专题20三角函数及解三角形解答题(理科)-2(含解析)十年(2014-2023)高考数学真题分项汇编(全国通用)

资源下载
  1. 二一教育资源

专题20三角函数及解三角形解答题(理科)-2(含解析)十年(2014-2023)高考数学真题分项汇编(全国通用)

资源简介

十年(2014-2023)年高考真题分项汇编—三角函数解答题
题型四:正余弦定理的应用
(2023年新课标全国Ⅱ卷·第17题)
1.记的内角的对边分别为,已知的面积为,为中点,且.
(1)若,求;
(2)若,求.
(2021年新高考Ⅰ卷·第19题)
2.记是内角,,的对边分别为,,.已知,点在边上,.
(1)证明:;
(2)若,求.
(2020年浙江省高考数学试卷·第18题)
3.在锐角△ABC中,角A,B,C的对边分别为a,b,c,且.
(I)求角B的大小;
(II)求cosA+cosB+cosC的取值范围.
(2022新高考全国I卷·第18题)
4.记的内角A,B,C的对边分别为a,b,c,已知.
(1)若,求B;
(2)求的最小值.
(2020天津高考·第16题)
5.在中,角所对的边分别为.已知 .
(Ⅰ)求角的大小;
(Ⅱ)求的值;
(Ⅲ)求的值.
(2020江苏高考·第16题)
6.在△ABC中,角A,B,C的对边分别为a,b,c,已知.
(1)求的值;
(2)在边BC上取一点D,使得,求的值.
(2019·全国Ⅰ·理·第17题)
7.的内角A,B,C的对边分别为a,b,c,设.
(1)求A;
(2)若,求sinC.
(2019·江苏·第15题)
8.在△ABC中,角A,B,C的对边分别为a,b,c.
(1)若a=3c,b=,cosB=,求c的值;
(2)若,求的值.
(2019·北京·理·第15题)
9.在△ABC中,a=3,b c=2,cosB=.
(Ⅰ)求b,c的值;
(Ⅱ)求sin(B–C)的值.
(2018年高考数学天津(理)·第15题)
10.在中,内角A,B,C所对的边分别为a,b,c.已知.
(1)求角B的大小;
(2)设a=2,c=3,求b和的值.
(2018年高考数学课标卷Ⅰ(理)·第17题)
11.在平面四边形中,,,,.
(1)求;
(2)若,求.
(2018年高考数学北京(理)·第15题)
12.在中,.
(1)求;
(2)求边上的高.
(2014高考数学陕西理科·第18题)
13.的内角所对的边分别为.
(1)若a,b,c成等差数列,证明:;
(2)若成等比数列,求的最小值.
(2014高考数学湖南理科·第18题)
14.如图所示,在平面四边形ABCD中,AD=1,CD=2,AC=.

(1)求cos∠CAD的值;
(2)若cos∠BAD=-,sin∠CBA=,求BC的长.
(2014高考数学大纲理科·第17题)
15.的内角A,B,C的对边分别是a,b,c,已知,求B.
(2014高考数学北京理科·第15题)
16.如图,在中, , ,点在边上,且, .
(1)求;
(2)求的长.
(2014高考数学安徽理科·第16题)
17.设的内角所对边的长分别是,且.
(1)求的值; (2)求的值.
(2015高考数学四川理科·第19题)
18.如图,为平面四边形的四个内角.
(1)证明:;
(2)若,,,,,求的值.
(2015高考数学湖南理科·第19题)
19.设的内角,,的对边分别为,,,,且为钝角. (1)证明:; (2)求的取值范围.
(2015高考数学江苏文理·第15题)
20.在中,已知.
(1)求的长
(2)求的值
(2015高考数学安徽理科·第16题)
21.在中,,点D在边上,,求的长.
(2017年高考数学天津理科·第15题)
22.在中,内角所对的边分别为.已知,,.
(Ⅰ)求和的值;
(Ⅱ)求的值.
(2016高考数学四川理科·第17题)
23.在△ABC中,角A,B,C所对的边分别是a,b,c,且.
(Ⅰ)证明:;
(Ⅱ)若,求.
(2016高考数学山东理科·第16题)
24.在△ABC中,角A,B,C的对边分别为a,b,c.已知2(tanA+tanB)=.
(1)证明:a+b=2c;
(2)求cos C的最小值.
(2016高考数学江苏文理科·第15题)
25.在中,AC=6,
(1)求AB的长;
(2)求的值.
(2016高考数学北京理科·第15题)
26.在△ABC中,(1)求B的大小;
(2)求cos A+cos C的最大值.
(2019·天津·理·第15题)
27. 在中,内角所对的边分别为.已知,.
(Ⅰ)求的值;
(Ⅱ)求的值.
试卷第1页,共3页
试卷第1页,共3页
参考答案:
1.(1);
(2).
【分析】(1)方法1,利用三角形面积公式求出,再利用余弦定理求解作答;方法2,利用三角形面积公式求出,作出边上的高,利用直角三角形求解作答.
(2)方法1,利用余弦定理求出a,再利用三角形面积公式求出即可求解作答;方法2,利用向量运算律建立关系求出a,再利用三角形面积公式求出即可求解作答.
【详解】(1)方法1:在中,因为为中点,,,

则,解得,
在中,,由余弦定理得,
即,解得,则,

所以.
方法2:在中,因为为中点,,,
则,解得,
在中,由余弦定理得,
即,解得,有,则,
,过作于,于是,,
所以.
(2)方法1:在与中,由余弦定理得,
整理得,而,则,
又,解得,而,于是,
所以.
方法2:在中,因为为中点,则,又,
于是,即,解得,
又,解得,而,于是,
所以.
2.(1)证明见解析;(2).
【分析】(1)根据正弦定理的边角关系有,结合已知即可证结论.
(2)方法一:两次应用余弦定理,求得边与的关系,然后利用余弦定理即可求得的值.
【详解】(1)设的外接圆半径为R,由正弦定理,
得,
因为,所以,即.
又因为,所以.
(2)[方法一]【最优解】:两次应用余弦定理
因为,如图,在中,,①
在中,.②
由①②得,整理得.
又因为,所以,解得或,
当时,(舍去).
当时,.
所以.
[方法二]:等面积法和三角形相似
如图,已知,则,
即,
而,即,
故有,从而.
由,即,即,即,
故,即,
又,所以,
则.
[方法三]:正弦定理、余弦定理相结合
由(1)知,再由得.
在中,由正弦定理得.
又,所以,化简得.
在中,由正弦定理知,又由,所以.
在中,由余弦定理,得.
故.
[方法四]:构造辅助线利用相似的性质
如图,作,交于点E,则.
由,得.
在中,.
在中.
因为,
所以,
整理得.
又因为,所以,
即或.
下同解法1.
[方法五]:平面向量基本定理
因为,所以.
以向量为基底,有.
所以,
即,
又因为,所以.③
由余弦定理得,
所以④
联立③④,得.
所以或.
下同解法1.
[方法六]:建系求解
以D为坐标原点,所在直线为x轴,过点D垂直于的直线为y轴,
长为单位长度建立直角坐标系,
如图所示,则.
由(1)知,,所以点B在以D为圆心,3为半径的圆上运动.
设,则.⑤
由知,,
即.⑥
联立⑤⑥解得或(舍去),,
代入⑥式得,
由余弦定理得.
【整体点评】(2)方法一:两次应用余弦定理是一种典型的方法,充分利用了三角形的性质和正余弦定理的性质解题;
方法二:等面积法是一种常用的方法,很多数学问题利用等面积法使得问题转化为更为简单的问题,相似是三角形中的常用思路;
方法三:正弦定理和余弦定理相结合是解三角形问题的常用思路;
方法四:构造辅助线作出相似三角形,结合余弦定理和相似三角形是一种确定边长比例关系的不错选择;
方法五:平面向量是解决几何问题的一种重要方法,充分利用平面向量基本定理和向量的运算法则可以将其与余弦定理充分结合到一起;
方法六:建立平面直角坐标系是解析几何的思路,利用此方法数形结合充分挖掘几何性质使得问题更加直观化.
3.(I);(II)
【分析】(I)方法二:首先利用正弦定理边化角,然后结合特殊角的三角函数值即可确定角B的大小;
(II)方法二:结合(Ⅰ)的结论将含有三个角的三角函数式化简为只含有角A的三角函数式,然后由三角形为锐角三角形确定角A的取值范围,最后结合三角函数的性质即可求得的取值范围.
【详解】(I)
[方法一]:余弦定理
由,得,即.
结合余弦定,
∴,
即,
即,
即,
即,
∵为锐角三角形,∴,
∴,
所以,
又B为的一个内角,故.
[方法二]【最优解】:正弦定理边化角
由,结合正弦定理可得:
为锐角三角形,故.
(II) [方法一]:余弦定理基本不等式
因为,并利用余弦定理整理得,
即.
结合,得.
由临界状态(不妨取)可知.
而为锐角三角形,所以.
由余弦定理得,
,代入化简得
故的取值范围是.
[方法二]【最优解】:恒等变换三角函数性质
结合(1)的结论有:
.
由可得:,,
则,.
即的取值范围是.
【整体点评】(I)的方法一,根据已知条件,利用余弦定理经过较复杂的代数恒等变形求得,运算能力要求较高;方法二则利用正弦定理边化角,运算简洁,是常用的方法,确定为最优解;(II)的三种方法中,方法一涉及到较为复杂的余弦定理代入化简,运算较为麻烦,方法二直接使用三角恒等变形,简洁明快,确定为最优解.
4.(1);
(2).
【分析】(1)根据二倍角公式以及两角差的余弦公式可将化成,再结合,即可求出;
(2)由(1)知,,,再利用正弦定理以及二倍角公式将化成,然后利用基本不等式即可解出.
【详解】(1)因为,即,
而,所以;
(2)由(1)知,,所以,
而,
所以,即有,所以
所以

当且仅当时取等号,所以的最小值为.
5.(Ⅰ);(Ⅱ);(Ⅲ).
【分析】(Ⅰ)直接利用余弦定理运算即可;
(Ⅱ)由(Ⅰ)及正弦定理即可得到答案;
(Ⅲ)先计算出进一步求出,再利用两角和的正弦公式计算即可.
【详解】(Ⅰ)在中,由及余弦定理得

又因为,所以;
(Ⅱ)在中,由, 及正弦定理,可得;
(Ⅲ)由知角为锐角,由,可得 ,
进而,
所以.
【点晴】本题主要考查正、余弦定理解三角形,以及三角恒等变换在解三角形中的应用,考查学生的数学运算能力,是一道容易题.
6.(1);(2).
【分析】(1)方法一:利用余弦定理求得,利用正弦定理求得.
(2)方法一:根据的值,求得的值,由(1)求得的值,从而求得的值,进而求得的值.
【详解】(1)[方法一]:正余弦定理综合法
由余弦定理得,所以.
由正弦定理得.
[方法二]【最优解】:几何法
过点A作,垂足为E.在中,由,可得,又,所以.
在中,,因此.
(2)[方法一]:两角和的正弦公式法
由于,,所以.
由于,所以,所以.
所以
.
由于,所以.
所以.
[方法二]【最优解】:几何法+两角差的正切公式法
在(1)的方法二的图中,由,可得,从而.
又由(1)可得,所以.
[方法三]:几何法+正弦定理法
在(1)的方法二中可得.
在中,,
所以.
在中,由正弦定理可得,
由此可得.
[方法四]:构造直角三角形法
如图,作,垂足为E,作,垂足为点G.
在(1)的方法二中可得.
由,可得.
在中,.
由(1)知,所以在中,,从而.
在中,.
所以.
【整体点评】(1)方法一:使用余弦定理求得,然后使用正弦定理求得;方法二:抓住45°角的特点,作出辅助线,利用几何方法简单计算即得答案,运算尤其简洁,为最优解;(2)方法一:使用两角和的正弦公式求得的正弦值,进而求解;方法二:适当作出辅助线,利用两角差的正切公式求解,运算更为简洁,为最优解;方法三:在几何法的基础上,使用正弦定理求得的正弦值,进而得解;方法四:更多的使用几何的思维方式,直接作出含有的直角三角形,进而求解,也是很优美的方法.
7.(1);(2).
【分析】(1)利用正弦定理化简已知边角关系式可得:,从而可整理出,根据可求得结果;
(2)[方法一]由题意利用正弦定理边化角,然后结合三角形内角和可得,然后结合辅助角公式可得,据此由两角和差正余弦公式可得.
【详解】(1),
即:,
由正弦定理可得:,

,.
(2)[方法一]正弦定理+两角和差正余弦
由(1)知,,所以由,
得,
整理得,即.
又,所以,即,
则.
[方法二]正弦定理+方程思想
由,得,
代入,
得,
整理得,则.
由,得,
所以.
[方法三]余弦定理
令.由,得.
将代入中,可得,
即,解得或(舍去).
所以,
从而.
[方法四]摄影定理
因为,所以,
由射影定理得,
所以.
【整体点评】方法一:首先由正弦定理边化角,然后由两角和差正余弦公式求解的值;
方法二:首先由正弦定理边化角,然后结合题意列方程,求解方程可得的值;
方法三:利用余弦定理求得的值,然后结合正弦定理可得的值;
方法四:利用摄影定理求得的值,然后由两角和差正余弦公式求解的值;
【点睛】本题考查利用正弦定理、余弦定理解三角形的问题,涉及到两角和差正弦公式、同角三角函数关系的应用,解题关键是能够利用正弦定理对边角关系式进行化简,得到余弦定理的形式或角之间的关系.
8.(1);(2).
【分析】(1)由题意结合余弦定理得到关于c的方程,解方程可得边长c的值;
(2)由题意结合正弦定理和同角三角函数基本关系首先求得的值,然后由诱导公式可得的值.
【详解】(1)因为,
由余弦定理,得,即.
所以.
(2)因为,
由正弦定理,得,所以.
从而,即,故.
因为,所以,从而.
因此.
【点睛】本题主要考查正弦定理、余弦定理、同角三角函数关系、诱导公式等基础知识,考查运算求解能力.
9.(Ⅰ) ;
(Ⅱ) .
【分析】(Ⅰ)由题意列出关于a,b,c的方程组,求解方程组即可确定b,c的值;
(Ⅱ)由题意结合正弦定理和两角和差正余弦公式可得的值.
【详解】(Ⅰ)由题意可得:,解得:.
(Ⅱ)由同角三角函数基本关系可得:,
结合正弦定理可得:,
很明显角C为锐角,故,
故.
【点睛】本题主要考查余弦定理、正弦定理的应用,两角和差正余弦公式的应用等知识,意在考查学生的转化能力和计算求解能力.
10.(Ⅰ);(Ⅱ),.
【详解】分析:(Ⅰ)由题意结合正弦定理边化角结合同角三角函数基本关系可得,则B=.
(Ⅱ)在△ABC中,由余弦定理可得b=.结合二倍角公式和两角差的正弦公式可得
详解:(Ⅰ)在△ABC中,由正弦定理,可得,
又由,得,
即,可得.
又因为,可得B=.
(Ⅱ)在△ABC中,由余弦定理及a=2,c=3,B=,
有,故b=.
由,可得.因为a因此,
所以,
点睛:在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式一般采用到正弦定理,出现边的二次式一般采用到余弦定理.应用正、余弦定理时,注意公式变式的应用.解决三角形问题时,注意角的限制范围.
11.(1);(2).
【分析】(1)方法一:根据正弦定理得到,求得,结合角的范围,利用同角三角函数关系式,求得;
(2)方法一:根据第一问的结论可以求得,在中,根据余弦定理即可求出.
【详解】(1)[方法1]:正弦定理+平方关系
在中,由正弦定理得,代入数值并解得.又因为,所以,即为锐角,所以.
[方法2]:余弦定理
在中,,即,解得:,所以,

[方法3]:【最优解】利用平面几何知识
如图,过B点作,垂足为E,,垂足为F.在中,因为,,所以.在中,因为,则.
所以.
[方法4]:坐标法
以D为坐标原点,为x轴,为y轴正方向,建立平面直角坐标系(图略).
设,则.因为,所以.
从而,又是锐角,所以,.
(2)[方法1]:【通性通法】余弦定理
在,由(1)得,,
,所以.
[方法2]:【最优解】利用平面几何知识
作,垂足为F,易求,,,由勾股定理得.
【整体点评】(1)方法一:根据题目条件已知两边和一边对角,利用正弦定理和平方关系解三角形,属于通性通法;
方法二:根据题目条件已知两边和一边对角,利用余弦定理解三角形,也属于通性通法;
方法三:根据题意利用几何知识,解直角三角形,简单易算.
方法四:建立坐标系,通过两点间的距离公式,将几何问题转化为代数问题,这是解析思想的体现.
(2)方法一:已知两边及夹角,利用余弦定理解三角形,是通性通法.
方法二:利用几何知识,解直角三角形,简单易算.
12.(1)∠A=;(2)AC边上的高为.
【分析】(1)方法一:先根据平方关系求,再根据正弦定理求,即得;
(2)方法一:利用诱导公式以及两角和正弦公式求,即可解得边上的高.
【详解】(1)[方法一]:平方关系+正弦定理
在中,∵.由正弦定理得

[方法二]:余弦定理的应用
由余弦定理知.因为,代入上式可得或(舍).所以,又,所以.
(2)[方法一]:两角和的正弦公式+锐角三角函数的定义
在△ABC中,
∵=.
如图所示,在△ABC中,∵sinC=,∴h==,
∴AC边上的高为.
[方法二]:解直角三角形+锐角三角函数的定义
如图1,由(1)得,则.
作,垂足为E,则,故边上的高为.
[方法三]:等面积法
由(1)得,易求.如图1,作,易得,即.所以根据等积法有,即,
所以边上的高为.
【整体点评】(1)方法一:已知两边及一边对角,利用正弦定理求出;
方法二:已知两边及一边对角,先利用余弦定理求出第三边,再根据余弦定理求出角;
(2)方法一:利用两角和的正弦公式求出第三个角,再根据锐角三角函数的定义求出;
方法二:利用初中平面几何知识,通过锐角三角函数定义解直角三角形求出;
方法三:利用初中平面几何知识,通过等面积法求出.
13.(1)证明见解析;
(2)
【分析】(1)利用等差中项和正弦定理的性质即可证得;
(2)先利用余弦定理求得的解析式,再利用均值定理即可求得的最小值.
【详解】(1)成等差数列,,由正弦定理得

(2)成等比数列,
由余弦定理得
(当且仅当时等号成立),
(当且仅当时等号成立)
(当且仅当时等号成立),
即,所以的最小值为
14.(1) (2)
【详解】试题分析:
(1)利用题意结合余弦定理可得;
(2)利用题意结合正弦定理可得:.
试题解析:
(I)在中,由余弦定理得
(II)设

在中,由正弦定理,


点睛:在解决三角形问题中,面积公式S= absin C= bcsin A= acsin B最常用,因为公式中既有边又有角,容易和正弦定理、余弦定理联系起来.
15.
【分析】首先利用正弦定理把边化角,然后利用同角三角函数的基本关系式求出值,最后再利用诱导公式和两角和的正切公式求解即可.
【详解】因为,由正弦定理得,
则,
因为,所以,即,
所以,
且,所以.
16.(1);(2)7.
【详解】试题分析:(I)在中,利用外角的性质,得即可计算结果;(II)由正弦定理,计算得,在中,由余弦定理,即可计算结果.
试题解析:(I)在中,∵,∴

(II)在中,由正弦定理得:
在中,由余弦定理得:

考点:正弦定理与余弦定理.
17.(1)(2)
【详解】试题分析:(1)在三角形中处理边角关系时,一般全部转化为角的关系,或全部转化为边的关系.题中若出现边的一次式一般采用正弦定理,出现边的二次式一般采用余弦定理,应用正弦、余弦定理时,注意公式变形的应用,解决三角形问题时,注意角的限制范围;(2)在三角形中,注意隐含条件(3)解决三角形问题时,根据边角关系灵活的选用定理和公式.
试题解析:因为,所以,
由余弦定理得,
所以由正弦定理可得.
因为,,所以,即.
(2)解:由余弦定理得
因为,所以.

.
考点:正弦定理和余弦定理的应用.
18.(1)证明见解析;(2).
【分析】(1)利用三角恒等变换化简即得解;
(2)化简得到.连结,利用余弦定理,可求得,.连结,同理可得,,即得解.
【详解】解:(1)
(2)由,得,.
由(1),有
连结,在中,有
在中,有
所以

于是.
连结,同理可得
于是
所以.
19.(1)见解析;(2).
【详解】试题分析:(Ⅰ)运用正弦定理将化简变形,再解三角方程即可获解;(Ⅱ)将角用表示,换元法求函数的值域即可.
试题解析:(Ⅰ)由及正弦定理,得,∴,
即,
又为钝角,因此,
故,即;
(Ⅱ)由(1)知,
,∴,
于是

∵,∴,因此,由此可知的取值范围是.
考点:正弦定理、三角变换,二次函数的有关知识和公式的应用.
20.(1)
(2)
【分析】(1)利用余弦定理即可得解;
(2)利用余弦定理求得,再利用三角函数的基本关系式与倍角公式即可得解.
【详解】(1)因为,
由余弦定理可得,
,
所以.
(2)因为,
所以,
又,所以,
则.
21.
【详解】试题分析:根据题意,设出的内角所对边的长分别是,由余弦定理求出的长度,再由正弦定理求出角的大小,在中.利用正弦定理即可求出的长度.
试题解析:如图,
设的内角所对边的长分别是,由余弦定理得

所以.
又由正弦定理得.
由题设知,所以.
在中,由正弦定理得.
考点:1.正弦定理、余弦定理的应用.
22.(Ⅰ).=.(Ⅱ).
【详解】试题分析:利用正弦定理“角转边”得出边的关系,再根据余弦定理求出,
进而得到,由转化为,求出,进而求出,从而求出的三角函数值,利用两角差的正弦公式求出结果.
试题解析:(Ⅰ) 解:在中,因为,故由,可得.由已知及余弦定理,有,所以.
由正弦定理,得.
所以,的值为,的值为.
(Ⅱ)解:由(Ⅰ)及,得,所以,
.故.
考点:正弦定理、余弦定理、解三角形
【名师点睛】利用正弦定理进行“边转角”寻求角的关系,利用“角转边”寻求边的关系,利用余弦定理借助三边关系求角,利用两角和差公式及二倍角公式求三角函数值. 利用正、余弦定理解三角形问题是高考高频考点,经常利用三角形内角和定理,三角形面积公式,结合正、余弦定理解题.
23.(Ⅰ)证明详见解析;(Ⅱ)4.
【详解】试题分析:(Ⅰ)将已知等式通分后利用两角和的正弦函数公式整理,利用正弦定理,即可证明.(Ⅱ)由余弦定理求出A的余弦函数值,利用(Ⅰ)的条件,求解B的正切函数值即可
试题解析:(1)根据正弦定理,设===k(k>0).
则a=ksinA,b=ksinB,c=ksin C.
代入+=中,有+=,变形可得
sin Asin B=sinAcos B+cos Asin B=sin(A+B).
在△ABC中,由A+B+C=π,有sin(A+B)=sin(π–C)="sin" C,
所以sin Asin B=sinC.
(2)由已知,b2+c2–a2=bc,根据余弦定理,有cos A==.
所以sin A==.
由(Ⅰ),sin Asin B="sin" Acos B+cos Asin B,所以sin B=cos B+sin B,
故tan B==4.
考点:余弦定理的应用;正弦定理;余弦定理
24.(1)见解析;(2).
【详解】试题分析:(1)根据三角函数的基本关系式,可化简得,再根据,即可得到,利用正弦定理,可作出证明;(2)由(1),利用余弦定理列出方程,再利用基本不等式,可得的最小值.
试题解析:(1)由题意知,,
化简得:
即,因为,所以,
从而,由正弦定理得.
(2)由(1)知,,所以,当且仅当时,等号成立,故的最小值为.
考点:三角恒等变换的应用;正弦定理;余弦定理.
【方法点晴】本题主要考查了三角恒等变换的应用、正弦定理与余弦定理的应用,涉及到三角函数的基本关系式和三角形中的性质和基本不等式的应用,着重考查了转化与化归思想和学生的推理与运算能力,以及知识间的融合,属于中档试题,解答中熟记三角函数恒等变换的公式是解答问题的关键.
25.(1)(2)
【详解】试题分析:(1)利用同角三角函数的基本关系求 再利用正弦定理求AB的长;(2)利用诱导公式及两角和与差正余弦公式分别求,然后求
试题解析:解(1)因为,,所以
由正弦定理知,所以
(2)在中,,所以,
于是
又故
因为,所以
因此
【考点】同角三角函数的基本关系、正余弦定理、两角和与差的正余弦公式
【名师点睛】三角函数是以角为自变量的函数,因此解三角函数题,首先应从角进行分析,善于用已知角表示所求角,即注重角的变换.角的变换涉及诱导公式、同角三角函数的基本关系、两角和与差的三角公式、二倍角公式、配角公式等,选用恰当的公式是解决三角问题的关键,同时应明确角的范围、开方时正负的取舍等.
26.(1)(2)1
【详解】试题分析:(1)由余弦定理及题设得;(2)由(1)知当时,取得最大值.
试题解析: (1)由余弦定理及题设得,
又∵,∴;(2)由(1)知,
,因为,所以当时,取得最大值.
考点:1、解三角形;2、函数的最值.
27.(Ⅰ) ;
(Ⅱ) .
【分析】(Ⅰ)由题意结合正弦定理得到的比例关系,然后利用余弦定理可得的值
(Ⅱ)利用二倍角公式首先求得的值,然后利用两角和的正弦公式可得的值.
【详解】(Ⅰ)在中,由正弦定理得,
又由,得,即.
又因为,得到,.
由余弦定理可得.
(Ⅱ)由(Ⅰ)可得,
从而,.
故.
【点睛】本题主要考查同角三角函数的基本关系,两角和的正弦公式,二倍角的正弦与余弦公式,以及正弦定理 余弦定理等基础知识.考查计算求解能力.
答案第1页,共2页
答案第1页,共2页

展开更多......

收起↑

资源预览