90°),连接AE,BD,延长BD交AE于点F,连接CF.该数学兴趣小组进行如下探究,请你帮忙解答:【初步探究】(1)如图2,当ED∥BC时,则α= 45° ;(2)如图3,当点E,F重合时,请直接写出AF,BF,CF之间的数量关系: BF=AF+CF ;【深入探究】(3)如图4,当点E,F不重合时,(2)中的结论是否仍然成立?若成立,请给出推理过程;若不成立,请说明理由.【拓展延伸】(4)如图5,在△ABC与△CDE中,∠ACB=∠DCE=90°,若BC=mAC,CD=mCE(m为常数).保持△ABC不动,将△CDE绕点C按逆时针方向旋转α(0°<α<90°),连接AE,BD,延长BD交AE于点F,连接CF,如图6.试探究AF,BF,CF之间的数量关系,并说明理由.【答案】(1)45°;(2)BF=AF+CF,理由见解析;(3)成立,理由见解析;(4)BF=mAF+ FC.【点拨】(1)由平行线的性质和等腰直角三角形的定义可得α的值;(2)先根据SAS证明△ACE≌△BCD(SAS),得AF=BD,最后由线段的和及等腰直角三角形斜边与直角边的关系可得结论;(3)如图4,过点C作CG⊥CF交BF于点G,证△BCG≌△ACF(ASA),得GC=FC,BG=AF,则△GCF为等腰直角三角形,GF=CF,即可得出结论;(4)先证△BCD∽△ACE,得∠CBD=∠CAE,过点C作CG⊥CF交BF于点G,再证△BGC∽△AFC,得BG=mAF,GC=mFC,然后由勾股定理求出GF= FC,即可得出结论.【解析】解:(1)∵△CED是等腰直角三角形,∴∠CDE=45°,∵ED∥BC,∴∠BCD=∠CDE=45°,即α=45°,故答案为:45°;(2)BF=AF+CF,理由如下:如图3,∵△ABC和△CDE是等腰直角三角形,∴∠DCE=∠ACB,AC=BC,CD=CE,DF=CF,∴∠ACE=∠BCD,∴△ACE≌△BCD(SAS),∴AF=BD,∵BF=DF+BD,∴BF=AF+CF;故答案为:BF=AF+CF;(3)如图4,当点E,F不重合时,(2)中的结论仍然成立,理由如下:由(2)知,△ACE≌△BCD(SAS),∴∠CAF=∠CBD,过点C作CG⊥CF交BF于点G,∵∠ACF+∠ACG=90°,∠ACG+∠GCB=90°,∴∠ACF=∠BCG,∵∠CAF=∠CBG,BC=AC,∴△BCG≌△ACF(ASA),∴GC=FC,BG=AF,∴△GCF为等腰直角三角形,∴GF=CF,∴BF=BG+GF=AF+CF;(4)BF=mAF+ FC.理由如下:由(2)知,∠ACE=∠BCD,而BC=mAC,CD=mEC,即==m,∴△BCD∽△ACE,∴∠CBD=∠CAE,过点C作CG⊥CF交BF于点G,如图6所示:由(3)知,∠BCG=∠ACF,∴△BGC∽△AFC,∴===m,∴BG=mAF,GC=mFC,在Rt△CGF中,GF=== CF,∴BF=BG+GF=mAF+ FC.【点睛】本题是三角形的综合题,考查了旋转的性质,全等三角形的性质和判定,相似三角形的判定和性质等知识,解题的关键是理解题意,学会利用参数构建方程解决问题,学会运用类比的方法解决问题,属于中考压轴题.7.(2022 菏泽)如图1,在△ABC中,∠ABC=45°,AD⊥BC于点D,在DA上取点E,使DE=DC,连接BE、CE.(1)直接写出CE与AB的位置关系;(2)如图2,将△BED绕点D旋转,得到△B′E′D(点B′、E′分别与点B、E对应),连接CE′、AB′,在△BED旋转的过程中CE′与AB′的位置关系与(1)中的CE与AB的位置关系是否一致?请说明理由;(3)如图3,当△BED绕点D顺时针旋转30°时,射线CE′与AD、AB′分别交于点G、F,若CG=FG,DC=,求AB′的长.【答案】(1)CE⊥AB;(2)在△BED旋转的过程中CE′与AB′的位置关系与(1)中的CE与AB的位置关系是一致,理由见解析;(3)5.【点拨】(1)由等腰直角三角形的性质可得,∠ABC=∠DAB=45°,∠DCE=∠DEC=∠AEH=45°,可得结论;(2)通过证明△ADB'∽△CDE',可得∠DAB'=∠DCE',由余角的性质可得结论;(3)由等腰直角的性质和直角三角形的性质可得AB'=AD,即可求解.【解析】解:(1)如图1,延长CE交AB于H,∵∠ABC=45°,AD⊥BC,∴∠ADC=∠ADB=90°,∠ABC=∠DAB=45°,∵DE=CD,∴∠DCE=∠DEC=∠AEH=45°,∴∠BHC=∠BAD+∠AEH=90°,∴CE⊥AB;(2)在△BED旋转的过程中CE′与AB′的位置关系与(1)中的CE与AB的位置关系是一致,理由如下:如图2,延长CE'交AB'于H,由旋转可得:CD=DE',B'D=AD,∵∠ADC=∠ADB=90°,∴∠CDE'=∠ADB',又∵=1,∴△ADB'∽△CDE',∴∠DAB'=∠DCE',∵∠DCE'+∠DGC=90°,∴∠DAB'+∠AGH=90°,∴∠AHC=90°,∴CE'⊥AB';(3)如图3,过点D作DH⊥AB'于点H,∵△BED绕点D顺时针旋转30°,∴∠BDB'=30°,B'D=BD=AD,∴∠ADB'=120°,∠DAB'=∠AB'D=30°,∵DH⊥AB',∴AD=2DH,AH=DH=B'H,∴AB'=AD,由(2)可知:△ADB'∽△CDE',∴∠DCE'=∠DAB'=30°,∵AD⊥BC,CD=,∴DG=1,CG=2DG=2,∴CG=FG=2,∵∠DAB'=30°,CE'⊥AB',∴AG=2GF=4,∴AD=AG+DG=4+1=5,∴AB'=AD=5.【点睛】本题是三角形综合题,考查了等腰三角形的性质,直角三角形的性质,旋转的性质,相似三角形的判定和性质等知识,证明三角形相似是解题的关键.8.(2022 岳阳)如图,△ABC和△DBE的顶点B重合,∠ABC=∠DBE=90°,∠BAC=∠BDE=30°,BC=3,BE=2.(1)特例发现:如图1,当点D,E分别在AB,BC上时,可以得出结论:= ,直线AD与直线CE的位置关系是 垂直 ;(2)探究证明:如图2,将图1中的△DBE绕点B顺时针旋转,使点D恰好落在线段AC上,连接EC,(1)中的结论是否仍然成立?若成立,请证明;若不成立,请说明理由;(3)拓展运用:如图3,将图1中的△DBE绕点B顺时针旋转α(19°<α<60°),连接AD、EC,它们的延长线交于点F,当DF=BE时,求tan(60°﹣α)的值.【答案】(1),垂直;(2)结论不变,证明见解析;(3).【点拨】(1)解直角三角形求出EC,AD,可得结论;(2)结论不变,证明△ABD∽△CBE,推出==,∠ADB=∠BEC,可得结论;(3)如图3中,过点B作BJ⊥AC于点J,设BD交AK于点K,过点K作KT⊥AB于点K.求出BJ,JK,可得结论.【解析】解:(1)在Rt△ABC中,∠B=90°,BC=3,∠A=30°,∴AB=BC=3,在Rt△BDE中,∠BDE=30°,BE=2,∴BD=BE=2,∴EC=1,AD=,∴=,此时AD⊥EC,故答案为:,垂直;(2)结论成立.理由:∵∠ABC=∠DBE=90°,∴∠ABD=∠CBE,∵AB=BC,BD=BE,∴=,∴△ABD∽△CBE,∴==,∠ADB=∠BEC,∵∠ADB+∠CDB=180°,∴∠CDB+∠BEC=180°,∴∠DBE+∠DCE=180°,∵∠DBE=90°,∴∠DCE=90°,∴AD⊥EC;(3)如图3中,过点B作BJ⊥AC于点J,设BD交AK于点K,过点K作KT⊥AB于点T.∵∠AJB=90°,∠BAC=30°,∴∠ABJ=60°,∴∠KBJ=60°﹣α.∵AB=3,∴BJ=AB=,AJ=BJ=,当DF=BE时,四边形BEFD是矩形(由∠DBE=90°,∠F=90,取DE中点,证明BDFE四点共圆,再由BE=DF推得弧等,从而圆周角∠DEF=∠BDE=30°,则∠BEF=90°,由3个直角得矩形),∴∠ADB=90°,AD===,设KT=m,则AT=m,AK=2m,∵∠KTB=∠ADB=90°,∴tanα==,∴=,∴BT=m,∴m+m=3,∴m=,∴AK=2m=,∴KJ=AJ﹣AK=﹣=,∴tan(60°﹣α)==.解法二:证明∠CAF=60°﹣α,通过tan(60°﹣α)=求解即可.【点睛】本题属于三角形综合题,考查了解直角三角形,相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考压轴题.9.(2023 镇江)[发现]如图1,有一张三角形纸片ABC,小宏做如下操作:①取AB、AC的中点D、E,在边BC上作MN=DE.②连接EM,过点D、N作DG⊥EM、NH⊥EM,垂足分别为G、H.③将四边形BDGM剪下,绕点D旋转180°至四边形ADPQ的位置,将四边形CEHN剪下,绕点E旋转180°至四边形AEST的位置.④延长PQ、ST交于点F.小宏发现并证明了以下几个结论是正确的:①点Q、A、T在一条直线上;②四边形FPGS是矩形;③△FQT≌△HMN;④四边形FPGS与△ABC的面积相等.[任务1]请你对结论①进行证明.[任务2]如图2,四边形ABCD中,AD∥BC,P、Q分别是AB、CD的中点,连接PQ.求证:PQ=(AD+BC).[任务3]如图3,有一张四边形纸片ABCD,AD∥BC,AD=2,BC=8,CD=9,sin∠DCB=,小丽分别取AB、CD的中点P、Q,在边BC上作MN=PQ,连接MQ,她仿照小宏的操作,将四边形ABCD分割、拼成了矩形.如果她拼成的矩形恰好是正方形,求BM的长.【答案】[任务1]见解析;[任务2]见解析;[任务3].【点拨】[任务1]根据旋转的性质得到∠QAD=∠ABC,∠TAE=∠ACB,求得∠QAD+∠DAE+∠TAE=180°,于是得到点Q、A、T在一条直线上;[任务2]连接AQ并延长交BC的延长线于E,根据平行线的性质得到∠DAQ=∠E,根据全等三角形的判定和性质定理得到AQ=EQ,AD=CE,根据三角形中位线定理即可得到结论;[任务3]由[任务2]知PQ∥BC,PQ=5,作DR⊥BC于R,在Rt△DCR中,根据三角函数的定义得到DR=CD sin∠DCB=9×=,根据勾股定理得到QE==4,作QH⊥BC于H,根据相似三角形的性质即可得到结论.【解析】[任务1]证明:由旋转得,∠QAD=∠ABC,∠TAE=∠ACB,∵∠ABC+∠BAC+∠ACB=180°,∴∠QAD+∠DAE+∠TAE=180°,∴点Q、A、T在一条直线上;[任务2]证明:连接AQ并延长交BC的延长线于E,∵AD∥BC,∴∠DAQ=∠E,∵Q是CD的中点,∴DQ=CQ,∵∠AQD=∠EQC,∴△ADQ≌△ECQ(AAS),∴AQ=EQ,AD=CE,∵P是AB的中点,∴PQ是△ABC的中位线,∴PQ=BE=(CE+BC),∴PQ=(AD+BC);[任务3]解:由[任务2]知PQ∥BC,PQ=5,作DR⊥BC于R,在Rt△DCR中,DR=CD sin∠DCB=9×=,∴四边形ABCD的面积=(AD+BC)DR=(2+8)×=36,∵四边形ABCD的面积=四边形GEST的面积,四边形GEST是正方形,∴GE=6,PE=3,∴QE==4,∵Q是CD的中点,∴CQ=,作QH⊥BC于H,∴QH=CQ sin∠DCB=,∴CH==,∵PQ∥BC,∴∠PQE=∠QMH,∵∠PEQ=∠QHM,∴△PEQ∽△QMH,∴,∴,∴HM=,∴BM=BC﹣HM﹣CH=8﹣=.【点睛】本题是四边形的综合题,考查了梯形的性质,全等三角形的判定定理,相似三角形的判定和性质,勾股定理,解直角三角形,正确地作出辅助线是解题的关键.10.(2023 湘潭)问题情境:小红同学在学习了正方形的知识后,进一步进行以下探究活动:在正方形ABCD的边BC上任意取一点G,以BG为边长向外作正方形BEFG,将正方形BEFG绕点B顺时针旋转.特例感知:(1)当BG在BC上时,连接DF,AC相交于点P,小红发现点P恰为DF的中点,如图①.针对小红发现的结论,请给出证明;(2)小红继续连接EG,并延长与DF相交,发现交点恰好也是DF中点P,如图②.根据小红发现的结论,请判断△APE的形状,并说明理由;规律探究:(3)如图③,将正方形BEFG绕点B顺时针旋转α,连接DF,点P是DF中点,连接AP,EP,AE,△APE的形状是否发生改变?请说明理由.【答案】(1)证明过程详见解析;(2)△APE是等腰直角三角形;(3)△APE仍然是等腰直角三角形.【点拨】(1)延长FG,交AC于H,可推出FG=BG,CG=GH,从而CD=FH,进而得出△CDP≌△HFP,进一步得出结论;(2)延长EG,交AD的延长线于点M,设DF和EG交于点Q,同理(1)可证得△DQM≌△FQE,从而DQ=FQ,从而得出点Q和点P重合,进一步得出结论;(3)延长EP至Q,是PQ=PE,连接DQ,延长DA和FE,交于点N,△PDQ≌△PFE,从而DQ=EF,∠PQD=∠PEF,所以∠N+∠ADQ=180°,可推出∠N+∠ABE=180°,进而推出△ADQ≌△ABE,AE=AQ,∠DAQ=∠BAE,进而推出∠QAE=90°,进一步得出结论.【解析】解:(1)如图1,延长FG,交AC于H,∵四边形ABCD和四边形BEFG是正方形,∴BC=CD,FG=BG,CD∥AE,FG∥AE,∠CGH=∠BGF=90°,∴∠CHG=45°,CD∥FG,∴∠ACB=∠CHG,∠CDP=∠HFP,∠DCP=∠FHP,∴CG=GH,∴CG+BG=GH+FG,∴BC=FH,∴CD=FH,∴△CDP≌△HFP(ASA),∴点P是DF的中点;(2)如图2,△APE是等腰直角三角形,理由如下:延长EG,交AD的延长线于点M,设DF和EG交于点Q,∵四边形ABCD和四边形BEFG是正方形,∴∠BAD=90°,∠BEG=45°,AD=AB,BE=EF,AD∥BC∥EF,∠BAC=45°,∴∠M=45°,∠M=∠GEF,∠MDQ=∠EFQ,∴∠M=∠BEG,∴AM=AE,∴AM﹣AD=AE﹣AB,∴DM=BE,∴DM=EF,∴△DQM≌△FQE(ASA),∴DQ=FQ,∴点Q和点P重合,即:EG与DF的交点恰好也是DF中点P,∵∠BAC=45°,∠BEG=45°,∴∠APE=90°,AP=EP,∴△APE是等腰直角三角形;(3)如图3,△APE仍然是等腰直角三角形,理由如下:延长EP至Q,是PQ=PE,连接DQ,延长DA和FE,交于点N,∵DP=PF,∠DPQ=∠EPF,∴△PDQ≌△PFE(SAS),∴DQ=EF,∠PQD=∠PEF,∴∠N+∠ADQ=180°,∵四边形ABCD和四边形BEFG是正方形,∴∠BAN=∠DAB=90°,∠BEN=∠BEF=90°,AB=AD,BE=EF,∴∠N+∠ABE=360°﹣∠BAN﹣∠BEN=360°﹣90°﹣90°=180°,DQ=BE,∴∠ABE=∠ADQ,∴△ADQ≌△ABE(SAS),∴AE=AQ,∠DAQ=∠BAE,∴∠BAE+∠BAQ=∠DAQ+∠BAQ=∠BAD=90°,∴∠QAE=90°,∴AP⊥EQ,AP=PE=,∴△APE是等腰直角三角形.【点睛】本题考查了正方形的性质,全等三角形的判定和性质,等腰直角三角形的判定和性质等知识,解决问题的关键是“倍长中线”.21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)HYPERLINK "http://21世纪教育网(www.21cnjy.com)" 21世纪教育网(www.21cnjy.com) 展开更多...... 收起↑ 资源列表 专题30 线动问题与面动问题(学生版).doc 专题30 线动问题与面动问题(解析版).doc