2025届高中数学一轮复习:第三章3.2 导数与函数的单调性(课件+讲义+练习四份打包)

资源下载
  1. 二一教育资源

2025届高中数学一轮复习:第三章3.2 导数与函数的单调性(课件+讲义+练习四份打包)

资源简介

(共94张PPT)
第三章
§3.2 导数与函数的单调性
1.结合实例,借助几何直观了解函数的单调性与导数的关系.
2.能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次).
3.会利用函数的单调性判断大小,求参数的取值范围等简单应用.
课标要求
内容索引
第一部分 落实主干知识
第二部分 探究核心题型
课时精练
第一部分
落实主干知识
1.函数的单调性与导数的关系
条件 恒有 结论
函数y=f(x)在区 间(a,b)上可导 f′(x)>0 f(x)在区间(a,b)上_________
f′(x)<0 f(x)在区间(a,b)上_________
f′(x)=0 f(x)在区间(a,b)上是_________
单调递增
单调递减
常数函数
2.利用导数判断函数单调性的步骤
第1步,确定函数f(x)的    ;
第2步,求出导数f′(x)的   ;
第3步,用f′(x)的零点将f(x)的定义域划分为若干个区间,列表给出f′(x)在各区间上的正负,由此得出函数y=f(x)在定义域内的单调性.
定义域
零点
1.若函数f(x)在(a,b)上单调递增,则当x∈(a,b)时,f′(x)≥0恒成立;若函数f(x)在(a,b)上单调递减,则当x∈(a,b)时,f′(x)≤0恒成立.
2.若函数f(x)在(a,b)上存在单调递增区间,则当x∈(a,b)时,f′(x)>0有解;若函数f(x)在(a,b)上存在单调递减区间,则当x∈(a,b)时,f′(x)<0有解.
1.判断下列结论是否正确.(请在括号中打“√”或“×”)
(1)如果函数f(x)在某个区间内恒有f′(x)=0,则f(x)在此区间内没有单调性.(  )
(2)在(a,b)内f′(x)≤0且f′(x)=0的根有有限个,则f(x)在(a,b)内单调递减.(  )
(3)若函数f(x)在定义域上都有f′(x)>0,则f(x)在定义域上一定单调递增.
(  )
(4)函数f(x)=x-sin x在R上是增函数.(  )



×
2.(选择性必修第二册P86例2改编)(多选)如图是函数y=f(x)的导函数y=f′(x)的图象,则下列判断正确的是
A.在区间(-2,1)上f(x)单调递增
B.在区间(2,3)上f(x)单调递减
C.在区间(4,5)上f(x)单调递增
D.在区间(3,5)上f(x)单调递减


在区间(3,5)上,当x∈(3,4)时,f′(x)<0,当x∈(4,5)时,f′(x)>0,故f(x)在区间(3,4)上单调递减,在区间(4,5)上单调递增,C正确,D错误;
在区间(2,3)上,f′(x)<0,所以f(x)单调递减,B正确.
3.(选择性必修第二册P97习题5.3T2(4)改编)已知f(x)=x3+x2-x的单调递
增区间为_______________________.
4.已知f(x)=2x2-ax+ln x在区间(1,+∞)上单调递增,则实数a的取值范围是___________.
(-∞,5]
故只需4x2-ax+1≥0在x∈(1,+∞)上恒成立,
返回
第二部分
探究核心题型
题型一 不含参函数的单调性
例1 (1)函数f(x)=xln x-3x+2的单调递减区间为________.
f(x)的定义域为(0,+∞),
f′(x)=ln x-2,
当x∈(0,e2)时,f′(x)<0,
当x∈(e2,+∞)时,f′(x)>0,
∴f(x)的单调递减区间为(0,e2).
(0,e2)
(0,1)
f(x)的定义域为(0,+∞),
φ(x)在(0,+∞)上单调递减,且φ(1)=0,
∴当x∈(0,1)时,φ(x)>0,即f′(x)>0,
当x∈(1,+∞)时,φ(x)<0,即f′(x)<0,
∴f(x)在(0,1)上单调递增,在(1,+∞)上单调递减.
∴函数f(x)的单调递增区间为(0,1).
确定不含参数的函数的单调性,按照判断函数单调性的步骤即可,但应注意两点,一是不能漏掉求函数的定义域,二是函数的单调区间不能用并集,要用“逗号”或“和”隔开.
跟踪训练1 已知函数f(x)=xsin x+cos x,x∈[0,2π],则f(x)的单调递减区间为

由题意f(x)=xsin x+cos x,x∈[0,2π],
则f′(x)=xcos x,
题型二 含参数的函数的单调性
例2 已知函数g(x)=(x-a-1)ex-(x-a)2,讨论函数g(x)的单调性.
g(x)的定义域为R,
g′(x)=(x-a)ex-2(x-a)=(x-a)(ex-2),
令g′(x)=0,得x=a或x=ln 2,
①若a>ln 2,
则当x∈(-∞,ln 2)∪(a,+∞)时,g′(x)>0,
当x∈(ln 2,a)时,g′(x)<0,
∴g(x)在(-∞,ln 2),(a,+∞)上单调递增,
在(ln 2,a)上单调递减;
②若a=ln 2,则g′(x)≥0恒成立,
∴g(x)在R上单调递增;
③若a则当x∈(-∞,a)∪(ln 2,+∞)时,g′(x)>0,
当x∈(a,ln 2)时,g′(x)<0,
∴g(x)在(-∞,a),(ln 2,+∞)上单调递增,
在(a,ln 2)上单调递减.
综上,当a>ln 2时,g(x)在(-∞,ln 2),(a,+∞)上单调递增,在(ln 2,a)上单调递减;
当a=ln 2时,g(x)在R上单调递增;
当a(1)研究含参数的函数的单调性,要依据参数对不等式解集的影响进行分类讨论.
(2)划分函数的单调区间时,要在函数定义域内讨论,还要确定导数为零的点和函数的间断点.
(1)当a=0时,求曲线y=f(x)在点(0,f(0))处的切线方程;
则f(0)=0,
所以曲线y=f(x)在(0,0)处的切线方程为y=2x.
(2)求函数f(x)的单调区间.
函数的定义域为(-∞,-1)∪(-1,+∞).
令f′(x)=0,解得x=a+1.
所以函数f(x)的单调递减区间为(-∞,-1)和(-1,+∞),无单调递增区间;
②当a+1<-1,即a<-2时,
令f′(x)<0,则x∈(-∞,a+1)∪(-1,+∞),
令f′(x)>0,则x∈(a+1,-1),
函数f(x)的单调递减区间为(-∞,a+1)和(-1,+∞),单调递增区间为(a+1,-1);
③当a+1>-1,即a>-2时,
令f′(x)<0,则x∈(-∞,-1)∪(a+1,+∞),
令f′(x)>0,则x∈(-1,a+1),
函数f(x)的单调递减区间为(-∞,-1)和(a+1,+∞),单调递增区间为(-1,a+1).
综上所述,当a=-2时,函数f(x)的单调递减区间为(-∞,-1)和(-1,+∞),无单调递增区间;
当a<-2时,函数f(x)的单调递减区间为(-∞,a+1)和(-1,+∞),单调递增区间为(a+1,-1);
当a>-2时,函数f(x)的单调递减区间为(-∞,-1)和(a+1,+∞),单调递增区间为(-1,a+1).
题型三 函数单调性的应用
命题点1 比较大小或解不等式
例3 (1)(多选)(2024·深圳模拟)若0

令f(x)=ex-ln(x+1)且x∈(0,1),
故f(x)在区间(0,1)上单调递增,
因为0即 -ln(x1+1)<  -ln(x2+1),
故f(x)在区间(0,1)上单调递减,
因为0f(x2),
即 ,故 ,
所以C正确,D错误.
常见组合函数的图象
在导数的应用中常用到以下函数,记住以下的函数图象对解题有事半功倍的效果.
A.f(x)=ex B.f(x)=x2
C.f(x)=ln x D.f(x)=sin x



依题意,函数g(x)=xf(x)为定义域上的增函数.
对于A,g(x)=xex,g′(x)=(x+1)ex,
当x∈(-∞,-1)时,g′(x)<0,
∴g(x)在(-∞,-1)上单调递减,故A中函数不是“F函数”;
对于B,g(x)=x3在R上为增函数,故B中函数为“F函数”;
对于C,g(x)=xln x,g′(x)=1+ln x,x>0,
故C中函数不是“F函数”;
对于D,g(x)=xsin x,g′(x)=sin x+xcos x,
故D中函数不是“F函数”.
(2)(2023·成都模拟)已知函数f(x)=ex-e-x-2x+1,则不等式f(2x-3)+f(x)>2的解集为___________.
(1,+∞)
令g(x)=f(x)-1=ex-e-x-2x,
定义域为R,且g(-x)=e-x-ex+2x=-g(x),
所以g(x)=f(x)-1=ex-e-x-2x为奇函数,
f(2x-3)+f(x)>2变形为f(2x-3)-1>1-f(x),即g(2x-3)>-g(x)=g(-x),
当且仅当ex=e-x,即x=0时,等号成立,
所以g(x)=f(x)-1=ex-e-x-2x在R上单调递增,所以2x-3>-x,解得x>1,
所以所求不等式的解集为(1,+∞).
命题点2 根据函数的单调性求参数
(1)若f(x)在[1,4]上单调递减,求实数a的取值范围;
(2)若f(x)在[1,4]上存在单调递减区间,求实数a的取值范围.
因为f(x)在[1,4]上存在单调递减区间,
所以a>-1,又因为a≠0,所以实数a的取值范围是(-1,0)∪(0,+∞).
由函数的单调性求参数的取值范围的方法
(1)函数在区间(a,b)上单调,实际上就是在该区间上f′(x)≥0(或f′(x)≤0)恒成立.
(2)函数在区间(a,b)上存在单调区间,实际上就是f′(x)>0 (或f′(x)<0)在该区间上存在解集.
跟踪训练3 (1)(2024·郑州模拟)函数f(x)的图象如图所示,设f(x)的导函数为f′(x),则f(x)·f′(x)>0的解集为
A.(1,6)   B.(1,4)
C.(-∞,1)∪(6,+∞)   D.(1,4)∪(6,+∞)

由图象可得,
当x<4时,f′(x)>0,当x>4时,f′(x)<0.
结合图象可得,当10,f(x)>0,
即f(x)·f′(x)>0;当x>6时,f′(x)<0,f(x)<0,
即f(x)·f′(x)>0,
所以f(x)·f′(x)>0的解集为(1,4)∪(6,+∞).
(2)已知函数f(x)=(1-x)ln x+ax在(1,+∞)上不单调,则a的取值范围是
A.(0,+∞) B.(1,+∞)
C.[0,+∞) D.[1,+∞)

故f′(x)在(1,+∞)上有零点,
返回
由x>1,得z′(x)>0,z(x)在(1,+∞)上单调递增,
又由z(1)=0,得z(x)>0,故a=z(x)>0,
所以a的取值范围是(0,+∞).
课时精练
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
一、单项选择题
1.函数f(x)=(x-3)ex的单调递减区间是
A.(-∞,2) B.(0,3)
C.(1,4) D.(2,+∞)

由已知得,f′(x)=ex+(x-3)ex=(x-2)ex,
当x<2时,f′(x)<0,当x>2时,f′(x)>0,
所以f(x)的单调递减区间是(-∞,2),单调递增区间是(2,+∞).
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
2.已知f′(x)是函数y=f(x)的导函数,且y=f′(x)的图象如图所示, 则函数y=f(x)的图象可能是

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
根据导函数的图象可得,
当x<0时,f′(x)<0,
f(x)在(-∞,0)上单调递减;
当00,
f(x)在(0,2)上单调递增;
当x>2时,f′(x)<0,
f(x)在(2,+∞)上单调递减,
所以只有D选项符合.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
3.(2023·重庆模拟)已知函数f(x)= ax3+x2+x+4,则“a≥0”是“f(x)在R上单调递增”的
A.充要条件
B.充分不必要条件
C.必要不充分条件
D.既不充分也不必要条件

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
由题意知,f′(x)=ax2+2x+1,
若f(x)在R上单调递增,则f′(x)≥0恒成立,
故“a≥0”是“f(x)在R上单调递增”的必要不充分条件.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
4.(2023·新高考全国Ⅱ)已知函数f(x)=aex-ln x在区间(1,2)上单调递增,则a的最小值为
A.e2 B.e C.e-1 D.e-2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
设g(x)=xex,x∈(1,2),
所以g′(x)=(x+1)ex>0,
所以g(x)在(1,2)上单调递增,
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
5.(2024·苏州模拟)已知f(x)是定义在R上的偶函数,当x≥0时,f(x)=ex+sin x,则不等式f(2x-1)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
当x≥0时,f′(x)=ex+cos x,
因为ex≥1,cos x∈[-1,1],
所以f′(x)=ex+cos x≥0在[0,+∞)上恒成立,
所以f(x)在[0,+∞)上单调递增,
又因为f(x)是定义在R上的偶函数,
所以f(x)在(-∞,0]上单调递减,
所以f(-π)=f(π)=eπ,所以由f(2x-1)1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
A.a>b>c B.b>a>c
C.c>a>b D.b>c>a

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
设函数f(x)=ex-x-1,x∈R,
则f′(x)=ex-1,
当x<0时,f′(x)<0,
f(x)在(-∞,0)上单调递减;
当x>0时,f′(x)>0,
f(x)在(0,+∞)上单调递增,
故f(x)≥f(0)=0,
即ex≥1+x,当且仅当x=0时取等号,
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
∵ex≥1+x,
∴b>a,
由以上分析可知当x>0时,有ex-1≥x成立,当x=1时取等号,
即ln x≤x-1,当且仅当x=1时取等号,
∴a>c,故b>a>c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
二、多项选择题
7.(2023·临汾模拟)若函数f(x)= x2-9ln x在区间[m-1,m+1]上单调,则实数m的值可以是
A.1 B.2 C.3 D.4


1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
令f′(x)>0,得x>3,令f′(x)<0,得0所以函数f(x)的单调递增区间为(3,+∞),单调递减区间为(0,3),
因为函数f(x)在区间[m-1,m+1]上单调,
解得11
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
A.a>b B.b>a
C.c>b D.c>a



1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
当x∈(0,1)时,f′(x)<0,f(x)单调递减,
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
三、填空题
9.函数f(x)=e-xcos x(x∈(0,π))的单调递增区间为________.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
则f′(x)<0;
则f′(x)>0,
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
10.若函数f(x)=x3+bx2+x恰有三个单调区间,则实数b的取值范围为__________________________.
由题意得f′(x)=3x2+2bx+1,
函数f(x)=x3+bx2+x恰有三个单调区间,
则函数f(x)=x3+bx2+x有两个极值点,
即f′(x)=3x2+2bx+1的图象与x轴有两个交点,
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
11.(2024·上海模拟)已知定义在(-3,3)上的奇函数y=f(x)的导函数是f′(x),当x≥0时,y=f(x)的图象如图所示,则关于x的不等式 >0的解集为__________________.
(-3,-1)∪(0,1)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
依题意f(x)是奇函数,图象关于原点对称,
由图象可知,f(x)在区间(-3,-1),(1,3)上单调
递减,f′(x)<0;
f(x)在区间(-1,1)上单调递增,f′(x)>0.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
12.已知函数f(x)= -2x2+ln x(a>0),若函数f(x)在[1,2]上不单调,则实数a
的取值范围是________.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
若函数f(x)在[1,2]上单调,
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
四、解答题
13.(2024·毕节模拟)已知函数f(x)=(a-x)ln x.
(1)求曲线y=f(x)在点(1,f(1))处的切线方程;
根据题意,函数f(x)的定义域为(0,+∞),f(1)=0,
∴f′(1)=a-1,
∴曲线f(x)在点(1,f(1))处的切线方程为y=(a-1)(x-1).
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
(2)若函数f(x)在(0,+∞)上单调递减,求实数a的取值范围.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
f(x)的定义域为(0,+∞),
令g(x)=-xln x-x+a,
则g′(x)=-ln x-2,
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
∵f(x)在(0,+∞)上单调递减,
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
14.(2023·郑州模拟)已知函数f(x)=ln x+1.
(1)若f(x)≤x+c,求c的取值范围;
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
f(x)≤x+c等价于ln x-x≤c-1.
令h(x)=ln x-x,x>0,
当00,
所以h(x)在(0,1)上单调递增;
当x>1时,h′(x)<0,
所以h(x)在(1,+∞)上单调递减.
故h(x)max=h(1)=-1,
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
所以c-1≥-1,即c≥0,
所以c的取值范围是[0,+∞).
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
令m(x)=x-a-xln x+xln a,
则m′(x)=ln a-ln x,
当x>a时,ln x>ln a,
所以m′(x)<0,m(x)在(a,+∞)上单调递减,
当01
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
所以m′(x)>0,m(x)在(0,a)上单调递增,
因此有m(x)即 g′(x)<0在x>0且x≠a上恒成立,
所以函数g(x)在区间(0,a)和(a,+∞)上单调递减.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
即x1f(x1)令g(x)=xf(x)=ex-ax2,
则g(x1)又因为0所以g(x)在(0,+∞)上单调递增,
所以g′(x)=ex-2ax≥0在(0,+∞)上恒成立,
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
则只需2a≤h(x)min,
令h′(x)>0,得x>1,令h′(x)<0,得0所以h(x)在(0,1)上单调递减,在(1,+∞)上单调递增,
所以h(x)≥h(1)=e,故2a≤e,
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
16.已知偶函数f(x)在R上存在导函数f′(x),当x>0时, >-f′(x),且f(2)=1,则不等式(x2-x)f(x2-x)>2的解集为
A.(-∞,-2)∪(1,+∞)
B.(2,+∞)
C.(-∞,-1)∪(2,+∞)
D.(-1,2)

令g(x)=xf(x),
由于f(x)为偶函数,则g(x)为奇函数,
所以g′(x)=f(x)+xf′(x).
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
所以f(x)+xf′(x)>0,即g′(x)>0.
所以当x>0时,g(x)在(0,+∞)上单调递增.
因为g(x)在R上为奇函数且在R上存在导函数,所以g(x)在R上为增函数.
因为f(2)=1,所以g(2)=2f(2)=2,
又(x2-x)f(x2-x)>2等价于g(x2-x)>g(2),
所以x2-x>2,解得x<-1或x>2.
综上所述,x的取值范围为(-∞,-1)∪(2,+∞).
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
返回§3.2 导数与函数的单调性
课标要求 1.结合实例,借助几何直观了解函数的单调性与导数的关系.2.能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次).3.会利用函数的单调性判断大小,求参数的取值范围等简单应用.
知识梳理
1.函数的单调性与导数的关系
条件 恒有 结论
函数y=f(x)在区间(a,b)上可导 f′(x)>0 f(x)在区间(a,b)上单调递增
f′(x)<0 f(x)在区间(a,b)上单调递减
f′(x)=0 f(x)在区间(a,b)上是常数函数
2.利用导数判断函数单调性的步骤
第1步,确定函数f(x)的定义域;
第2步,求出导数f′(x)的零点;
第3步,用f′(x)的零点将f(x)的定义域划分为若干个区间,列表给出f′(x)在各区间上的正负,由此得出函数y=f(x)在定义域内的单调性.
常用结论
1.若函数f(x)在(a,b)上单调递增,则当x∈(a,b)时,f′(x)≥0恒成立;若函数f(x)在(a,b)上单调递减,则当x∈(a,b)时,f′(x)≤0恒成立.
2.若函数f(x)在(a,b)上存在单调递增区间,则当x∈(a,b)时,f′(x)>0有解;若函数f(x)在(a,b)上存在单调递减区间,则当x∈(a,b)时,f′(x)<0有解.
自主诊断
1.判断下列结论是否正确.(请在括号中打“√”或“×”)
(1)如果函数f(x)在某个区间内恒有f′(x)=0,则f(x)在此区间内没有单调性.( √ )
(2)在(a,b)内f′(x)≤0且f′(x)=0的根有有限个,则f(x)在(a,b)内单调递减.( √ )
(3)若函数f(x)在定义域上都有f′(x)>0,则f(x)在定义域上一定单调递增.( × )
(4)函数f(x)=x-sin x在R上是增函数.( √ )
2.(选择性必修第二册P86例2改编)(多选)如图是函数y=f(x)的导函数y=f′(x)的图象,则下列判断正确的是(  )
A.在区间(-2,1)上f(x)单调递增
B.在区间(2,3)上f(x)单调递减
C.在区间(4,5)上f(x)单调递增
D.在区间(3,5)上f(x)单调递减
答案 BC
解析 在区间(-2,1)上,当x∈时,f′(x)<0,当x∈时,f′(x)>0,故f(x)在区间上单调递减,在区间上单调递增,A错误;在区间(3,5)上,当x∈(3,4)时,f′(x)<0,当x∈(4,5)时,f′(x)>0,故f(x)在区间(3,4)上单调递减,在区间(4,5)上单调递增,C正确,D错误;在区间(2,3)上,f′(x)<0,所以f(x)单调递减,B正确.
3.(选择性必修第二册P97习题5.3T2(4)改编)已知f(x)=x3+x2-x的单调递增区间为________.
答案 (-∞,-1),
解析 令f′(x)=3x2+2x-1>0,解得x>或x<-1,所以f(x)=x3+x2-x的单调递增区间为(-∞,-1)和.
4.已知f(x)=2x2-ax+ln x在区间(1,+∞)上单调递增,则实数a的取值范围是________.
答案 (-∞,5]
解析 f′(x)=4x-a+=,x∈(1,+∞),
故只需4x2-ax+1≥0在x∈(1,+∞)上恒成立,
则a≤4x+在x∈(1,+∞)上恒成立,
令y=4x+,
因为y′=4-=>0在x∈(1,+∞)上恒成立,所以y=4x+在(1,+∞)上单调递增,
故4x+>5,所以a≤5.
题型一 不含参函数的单调性
例1 (1)函数f(x)=xln x-3x+2的单调递减区间为________.
答案 (0,e2)
解析 f(x)的定义域为(0,+∞),
f′(x)=ln x-2,
当x∈(0,e2)时,f′(x)<0,
当x∈(e2,+∞)时,f′(x)>0,
∴f(x)的单调递减区间为(0,e2).
(2)若函数f(x)=,则函数f(x)的单调递增区间为________.
答案 (0,1)
解析 f(x)的定义域为(0,+∞),
f′(x)=,
令φ(x)=-ln x-1(x>0),
φ′(x)=--<0,
φ(x)在(0,+∞)上单调递减,且φ(1)=0,
∴当x∈(0,1)时,φ(x)>0,即f′(x)>0,
当x∈(1,+∞)时,φ(x)<0,即f′(x)<0,
∴f(x)在(0,1)上单调递增,在(1,+∞)上单调递减.
∴函数f(x)的单调递增区间为(0,1).
思维升华 确定不含参数的函数的单调性,按照判断函数单调性的步骤即可,但应注意两点,一是不能漏掉求函数的定义域,二是函数的单调区间不能用并集,要用“逗号”或“和”隔开.
跟踪训练1 已知函数f(x)=xsin x+cos x,x∈[0,2π],则f(x)的单调递减区间为(  )
A. B.
C.(π,2π) D.
答案 B
解析 由题意f(x)=xsin x+cos x,x∈[0,2π],
则f′(x)=xcos x,
当x∈∪时,f′(x)>0,当x∈时,f′(x)<0,
故f(x)的单调递减区间为.
题型二 含参数的函数的单调性
例2 已知函数g(x)=(x-a-1)ex-(x-a)2,讨论函数g(x)的单调性.
解 g(x)的定义域为R,
g′(x)=(x-a)ex-2(x-a)=(x-a)(ex-2),
令g′(x)=0,得x=a或x=ln 2,
①若a>ln 2,
则当x∈(-∞,ln 2)∪(a,+∞)时,g′(x)>0,
当x∈(ln 2,a)时,g′(x)<0,
∴g(x)在(-∞,ln 2),(a,+∞)上单调递增,
在(ln 2,a)上单调递减;
②若a=ln 2,则g′(x)≥0恒成立,
∴g(x)在R上单调递增;
③若a则当x∈(-∞,a)∪(ln 2,+∞)时,g′(x)>0,
当x∈(a,ln 2)时,g′(x)<0,
∴g(x)在(-∞,a),(ln 2,+∞)上单调递增,
在(a,ln 2)上单调递减.
综上,当a>ln 2时,g(x)在(-∞,ln 2),(a,+∞)上单调递增,在(ln 2,a)上单调递减;
当a=ln 2时,g(x)在R上单调递增;
当a思维升华 (1)研究含参数的函数的单调性,要依据参数对不等式解集的影响进行分类讨论.
(2)划分函数的单调区间时,要在函数定义域内讨论,还要确定导数为零的点和函数的间断点.
跟踪训练2 (2023·北京模拟)已知函数f(x)=.
(1)当a=0时,求曲线y=f(x)在点(0,f(0))处的切线方程;
(2)求函数f(x)的单调区间.
解 (1)当a=0时,f(x)=(x≠-1),
则f(0)=0,
因为f′(x)=,所以f′(0)=2.
所以曲线y=f(x)在(0,0)处的切线方程为y=2x.
(2)函数的定义域为(-∞,-1)∪(-1,+∞).
f′(x)==,
令f′(x)=0,解得x=a+1.
①当a+1=-1,即a=-2时,f′(x)===<0,
所以函数f(x)的单调递减区间为(-∞,-1)和(-1,+∞),无单调递增区间;
②当a+1<-1,即a<-2时,
令f′(x)<0,则x∈(-∞,a+1)∪(-1,+∞),
令f′(x)>0,则x∈(a+1,-1),
函数f(x)的单调递减区间为(-∞,a+1)和(-1,+∞),单调递增区间为(a+1,-1);
③当a+1>-1,即a>-2时,
令f′(x)<0,则x∈(-∞,-1)∪(a+1,+∞),
令f′(x)>0,则x∈(-1,a+1),
函数f(x)的单调递减区间为(-∞,-1)和(a+1,+∞),单调递增区间为(-1,a+1).
综上所述,当a=-2时,函数f(x)的单调递减区间为(-∞,-1)和(-1,+∞),无单调递增区间;
当a<-2时,函数f(x)的单调递减区间为(-∞,a+1)和(-1,+∞),单调递增区间为(a+1,-1);
当a>-2时,函数f(x)的单调递减区间为(-∞,-1)和(a+1,+∞),单调递增区间为(-1,a+1).
题型三 函数单调性的应用
命题点1 比较大小或解不等式
例3 (1)(多选)(2024·深圳模拟)若0A.>ln
B.C.
D.
答案 AC
解析 令f(x)=ex-ln(x+1)且x∈(0,1),
则f′(x)=ex->0,
故f(x)在区间(0,1)上单调递增,
因为0即-ln(x1+1)<-ln(x2+1),
故>ln ,所以A正确,B错误;
令f(x)=且x∈(0,1),则f′(x)=<0,
故f(x)在区间(0,1)上单调递减,
因为0f(x2),
即,故,
所以C正确,D错误.
常见组合函数的图象
在导数的应用中常用到以下函数,记住以下的函数图象对解题有事半功倍的效果.
典例 (多选)如果函数f(x)对定义域内的任意两实数x1,x2(x1≠x2)都有>0,则称函数y=f(x)为“F函数”.下列函数不是“F函数”的是(  )
A.f(x)=ex B.f(x)=x2
C.f(x)=ln x D.f(x)=sin x
答案 ACD
解析 依题意,函数g(x)=xf(x)为定义域上的增函数.
对于A,g(x)=xex,g′(x)=(x+1)ex,
当x∈(-∞,-1)时,g′(x)<0,
∴g(x)在(-∞,-1)上单调递减,故A中函数不是“F函数”;
对于B,g(x)=x3在R上为增函数,故B中函数为“F函数”;
对于C,g(x)=xln x,g′(x)=1+ln x,x>0,
当x∈时,g′(x)<0,
∴g(x)在上单调递减,
故C中函数不是“F函数”;
对于D,g(x)=xsin x,g′(x)=sin x+xcos x,
当x∈时,g′(x)<0,
∴g(x)在上单调递减,
故D中函数不是“F函数”.
(2)(2023·成都模拟)已知函数f(x)=ex-e-x-2x+1,则不等式f(2x-3)+f(x)>2的解集为________.
答案 (1,+∞)
解析 令g(x)=f(x)-1=ex-e-x-2x,
定义域为R,且g(-x)=e-x-ex+2x=-g(x),
所以g(x)=f(x)-1=ex-e-x-2x为奇函数,
f(2x-3)+f(x)>2变形为f(2x-3)-1>1-f(x),即g(2x-3)>-g(x)=g(-x),
g′(x)=ex+e-x-2≥2-2=0,
当且仅当ex=e-x,即x=0时,等号成立,
所以g(x)=f(x)-1=ex-e-x-2x在R上单调递增,所以2x-3>-x,解得x>1,
所以所求不等式的解集为(1,+∞).
命题点2 根据函数的单调性求参数
例4 已知函数f(x)=ln x-ax2-2x(a≠0).
(1)若f(x)在[1,4]上单调递减,求实数a的取值范围;
(2)若f(x)在[1,4]上存在单调递减区间,求实数a的取值范围.
解 (1)因为f(x)在[1,4]上单调递减,所以当x∈[1,4]时,f′(x)=-ax-2≤0恒成立,即a≥-恒成立.设G(x)=-,x∈[1,4],所以a≥G(x)max,而G(x)=2-1,
因为x∈[1,4],所以∈,所以G(x)max=-(此时x=4),所以a≥-,
又因为a≠0,所以实数a的取值范围是∪(0,+∞).
(2)因为f(x)在[1,4]上存在单调递减区间,
则f′(x)<0在[1,4]上有解,所以当x∈[1,4]时,a>-有解,
又当x∈[1,4]时,min=-1(此时x=1),
所以a>-1,又因为a≠0,所以实数a的取值范围是(-1,0)∪(0,+∞).
思维升华 由函数的单调性求参数的取值范围的方法
(1)函数在区间(a,b)上单调,实际上就是在该区间上f′(x)≥0(或f′(x)≤0)恒成立.
(2)函数在区间(a,b)上存在单调区间,实际上就是f′(x)>0 (或f′(x)<0)在该区间上存在解集.
跟踪训练3 (1)(2024·郑州模拟)函数f(x)的图象如图所示,设f(x)的导函数为f′(x),则f(x)·f′(x)>0的解集为(  )
A.(1,6)   B.(1,4)
C.(-∞,1)∪(6,+∞)   D.(1,4)∪(6,+∞)
答案 D
解析 由图象可得,
当x<4时,f′(x)>0,当x>4时,f′(x)<0.
结合图象可得,当10,f(x)>0,即f(x)·f′(x)>0;当x>6时,f′(x)<0,f(x)<0,即f(x)·f′(x)>0,
所以f(x)·f′(x)>0的解集为(1,4)∪(6,+∞).
(2)已知函数f(x)=(1-x)ln x+ax在(1,+∞)上不单调,则a的取值范围是(  )
A.(0,+∞) B.(1,+∞)
C.[0,+∞) D.[1,+∞)
答案 A
解析 依题意f′(x)=-ln x++a-1,
故f′(x)在(1,+∞)上有零点,
令g(x)=-ln x++a-1,
令g(x)=0,得a=ln x-+1,
令z(x)=ln x-+1,则z′(x)=+,
由x>1,得z′(x)>0,z(x)在(1,+∞)上单调递增,
又由z(1)=0,得z(x)>0,故a=z(x)>0,
所以a的取值范围是(0,+∞).
课时精练
一、单项选择题
1.函数f(x)=(x-3)ex的单调递减区间是(  )
A.(-∞,2) B.(0,3)
C.(1,4) D.(2,+∞)
答案 A
解析 由已知得,f′(x)=ex+(x-3)ex=(x-2)ex,
当x<2时,f′(x)<0,当x>2时,f′(x)>0,
所以f(x)的单调递减区间是(-∞,2),单调递增区间是(2,+∞).
2.已知f′(x)是函数y=f(x)的导函数,且y=f′(x)的图象如图所示, 则函数y=f(x)的图象可能是(  )
答案 D
解析 根据导函数的图象可得,
当x<0时,f′(x)<0,
f(x)在(-∞,0)上单调递减;
当00,
f(x)在(0,2)上单调递增;
当x>2时,f′(x)<0,
f(x)在(2,+∞)上单调递减,
所以只有D选项符合.
3.(2023·重庆模拟)已知函数f(x)=ax3+x2+x+4,则“a≥0”是“f(x)在R上单调递增”的(  )
A.充要条件
B.充分不必要条件
C.必要不充分条件
D.既不充分也不必要条件
答案 C
解析 由题意知,f′(x)=ax2+2x+1,
若f(x)在R上单调递增,则f′(x)≥0恒成立,
则解得a≥1,
故“a≥0”是“f(x)在R上单调递增”的必要不充分条件.
4.(2023·新高考全国Ⅱ)已知函数f(x)=aex-ln x在区间(1,2)上单调递增,则a的最小值为(  )
A.e2 B.e C.e-1 D.e-2
答案 C
解析 依题可知,f′(x)=aex-≥0在(1,2)上恒成立,显然a>0,
所以xex≥在(1,2)上恒成立,
设g(x)=xex,x∈(1,2),
所以g′(x)=(x+1)ex>0,
所以g(x)在(1,2)上单调递增,
g(x)>g(1)=e,故e≥,
即a≥=e-1,即a的最小值为e-1.
5.(2024·苏州模拟)已知f(x)是定义在R上的偶函数,当x≥0时,f(x)=ex+sin x,则不等式f(2x-1)A. B.
C. D.
答案 D
解析 当x≥0时,f′(x)=ex+cos x,
因为ex≥1,cos x∈[-1,1],
所以f′(x)=ex+cos x≥0在[0,+∞)上恒成立,
所以f(x)在[0,+∞)上单调递增,
又因为f(x)是定义在R上的偶函数,
所以f(x)在(-∞,0]上单调递减,
所以f(-π)=f(π)=eπ,
所以由f(2x-1)解得x∈.
6.(2023·信阳模拟)已知a=,b=,c=ln ,则a,b,c的大小关系为(  )
A.a>b>c B.b>a>c
C.c>a>b D.b>c>a
答案 B
解析 设函数f(x)=ex-x-1,x∈R,
则f′(x)=ex-1,
当x<0时,f′(x)<0,
f(x)在(-∞,0)上单调递减;
当x>0时,f′(x)>0,
f(x)在(0,+∞)上单调递增,
故f(x)≥f(0)=0,
即ex≥1+x,当且仅当x=0时取等号,
∵ex≥1+x,
∴>1-=,
∴b>a,
由以上分析可知当x>0时,有ex-1≥x成立,当x=1时取等号,
即ln x≤x-1,当且仅当x=1时取等号,
∴ln <-1=,
∴a>c,故b>a>c.
二、多项选择题
7.(2023·临汾模拟)若函数f(x)=x2-9ln x在区间[m-1,m+1]上单调,则实数m的值可以是(  )
A.1 B.2 C.3 D.4
答案 BD
解析 f′(x)=x-=(x>0),
令f′(x)>0,得x>3,令f′(x)<0,得0所以函数f(x)的单调递增区间为(3,+∞),单调递减区间为(0,3),
因为函数f(x)在区间[m-1,m+1]上单调,
所以或m-1≥3,
解得18.(2024·邯郸模拟)已知函数f(x)=ln x,且a=f ,b=f ,c=,则(  )
A.a>b B.b>a
C.c>b D.c>a
答案 ACD
解析 由f(x)=ln x,
得f′(x)=ln x+,
当x∈(0,1)时,f′(x)<0,f(x)单调递减,
因为c=f ,0<<<<1,
所以f >f >f ,故c>a>b.
三、填空题
9.函数f(x)=e-xcos x(x∈(0,π))的单调递增区间为________.
答案 
解析 f′(x)=-e-xcos x-e-xsin x=-e-x(cos x+sin x)=-e-xsin,
当x∈时,e-x>0,sin>0,
则f′(x)<0;
当x∈时,e-x>0,sin<0,
则f′(x)>0,
∴f(x)在(0,π)上的单调递增区间为.
10.若函数f(x)=x3+bx2+x恰有三个单调区间,则实数b的取值范围为________.
答案 (-∞,-)∪(,+∞)
解析 由题意得f′(x)=3x2+2bx+1,
函数f(x)=x3+bx2+x恰有三个单调区间,
则函数f(x)=x3+bx2+x有两个极值点,
即f′(x)=3x2+2bx+1的图象与x轴有两个交点,
则判别式Δ=4b2-12>0,解得b>或b<-.
所以实数b的取值范围为(-∞,-)∪(,+∞).
11.(2024·上海模拟)已知定义在(-3,3)上的奇函数y=f(x)的导函数是f′(x),当x≥0时,y=f(x)的图象如图所示,则关于x的不等式>0的解集为________.
答案 (-3,-1)∪(0,1)
解析 依题意f(x)是奇函数,图象关于原点对称,
由图象可知,f(x)在区间(-3,-1),(1,3)上单调递减,f′(x)<0;
f(x)在区间(-1,1)上单调递增,f′(x)>0.
所以>0的解集为(-3,-1)∪(0,1).
12.已知函数f(x)=-2x2+ln x(a>0),若函数f(x)在[1,2]上不单调,则实数a的取值范围是________.
答案 
解析 f′(x)=-4x+,
若函数f(x)在[1,2]上单调,
即f′(x)=-4x+≥0或f′(x)=-4x+≤0在[1,2]上恒成立,
即≥4x-或≤4x-在[1,2]上恒成立.
令h(x)=4x-,则h(x)在[1,2]上单调递增,
所以≥h(2)或≤h(1),
即≥或≤3,
又a>0,所以0因为f(x)在[1,2]上不单调,所以四、解答题
13.(2024·毕节模拟)已知函数f(x)=(a-x)ln x.
(1)求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)若函数f(x)在(0,+∞)上单调递减,求实数a的取值范围.
解 (1)根据题意,函数f(x)的定义域为(0,+∞),f(1)=0,
f′(x)=-ln x+,
∴f′(1)=a-1,
∴曲线f(x)在点(1,f(1))处的切线方程为y=(a-1)(x-1).
(2)f(x)的定义域为(0,+∞),
f′(x)=-ln x+=,
令g(x)=-xln x-x+a,
则g′(x)=-ln x-2,
令g′(x)=0,则x=,
令g′(x)>0,则0令g′(x)<0,则x>,
∴g(x)在上单调递增,在上单调递减,g(x)max=g=+a,
∵f(x)在(0,+∞)上单调递减,
∴f′(x)≤0在(0,+∞)上恒成立,即+a≤0,
∴a≤-.
14.(2023·郑州模拟)已知函数f(x)=ln x+1.
(1)若f(x)≤x+c,求c的取值范围;
(2)设a>0,讨论函数g(x)=的单调性.
解 (1)f(x)≤x+c等价于ln x-x≤c-1.
令h(x)=ln x-x,x>0,
则h′(x)=-1=.
当00,
所以h(x)在(0,1)上单调递增;
当x>1时,h′(x)<0,
所以h(x)在(1,+∞)上单调递减.
故h(x)max=h(1)=-1,
所以c-1≥-1,即c≥0,
所以c的取值范围是[0,+∞).
(2)g(x)==(x>0且 x≠a),
因此g′(x)=,
令m(x)=x-a-xln x+xln a,
则m′(x)=ln a-ln x,
当x>a时,ln x>ln a,
所以m′(x)<0,m(x)在(a,+∞)上单调递减,
当0所以m′(x)>0,m(x)在(0,a)上单调递增,
因此有m(x)即 g′(x)<0在x>0且x≠a上恒成立,
所以函数g(x)在区间(0,a)和(a,+∞)上单调递减.
15.已知函数f(x)=-ax,当0A.(-∞,e) B.(-∞,e]
C. D.
答案 D
解析 因为当0所以<,
即x1f(x1)令g(x)=xf(x)=ex-ax2,
则g(x1)又因为0所以g(x)在(0,+∞)上单调递增,
所以g′(x)=ex-2ax≥0在(0,+∞)上恒成立,
分离参数得2a≤恒成立,
令h(x)=(x>0),
则只需2a≤h(x)min,
而h′(x)=ex·,
令h′(x)>0,得x>1,令h′(x)<0,得0所以h(x)在(0,1)上单调递减,在(1,+∞)上单调递增,
所以h(x)≥h(1)=e,故2a≤e,
即a≤.
16.已知偶函数f(x)在R上存在导函数f′(x),当x>0时,>-f′(x),且f(2)=1,则不等式(x2-x)f(x2-x)>2的解集为(  )
A.(-∞,-2)∪(1,+∞)
B.(2,+∞)
C.(-∞,-1)∪(2,+∞)
D.(-1,2)
答案 C
解析 令g(x)=xf(x),
由于f(x)为偶函数,则g(x)为奇函数,
所以g′(x)=f(x)+xf′(x).
因为当x>0时,>-f′(x),
即>0,
所以f(x)+xf′(x)>0,即g′(x)>0.
所以当x>0时,g(x)在(0,+∞)上单调递增.
因为g(x)在R上为奇函数且在R上存在导函数,所以g(x)在R上为增函数.
因为f(2)=1,所以g(2)=2f(2)=2,
又(x2-x)f(x2-x)>2等价于g(x2-x)>g(2),
所以x2-x>2,解得x<-1或x>2.
综上所述,x的取值范围为(-∞,-1)∪(2,+∞).§3.2 导数与函数的单调性
课标要求 1.结合实例,借助几何直观了解函数的单调性与导数的关系.2.能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次).3.会利用函数的单调性判断大小,求参数的取值范围等简单应用.
知识梳理
1.函数的单调性与导数的关系
条件 恒有 结论
函数y=f(x)在区间(a,b)上可导 f′(x)>0 f(x)在区间(a,b)上____________________
f′(x)<0 f(x)在区间(a,b)上____________________
f′(x)=0 f(x)在区间(a,b)上是____________________
2.利用导数判断函数单调性的步骤
第1步,确定函数f(x)的______________;
第2步,求出导数f′(x)的______________;
第3步,用f′(x)的零点将f(x)的定义域划分为若干个区间,列表给出f′(x)在各区间上的正负,由此得出函数y=f(x)在定义域内的单调性.
常用结论
1.若函数f(x)在(a,b)上单调递增,则当x∈(a,b)时,f′(x)≥0恒成立;若函数f(x)在(a,b)上单调递减,则当x∈(a,b)时,f′(x)≤0恒成立.
2.若函数f(x)在(a,b)上存在单调递增区间,则当x∈(a,b)时,f′(x)>0有解;若函数f(x)在(a,b)上存在单调递减区间,则当x∈(a,b)时,f′(x)<0有解.
自主诊断
1.判断下列结论是否正确.(请在括号中打“√”或“×”)
(1)如果函数f(x)在某个区间内恒有f′(x)=0,则f(x)在此区间内没有单调性.(  )
(2)在(a,b)内f′(x)≤0且f′(x)=0的根有有限个,则f(x)在(a,b)内单调递减.(  )
(3)若函数f(x)在定义域上都有f′(x)>0,则f(x)在定义域上一定单调递增.(  )
(4)函数f(x)=x-sin x在R上是增函数.(  )
2.(选择性必修第二册P86例2改编)(多选)如图是函数y=f(x)的导函数y=f′(x)的图象,则下列判断正确的是(  )
A.在区间(-2,1)上f(x)单调递增
B.在区间(2,3)上f(x)单调递减
C.在区间(4,5)上f(x)单调递增
D.在区间(3,5)上f(x)单调递减
3.(选择性必修第二册P97习题5.3T2(4)改编)已知f(x)=x3+x2-x的单调递增区间为________________________.
4.已知f(x)=2x2-ax+ln x在区间(1,+∞)上单调递增,则实数a的取值范围是________________________________________________________________________.
题型一 不含参函数的单调性
例1 (1)函数f(x)=xln x-3x+2的单调递减区间为________________.
(2)若函数f(x)=,则函数f(x)的单调递增区间为________________.
跟踪训练1 已知函数f(x)=xsin x+cos x,x∈[0,2π],则f(x)的单调递减区间为(  )
A. B.
C.(π,2π) D.
题型二 含参数的函数的单调性
例2 已知函数g(x)=(x-a-1)ex-(x-a)2,讨论函数g(x)的单调性.
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
思维升华 (1)研究含参数的函数的单调性,要依据参数对不等式解集的影响进行分类讨论.
(2)划分函数的单调区间时,要在函数定义域内讨论,还要确定导数为零的点和函数的间断点.
跟踪训练2 (2023·北京模拟)已知函数f(x)=.
(1)当a=0时,求曲线y=f(x)在点(0,f(0))处的切线方程;
(2)求函数f(x)的单调区间.
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
题型三 函数单调性的应用
命题点1 比较大小或解不等式
例3 (1)(多选)(2024·深圳模拟)若0A.>ln
B.C.
D.
常见组合函数的图象
在导数的应用中常用到以下函数,记住以下的函数图象对解题有事半功倍的效果.
典例 (多选)如果函数f(x)对定义域内的任意两实数x1,x2(x1≠x2)都有>0,则称函数y=f(x)为“F函数”.下列函数不是“F函数”的是(  )
A.f(x)=ex B.f(x)=x2
C.f(x)=ln x D.f(x)=sin x
(2)(2023·成都模拟)已知函数f(x)=ex-e-x-2x+1,则不等式f(2x-3)+f(x)>2的解集为____________________.
命题点2 根据函数的单调性求参数
例4 已知函数f(x)=ln x-ax2-2x(a≠0).
(1)若f(x)在[1,4]上单调递减,求实数a的取值范围;
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
(2)若f(x)在[1,4]上存在单调递减区间,求实数a的取值范围.
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
跟踪训练3 (1)(2024·郑州模拟)函数f(x)的图象如图所示,设f(x)的导函数为f′(x),则f(x)·f′(x)>0的解集为(  )
A.(1,6)   B.(1,4)
C.(-∞,1)∪(6,+∞)   D.(1,4)∪(6,+∞)
(2)已知函数f(x)=(1-x)ln x+ax在(1,+∞)上不单调,则a的取值范围是(  )
A.(0,+∞) B.(1,+∞)
C.[0,+∞) D.[1,+∞)一、单项选择题
1.函数f(x)=(x-3)ex的单调递减区间是(  )
A.(-∞,2) B.(0,3)
C.(1,4) D.(2,+∞)
2.已知f′(x)是函数y=f(x)的导函数,且y=f′(x)的图象如图所示, 则函数y=f(x)的图象可能是(  )
3.(2023·重庆模拟)已知函数f(x)=ax3+x2+x+4,则“a≥0”是“f(x)在R上单调递增”的(  )
A.充要条件
B.充分不必要条件
C.必要不充分条件
D.既不充分也不必要条件
4.(2023·新高考全国Ⅱ)已知函数f(x)=aex-ln x在区间(1,2)上单调递增,则a的最小值为(  )
A.e2 B.e C.e-1 D.e-2
5.(2024·苏州模拟)已知f(x)是定义在R上的偶函数,当x≥0时,f(x)=ex+sin x,则不等式f(2x-1)A. B.
C. D.
6.(2023·信阳模拟)已知a=,b=,c=ln ,则a,b,c的大小关系为(  )
A.a>b>c B.b>a>c
C.c>a>b D.b>c>a
二、多项选择题
7.(2023·临汾模拟)若函数f(x)=x2-9ln x在区间[m-1,m+1]上单调,则实数m的值可以是(  )
A.1 B.2 C.3 D.4
8.(2024·邯郸模拟)已知函数f(x)=ln x,且a=f ,b=f ,c=,则(  )
A.a>b B.b>a
C.c>b D.c>a
三、填空题
9.函数f(x)=e-xcos x(x∈(0,π))的单调递增区间为________.
10.若函数f(x)=x3+bx2+x恰有三个单调区间,则实数b的取值范围为________.
11.(2024·上海模拟)已知定义在(-3,3)上的奇函数y=f(x)的导函数是f′(x),当x≥0时,y=f(x)的图象如图所示,则关于x的不等式>0的解集为________.
12.已知函数f(x)=-2x2+ln x(a>0),若函数f(x)在[1,2]上不单调,则实数a的取值范围是________.
四、解答题
13.(2024·毕节模拟)已知函数f(x)=(a-x)ln x.
(1)求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)若函数f(x)在(0,+∞)上单调递减,求实数a的取值范围.
14.(2023·郑州模拟)已知函数f(x)=ln x+1.
(1)若f(x)≤x+c,求c的取值范围;
(2)设a>0,讨论函数g(x)=的单调性.
15.已知函数f(x)=-ax,当0A.(-∞,e) B.(-∞,e]
C. D.
16.已知偶函数f(x)在R上存在导函数f′(x),当x>0时,>-f′(x),且f(2)=1,则不等式(x2-x)f(x2-x)>2的解集为(  )
A.(-∞,-2)∪(1,+∞)
B.(2,+∞)
C.(-∞,-1)∪(2,+∞)
D.(-1,2)
§3.2 导数与函数的单调性
1.A 2.D 3.C 4.C 5.D
6.B [设函数f(x)=ex-x-1,x∈R,
则f′(x)=ex-1,
当x<0时,f′(x)<0,
f(x)在(-∞,0)上单调递减;
当x>0时,f′(x)>0,
f(x)在(0,+∞)上单调递增,
故f(x)≥f(0)=0,即ex≥1+x,
当且仅当x=0时取等号,
∵ex≥1+x,
∴>1-=,
∴b>a,
由以上分析可知当x>0时,有ex-1≥x成立,当x=1时取等号,
即ln x≤x-1,当且仅当x=1时取等号,
∴ln <-1=,
∴a>c,故b>a>c.]
7.BD 
8.ACD [由f(x)=ln x,
得f′(x)=ln x+,
当x∈(0,1)时,f′(x)<0,f(x)单调递减,
因为c=f ,0<<<<1,
所以f >f >f ,
故c>a>b.]
9.
10.(-∞,-)∪(,+∞)
11.(-3,-1)∪(0,1)
12.
解析 f′(x)=-4x+,
若函数f(x)在[1,2]上单调,
即f′(x)=-4x+≥0或f′(x)=-4x+≤0在[1,2]上恒成立,
即≥4x-或≤4x-在[1,2]上恒成立.
令h(x)=4x-,则h(x)在[1,2]上单调递增,
所以≥h(2)或≤h(1),
即≥或≤3,
又a>0,所以0因为f(x)在[1,2]上不单调,
所以13.解 (1)根据题意,函数f(x)的定义域为(0,+∞),f(1)=0,
f′(x)=-ln x+,
∴f′(1)=a-1,
∴曲线f(x)在点(1,f(1))处的切线方程为y=(a-1)(x-1).
(2)f(x)的定义域为(0,+∞),
f′(x)=-ln x+=,
令g(x)=-xln x-x+a,
则g′(x)=-ln x-2,
令g′(x)=0,则x=,
令g′(x)>0,则0令g′(x)<0,则x>,
∴g(x)在上单调递增,在上单调递减,
g(x)max=g=+a,
∵f(x)在(0,+∞)上单调递减,
∴f′(x)≤0在(0,+∞)上恒成立,
即+a≤0,
∴a≤-.
14.解 (1)f(x)≤x+c等价于
ln x-x≤c-1.
令h(x)=ln x-x,x>0,
则h′(x)=-1=.
当00,
所以h(x)在(0,1)上单调递增;
当x>1时,h′(x)<0,
所以h(x)在(1,+∞)上单调递减.
故h(x)max=h(1)=-1,
所以c-1≥-1,即c≥0,
所以c的取值范围是[0,+∞).
(2)g(x)==(x>0且 x≠a),
因此g′(x)=,
令 m(x)=x-a-xln x+xln a,
则m′(x)=ln a-ln x,
当x>a时,ln x>ln a,所以m′(x)<0,m(x)在(a,+∞)上单调递减,
当00,m(x)在(0,a)上单调递增,
因此有m(x)即 g′(x)<0在x>0且x≠a上恒成立,
所以函数g(x)在区间(0,a)和(a,+∞)上单调递减.
15.D [因为当0所以<,
即x1f(x1)令g(x)=xf(x)=ex-ax2,
则g(x1)又因为0所以g(x)在(0,+∞)上单调递增,
所以g′(x)=ex-2ax≥0在(0,+∞)上恒成立,
分离参数得2a≤恒成立,
令h(x)=(x>0),
则只需2a≤h(x)min,
而h′(x)=ex·,
令h′(x)>0,得x>1,令h′(x)<0,得0所以h(x)≥h(1)=e,故2a≤e,
即a≤.]
16.C [令g(x)=xf(x),
由于f(x)为偶函数,则g(x)为奇函数,所以g′(x)=f(x)+xf′(x).
因为当x>0时,>-f′(x),
即>0,
所以f(x)+xf′(x)>0,
即g′(x)>0.所以当x>0时,g(x)在(0,+∞)上单调递增.
因为g(x)在R上为奇函数且在R上存在导函数,
所以g(x)在R上为增函数.
因为f(2)=1,所以g(2)=2f(2)=2,
又(x2-x)f(x2-x)>2等价于
g(x2-x)>g(2),
所以x2-x>2,解得x<-1或x>2.
综上所述,x的取值范围为(-∞,-1)∪(2,+∞).]

展开更多......

收起↑

资源列表