北师大版五年级数学下册期末1-5单元复习资料和练习题(含答案)

资源下载
  1. 二一教育资源

北师大版五年级数学下册期末1-5单元复习资料和练习题(含答案)

资源简介

五年级下册数学期末1-4单元复习资料和练习
第一单元知识梳理
1、真分数加减法
(1)同分母分数加、减法(分母不变,分子相加减)
(2)异分母分数加、减法(通分后再加减)
(3)分数加减混合运算:同整数。
(4)结果要是最简分数
2、带分数加减法:带分数相加减,整数部分和分数部分分别相加减,再把所得结果合并起来。
3、(1)同分母分数加、减法
①同分母分数加、减法:同分母分数相加、减,分母不变,只把分子相加减。
②计算的结果,能约分的要约成最简分数。
(2)异分母分数加、减法
①分母不同,也就是分数单位不同,不能直接相加、减。
②异分母分数的加减法:
异分母分数相加、减,要先通分,再按照同分母分数加减法的方法进行计算。
分数加减混合运算
第一单元检测卷 分数乘法
一、填空题
1.。(填小数)
2.在( )里填上“>”“<”或“=”。
( ) ( ) ( )0.7
3.(填小数)。
4.和分别是两个最简分数,这两个分数的和是,那么( )
5.分数单位是的所有最简真分数的和是( )。
6.一袋糖果2千克,吃了这袋糖果的,还剩下这袋糖果的( );如果吃了千克,还剩下( )千克。
7.一瓶饮料,小明第一次喝了它的,第二次了它的,两次一共喝了这瓶饮料的( ),还剩下这瓶饮料的( )。
8.分母是5的最简真分数的和是( )。
9.用最小的合数作分母的最简真分数的和是( )。
10.有红、黄、青三箱苹果。红苹果比黄苹果重kg,青苹果比黄苹果轻kg。红苹果与青苹果的质量相差( )kg。
二、判断题
1.正方形的一条边长是周长的。( )
2.把5米长的铁丝分成8份,每份是米。( )
3.把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。( )
4.五(2)班男生人数占全班人数的,则女生人数占全班人数的。( )
5.和相等的分数有无数个.( )
三、选择题
1.不能直接相加的原因是( )。
A.分子不同 B.分数的大小不同 C.分数单位不同
2.一份稿件,小李打要用3小时,小王打要用4小时,小李每小时比小王多完成这份稿件的( )。
A.1 B. C.
3.和这两个分数(   )。
A.大小相同 B.意义相同 C.分数单位相同
4.是真分数,是假分数,是( )。
A.1 B.5 C.4
5.在,,,,,中,能化成有限小数的分数有( )个。
A.2 B.3 C.4
四、直接写出得数
五、解决问题
1.某小学举行跳绳比赛,奖项分为一、二、三等奖,其中获一、二等奖的人数占获奖总人数的,获二、三等奖的人数占获奖总人数的,获二等奖的人数占获奖总人数的几分之几?
2.农民伯伯给果树浇水,第一天上午浇了所有果树的,下午浇了所有果树的,剩下的第二天下午要浇完。
(1)第一天一共浇了所有果树的几分之几?
(2)第二天下午要浇几分之几?
3.小明家买来一些水泥用于装修,第一天用去吨,第二天比第一天多用去吨,两天共用去多少吨?
4.为了弘扬传统文化,打造书香班级。五(一)班开展了“国学经典诵读”活动,全班有的同学读《论语》,的同学读《三字经》,的同学读《弟子规》。
(1)读《三字经》和《弟子规》的同学共占全班同学的几分之几?
(2)该班是否所有同学都参与了“国学经典诵读”活动?请通过计算说明。
5.淘气和笑笑包装礼品盒,淘气用去了一根彩带的,笑笑用去了这根彩带的。
(1)他们一共用去这根彩带的几分之几?还剩几分之几?
(2)淘气比笑笑多用去这根彩带的几分之几?
第二单元知识梳理
一、长方体的认识
1、认识长方体、正方体,了解各部分的名称。
(1)表面平平的部分称为面;两面相交便形成了一条棱;而三条棱又交于一点,这个点叫作顶点。
(2)左面的面叫左面,右面的面叫右面,上面的面叫上面,下面的面叫下面(或叫底面),前面的面叫前面,后面的面叫后面。
(3)长方体有12条棱,这12条棱中有4条长、4条宽和4条高。正方体的12条棱的长度都相等,叫棱长。
2、长方体、正方体各自的特点
长方体有6个面,每个面都是长方形,相对的两个面完全相同;有8个顶点;有12条棱,12条棱分成3组,每组4条棱一样长。同一个顶点的3条棱分别代表长方体的长、宽、高。当长方体有一组相对的面是正方形时,它的另外4个面是完全相同的长方形,此时它有8条棱一样长。
正方体是特殊的长方体。长、宽、高相等的长方体就是正方体。正方体有6面,是完全一样的正方形;8个顶点;12条棱一样长。(面面相等、棱棱相等)
顶点 面 棱
个数 个数 形状 大小关系 条数 长度关系
8 6 都是长方形,特殊的有两个相对的面是正方形,其余四个面是完全一样的长方形。 相对的面是完全一样的长方形。 12 可以分为三组,相对的棱平行且相等。
8 6 都是正方形。 每个面是正方形。 12 长度都相等。
3、正方体是特殊的长方体,又叫立方体。
4、能计算长方体、正方体的棱长总和;知道棱长总和,会求长、宽、高。
长方体的棱长总和=(长+宽+高)×4,或者:
长方体的棱长总和=长×4+宽×4+高×4 L=(a+b+h)×4或者:L=a×4+b×4+c×4.
长方体的长=棱长总和÷4-(宽+高) a=L÷4-(b+h)
长方体的宽=棱长总和÷4-(长+高) b=L÷4-(a+h)
长方体的高=棱长总和÷4-(长+宽) h=L÷4-(a+b)
正方体的棱长总和=棱长×12 L=12a
正方体的棱长=棱长总和÷12 a=L÷12
二、展开与折叠
1、认识并了解长方体和正方体的平面展开图。
2、了解正方体平面展开图的几种形式,并以此来判断。
三、长方体的表面积
1、理解表面积的意义:长方体的表面积是指六个面的面积之和。
2、长方体和正方体表面积的计算方法。
上面=下面=长×宽
前面=后面=长×高
左面=右面=宽×高
长方体的表面积=(长×宽+长×高+宽×高)×2 S=(ab+ah+bh)×2
3.正方体的表面积=棱长×棱长×6 S=6a
4.把一个正方体截成两个长方体,两个长方体的表面积之和比原来的正方体的表面积增大了,增大了原来正方体的两个面的面积。把两个正方体拼成一个长方体,长方体的表面积比原来两个正方体的表面积之和减少了,减少了原来正方体的两个面的面积。
四、露在外面的面
1、在观察中,通过不同的观察策略进行观察。
如:一种是看每个纸箱露在外面的面,再加到一起;另一种是分别从正面、上面、侧面进行不同角度的观察,看每个角度都能看到多少个面,再加到一起。
发现并找出堆放的正方体的个数与露在外面的面的面数的变化规律。
第二单元检测卷 长方体
一、填空题
1.4个棱长为20厘米的正方体纸盒放在墙角处(如下图),有( )个面露在外面,露在外面的面积是( )。
2.2020年盐城成功入选第六届全国文明城市,为此,小娟同学特制一个正方体玩具,展开图如图所示,则原正方体中与“全”字所在面相对的面上的字是( )。
3.把一个棱长6分米的正方体木块平均分成两个长方体后,木块的表面积增加( )平方分米。
4.一个长12cm,宽和高都是4cm的长方体,切割成几个最大的正方体后,表面积增加了( )。
5.下图是一个正方体六个面的展开图,这六个面分别是A、B、C、D、E、F,三组对应的面中,C对( );E对( )。
6.如图,将这个展开图围成正方体后,3的对面是( ),1的对面是( )。
7.如图,4个棱长都是3cm的正方体堆放在墙角处,露在外面的面积是( )。
二、判断题
1.正方体的棱长扩大到原来的4倍,则表面积扩大到原来的16倍。( )
2.有三条棱相交于一个顶点,且长度相等的长方体一定是正方体。( )
3.棱长是2厘米的正方体,它的棱长总和是24平方厘米。( )
4.把一个长13cm、宽10cm、高8cm的长方体切成一个最大的正方体,这个正方体的棱长为10cm。( )
三、选择题
1.下面每个图形都是由6个大小相等的正方形组成的,其中不能折成正方体的是( )。
A. B. C. D.
2.下面的图形中,( )是正方体的表面展开图。
A. B. C. D.
3.大正方体的棱长是小正方体棱长的4倍,那么它的表面积是小正方体表面积的(  )倍。
A.4 B.8 C.16 D.64
四、直接写出得数
五、图形计算
1.计算下图的表面积。(单位:厘米)
2.计算下面长方体的表面积。
六、解决问题
1.教学楼门前有一根长方体柱子,高3.6m,底面是边长0.4m的正方形。如果要给这根柱子的四周刷油漆,每平方米需要油漆0.3kg,一共需要油漆多少千克?
2.用一根长48dm的铁丝做一个长方体的框架,使它的高为8dm,长、宽的比是1∶1,再将它的5个面糊上纸花,做成一个长方体形状的灯笼,至少需要多少平方分米的花纸?
3.1个长方体工艺礼盒的长是6分米,宽是4分米,高是1分米,现将3个这样的工艺礼盒包装在一起(仍是一个长方体)。怎样包装最节省包装纸?至少需要多少平方分米的包装纸?(接口处不计)
第三单元知识梳理
分数乘法(一)
1、分数乘整数的意义:数乘整数的意义同整数乘法的意义相同,就是求几个相同加数的和的简便运算。
2、分数乘整数的计算方法:分母不变,分子和整数相乘的积作分子。能约分的要约成最简分数。
3、计算时,应该先约分再计算。
分数乘法(二)
1、整数乘分数的意义:求一个数的几分之几是多少。
理解打折的含义。例如:九折,是指现价是原价的十分之九。
补充知识点:打几几折就是指现价是原价的百分之几,例如八五折,是指现价是原价的百分之八十五。
分数乘法(三)
1、分数乘分数的计算方法:分子相乘做分子,分母相乘做分母,能约分的可以先约分。(计算结果要求是最简分数。)
比较分数相乘的积与每一个乘数的大小:真分数相乘积小于任何一个乘数;真分数与假分数相乘积大于真分数小于假分数。
第三单元检测卷 分数乘法
一、填空题
1.一个长方形的长是24cm,宽是长的,这个长方形的面积是( )。
2.=( )×( )=( )。
3.在( )里填上“>”“<”或“=”。
×( )    ×( )    ×1( )+1
4.最小质数的倒数是( );0.75的倒数是( )。
5.张庄农民2011年人均年收入是6000元,2012年比2011年增加了,2012年比2011年人均收入增加了( )元。
6.如果甲数的等于乙数的(甲、乙不为0) ,那么甲数( )乙数。(比较大小)
7.一根10米的绳子,用去米,还剩( )米;如果是用去它的,还剩( )米。
8.32克的是( );比24米多的是( )。
9.在○里填上“>”“<”或“=”。
×4○ 9×○×9 ×○
○0.75 0.24○×30 0.4○
10.的倒数是( ),0.45的倒数是( ),12的倒数是( ),1.4的倒数是( )。
11.2.5的倒数是( ),( )没有倒数。
12.0.64的倒数是( ),( )的倒数是1。
二、判断题
1.3吨的和1吨的一样重。 ( )
2.一个数(0除外)乘分数,积一定小于这个数。( )
3.7吨的与1吨的相等。 ( )
4.和的积相等,意义相同。 ( )
5.千米的 和800米的 同样长。 ( )
三、选择题
1.分数乘整数,积与整数相比( )。
A.积大于整数 B.积小于整数 C.无法确定
2.下面说法错误的是 )。
A.0没有倒数 B.因为0.25×4=1,所以0.25和4互为倒数
C.假分数的倒数一定小于1 D.1的倒数是1
3.的比较接近( )。
A. B. C.
4.如果,(,都不为0)那么下面运算结果大于6的是( )。
①②③④
A.①④ B.①③ C.③④ D.②③
5.今年的产量比去年多,今年的产量就相当于去年的( )。
A. B. C.
四、直接写出得数


五、解答题
1.农场有840公顷水稻,玉米占地面积是水稻的,小麦占地面积是玉米的,小麦有多少公顷?
2.五年级学生去郊区农业试验基地参观,一共用了6时,其中路上用去的时间占,午饭和休息时间共占,剩下的时间安排参观活动。参观的时间占几分之几?参观用了多长时间?
3.实验小学合唱组有120人,美术组的人数是合唱组的,科技组的人数是美术组的,科技组有多少人?
第四单元知识梳理
一、体积与容积
1、体积与容积的概念。
体积:物体所占空间的大小叫作物体的体积。
容积:容器所能容纳入体的体积叫做物体的容积。
注意:
①同一个容器,体积大于容积;当容器壁很薄时,容积近等于体积。如果容器壁忽略不计时,容积等于体积。
②几个物体拼在一起时,它们的体积不发生改变(它们占空间的大小没有发生变化)
2、体积单位。
常用的体积单位:立方米()、立方分米()、立方厘米()
常用的容积单位:升、毫升、1升=1、1毫升=1
棱长为1cm的正方体它的体积是1cm ;棱长为1dm的正方体它的体积是1dm ;棱长为1m的正方体它的体积是1m 。
3、液体的体积单位和容纳液体容器的容积单位:升(L)、毫升(mL)。
1升=1分米 1毫升=1厘米
常用的体积单位:立方米()、立方分米()、立方厘米()
常用的容积单位:升、毫升、1升=1、1毫升=1
4、感受1立方米、1立方分米、1立方厘米以及1升、1毫升的实际意义:
①手指头、苹果、火柴盒体积较小,可用作单位;
②西瓜、粉笔盒体积稍大,可以用作单位;
③矿泉水瓶、墨水瓶可以用毫升作单位;
④热水瓶等较大盛液体容器、冰箱可用生升作单位;
⑤我们饮用的自来水用“立方米”作单位。
二、长方体的体积
1、长方体的体积=长×宽×高 V=abh
正方体的体积=棱长×棱长×棱长 V=a
长方体(正方体)的体积=底面积×高 V=Sh
长方体的体积=横截面面积×长
2、能利用长方体(正方体)的体积及其他两个条件求出问题。如:
长方体的长=体积÷(宽×高)
长方体的宽=体积÷(长×高)
长方体的高=体积÷(长×宽)
三、体积单位的换算
1、体积、容积单位之间的进率。相邻两个体积单位、容积单位之间的进率是1000。
1m =1000dm 1dm =1000cm 1L=1000mL
2、单位换算:高级单位化成低级单位,要乘以进率,低级单位化成高级单位要除以进率。
四、有趣的测量
(1)测量不规则石块的体积
方案一:找一个长方体形状的容器,里面放一定的水,量出长方形容器的底面长、
宽和水面的高度,再把石头沉入水中(水面要完全浸没石块),再一次量出水面的高度。这时计算一下水面升高了几厘米,用“长×宽×水面上升的高”计算出升高的体积就是石块的体积。也可以分别计算放入石头前的体积与放入石头之后的总体积之差。
注意:
不规则物体体积的测量方法:一般都是把不规则物体的体积转化成可通过测量计算的水的体积(注意液面是“升高了”还是“升高到”)
方案二:将石头放入盛满水的容器中,并将溢出的水倒入有刻度的量杯中,然后直接读出的水的体积,就是石头的体积。
(2)测量一粒黄豆的体积
可以用测量石块体积的方法测量出100粒黄豆的体积,再除以100,计算出一粒黄豆的体积。
5、补充知识:
(1)表面积相等的长方体,体积不一定相等;体积相等的长方体,表面积不一定相等。
(2)表面积相等的正方体,体积一定相等;体积相等的正方体,表面积一定相等。
(3)正方体的棱长扩大n倍,棱长扩大n倍,表面积扩大n 倍,体积扩大n 倍。
(4)底面积和高相等的长方体体积一定相等。
(5)将一个长方体截成两个长方体,这两个长方体与原来一个长方体相比,表面积增大了,而体积不变。
第四单元检测卷 长方体(二)
一、填一填。
1.在( )里填上合适的单位。
一台电子秤的体积约是8( )。
家用小轿车的油箱的容积约是45( )。
一瓶白酒的净含量为500( )。
一间仓库的占地面积是54( ),所占空间大约是162( )。
2.单位换算。
1.8 m =( )dm 1509mL=( )L
5400 cm =( )dm 2.2dm =( )mL
3.一个长方体的长是3 m,宽是2 m,高是1 m,这个长方体的棱长之和是( ) m,表面积是( )m ,体积是( )m 。
4.一根长方体木料,长8 m,横截面的面积是14 m ,这根木料的体积是( )m 。
5.将一个长9 cm、宽6 cm、高3 cm的长方体切成一个体积最大的正方体,这个正方体的体积是( )cm 。
6.把80 L汽油倒入一个长0.4 m,宽0.2 m的长方体油箱中,正好装满,这个油箱高( )dm。7.一个正方体的表面积是 54 cm ,它的体积是( )cm 。
8.一个喷雾型药箱的容积是13 L,如果每分喷出药液650mL,喷完一箱药液需要用时( )分。
9.如图,一根长方体木料,左、右两个面都是正方形,其余四个面的总面积是7.2 m ,这根木料的长是4.5 m,体积是( )m 。
10.下图中大正方体的体积是( )cm 。
二、将正确答案的序号填在括号里。
1.下面的说法正确的是( )。
A.棱长为6 cm的正方体的表面积和体积相等
B.体积单位间的进率是1000
C.把一块长方体橡皮泥捏成一个正方体后,体积不变
D.长方体的底面积越大,体积就越大
2.用棱长为1 cm的小正方体木块拼成一个棱长为1dm的大正方体,需要( )个这样的木块。
A.10 B.100 C.1000 D.10000
3.一个长方体,长12 cm,长是宽的2倍,高是长的一半,从某个方向看,这个长方体的外形近似于( )。
B. C. D.
4.一个长方体长8 cm、宽6 cm、高5 cm,把它切成棱长是2 cm的小正方体,最多可以切( )个。
A.20 B.24 C.30 D.60
5.图中的两个物体是用相同数量的小正方体摆成的,比较它们的表面积和体积,说法正确的是( )。
A.体积相等,正方体的表面积大 B.体积相等,长方体的表面积大
C.表面积相等,正方体的体积大 D.表面积相等,长方体的体积大
三、计算下面图形的表面积和体积。(单位:cm)
1.
2.
四、解决问题。
1.小明把一块棱长为6 cm的正方体橡皮泥捏成一个长9 cm、宽3 cm的长方体,这个长方体的高是多少厘米?
2.如图,在教室里靠墙砌一个长4 m、宽1.5 m、高3dm的讲台。
(1)如果每立方米用砖530块,一共需要多少块砖?
(2)如果把砌成的讲台抹上水泥,抹水泥的面积是多少?
第一单元答案
一、填空题
1.50;2;5;0.4 2.> > < 3.8;1.6
4.4 5.2 6.1 7. 8.2 9.1 10.
二、判断题
1.√ 2.× 3.√ 4.√ 5.√
三、选择题
1.C 2.B 3.A 4.B 5.C
四、直接写出得数
1.;0;;;;;;;;;;
五、解决问题
1.2.(1)(2)3.吨
4.(1)(2)该班所有同学都参加了“国学经典诵读”活动
5.(1);;(2)
第二单元 答案
一、填空题
1.9 3600平方厘米2.明 3.72 4.64 5.F B 6.5 4 7.81cm2
二、判断题
1.√ 2.√ 3.× 4.×
三、选择题
1.C 2.A 3.C
四、直接写出得数
;;;;;;;;;
五、图形计算
1.184平方厘米 2.236平方分米
六、解决问题
1.1.728千克 2.68平方分米
小长方体的最大面重合,最节省包装纸;108平方分米
第三单元 答案
一、填空题
1.384 2. 6 3.< > <
4. 5.600 6.> 7.9 8 8.4克 32米
9.> = < < < >
10. 11.0.4 0 12. 1
二、判断题
1.√ 2.× 3.√ 4.√ 5.√
三、选择题
1.C 2.C 3.A 4.A 5.C
四、直接写出得数
1.,,,30;,,,
五、解答题
1.140公顷 2.;3小时 3.60人
第四单元 答案
一、1.dm L mL m m
2.1800 1.509 5.4 2200 3.24 22 6
4.112 5.27 6.10 7.27 8.20 9.0.72 10.100
二、1.C 2.C 3.B 4.B 5.B
三、1.表面积:9×9×6=486(cm ) 体积:9×9×9=729(cm )
2. 表面积:8×6×4+6×6×2=264(cm ) 体积:8×6×6=288(cm )
四、1. 6×6×6÷9÷3=8(cm)
答:这个长方体的高是8 cm。
2.(1) 3dm=0.3 m 530×(4×1.5×0.3)=954(块)
答:一共需要954块砖。
(2) 3dm=0.3 m 4×1.5+4×0.3+1.5×0.3×2=8.1(m )
答:抹水泥的面积是8.1 m 。

展开更多......

收起↑

资源预览