资源简介 九年级上册简介《义务教育课程标准实验教科书·数学》九年级上册包括二次根式、一元二次方程、旋转、圆、概率初步五章内容,学习内容涉及到了《全日制义务教育数学课程标准(实验稿)》(以下简称《课程标准》)的四个领域“数与代数”“空间与图形”“统计与概率”“课题学习”。本书供义务教育九年级上学期使用,全书共需约61课时,具体分配如下:第21章 二次根式 约9课时第22章 一元二次方程 约13课时第23章 旋转 约8课时第24章 圆 约17课时第25章 概率初步 约14课时一、 教科书内容安排1.二次根式学生已经学过整式与分式,知道用式子可以表示实际问题中的数量关系。解决与数量关系有关的问题还会遇到二次根式。“二次根式” 一章就来认识这种式子,探索它的性质,掌握它的运算。在这一章,首先让学生了解二次根式的概念,并掌握以下重要结论:(1)是一个非负数;(2);(3) (a≥0).关于二次根式的运算,由于二次根式的乘除相对于二次根式的加减来说更易于掌握,教科书先安排二次根式的乘除,再安排二次根式的加减。“二次根式的乘除”一节的内容有两条发展的线索。一条是用具体计算的例子体会二次根式乘除法则的合理性,并运用二次根式的乘除法则进行运算;一条是由二次根式的乘除法则得到 (a≥0,b≥0), (a≥0,b>0)并运用它们进行二次根式的化简。“二次根式的加减”一节先安排二次根式加减的内容,再安排二次根式加减乘除混合运算的内容。在本节中,注意类比整式运算的有关内容。例如,让学生比较二次根式的加减与整式的加减,又如,通过例题说明在二次根式的运算中,多项式乘法法则和乘法公式仍然适用。这些处理有助于学生掌握本节内容。2. 一元二次方程学生已经掌握了用一元一次方程解决实际问题的方法。在解决某些实际问题时还会遇到一种新方程 ── 一元二次方程。“一元二次方程”一章就来认识这种方程,讨论这种方程的解法, 并运用这种方程解决一些实际问题。本章首先通过雕像设计、制作方盒、排球比赛等问题引出一元二次方程的概念,给出一元二次方程的一般形式。然后让学生通过数值代入的方法找出某些简单的一元二次方程的解,对一元二次方程的解加以体会,并给出一元二次方程的根的概念,“22.2 降次──解一元二次方程”一节介绍配方法、公式法、因式分解法三种解一元二次方程的方法。下面分别加以说明。(1)在介绍配方法时,首先通过实际问题引出形如的方程。这样的方程可以化为更为简单的形如的方程,由平方根的概念,可以得到这个方程的解。进而举例说明如何解形如的方程。然后举例说明一元二次方程可以化为形如的方程,引出配方法。最后安排运用配方法解一元二次方程的例题。在例题中,涉及二次项系数不是1的一元二次方程,也涉及没有实数根的一元二次方程。对于没有实数根的一元二次方程,学了“公式法”以后,学生对这个内容会有进一步的理解。(2)在介绍公式法时,首先借助配方法讨论方程的解法,得到一元二次方程的求根公式。然后安排运用公式法解一元二次方程的例题。在例题中,涉及有两个相等实数根的一元二次方程,也涉及没有实数根的一元二次方程。由此引出一元二次方程的解的三种情况。(3)在介绍因式分解法时,首先通过实际问题引出易于用因式分解法的一元二次方程,引出因式分解法。然后安排运用因式分解法解一元二次方程的例题。最后对配方法、公式法、因式分解法三种解一元二次方程的方法进行小结。“22.3实际问题与一元二次方程”一节安排了四个探究栏目,分别探究传播、成本下降率、面积、匀变速运动等问题,使学生进一步体会方程是刻画现实世界的一个有效的数学模型。3.旋转学生已经认识了平移、轴对称,探索了它们的性质,并运用它们进行图案设计。本书中图形变换又增添了一名新成员――旋转。“旋转”一章就来认识这种变换,探索它的性质。在此基础上,认识中心对称和中心对称图形。“23.1 旋转”一节首先通过实例介绍旋转的概念。然后让学生探究旋转的性质。在此基础上,通过例题说明作一个图形旋转后的图形的方法。最后举例说明用旋转可以进行图案设计。“23.2 中心对称”一节首先通过实例介绍中心对称的概念。然后让学生探究中心对称的性质。在此基础上,通过例题说明作与一个图形成中心对称的图形的方法。这些内容之后,通过线段、平行四边形引出中心对称图形的概念。最后介绍关于原点对称的点的坐标的关系,以及利用这一关系作与一个图形成中心对称的图形的方法。“23.3 课题学习 图案设计”一节让学生探索图形之间的变换关系(平移、轴对称、旋转及其组合),灵活运用平移、轴对称、旋转的组合进行图案设计。4.圆圆是一种常见的图形。在“圆”这一章,学生将进一步认识圆,探索它的性质,并用这些知识解决一些实际问题。通过这一章的学习,学生的解决图形问题的能力将会进一步提高。“24.1 圆”一节首先介绍圆及其有关概念。然后让学生探究与垂直于弦的直径有关的结论,并运用这些结论解决问题。接下来,让学生探究弧、弦、圆心角的关系,并运用上述关系解决问题。最后让学生探究圆周角与圆心角的关系,并运用上述关系解决问题。“24.2与圆有关的位置关系”一节首先介绍点和圆的三种位置关系、三角形的外心的概念,并通过证明“在同一直线上的三点不能作圆”引出了反证法。然后介绍直线和圆的三种位置关系、切线的概念以及与切线有关的结论。最后介绍圆和圆的位置关系。“24.3 正多边形和圆”一节揭示了正多边形和圆的关系,介绍了等分圆周得到正多边形的方法。“24.4 弧长和扇形面积”一节首先介绍弧长公式。然后介绍扇形及其面积公式。最后介绍圆锥的侧面积公式。5.概率初步将一枚硬币抛掷一次,可能出现正面也可能出现反面,出现正面的可能性大还是出现反面的可能性大呢?学了“概率”一章,学生就能更好地认识这个问题了。掌握了概率的初步知识,学生还会解决更多的实际问题。“25.1 概率”一节首先通过实例介绍随机事件的概念,然后通过掷币问题引出概率的概念。“25.2用列举法求概率”一节首先通过具体试验引出用列举法求概率的方法。然后安排运用这种方法求概率的例题。在例题中,涉及列表及画树形图。“25.3利用频率估计概率”一节通过幼树成活率和柑橘损坏率等问题介绍了用频率估计概率的方法。“25.4 课题学习 键盘上字母的排列规律”一节让学生通过这一课题的研究体会概率的广泛应用。二、本书编写特点(一)注重知识间的联系与综合学生经过初中两年的学习,进一步积累了“数与代数”“空间与图形”“统计与概率”等领域的知识以及学习这些知识的经验。本书内容都是以学生已学内容为基础的。因此本书各章都注意从学生已有的知识和经验出发,帮助学生学好新内容。在“二次根式”一章,教科书注意从算术平方根的意义得到与二次根式有关的结论,注意二次根式的加减与整式的加减,以及二次根式的混合运算与多项式乘法的类比,帮助学生掌握新内容。在“一元二次方程”一章,突出解一元二次方程的关键是将一元二次方程转化为一元一次方程来解。在讲配方法时,用框图的形式展示用配方法实现上述转化的过程,并强调其中的关键步骤是运用。另外,为了加强与因式分解的联系,体现因式分解的作用,专门介绍了用因式分解法解一元二次方程。在“旋转”一章,注意运用已学知识证明有关结论。从学生熟悉的线段、平行四边形出发,引出中心对称图形的概念。本章的第2个数学活动还从坐标的角度揭示了中心对称与轴对称的关系。在“圆”一章,注意运用所学图形变换知识。如从圆是轴对称图形的角度认识与垂直于弦的直径有关的结论;从旋转的角度认识弧、弦、圆心角的关系。这一章也注意了运用已学知识证明有关结论,如证明圆周角与圆心角的关系。在“概率”一章,从频率的稳定值出发引出概率的概念,介绍用频率估计概率的方法,都加强了概率与统计的联系。此外,本书还注意了知识的综合运用,如在“旋转”一章安排了综合运用平移、轴对称、旋转的组合进行图案设计的内容。在“圆”一章,圆的有关性质、直线与圆的位置关系等内容的讨论,实际上也是所学知识的综合运用。总之,注意揭示知识之间的联系,易于学生学习和掌握新内容,注意知识的综合运用,有助于学生能力的提高。(二)注重探索结论本书各章都注意揭示得出结论的过程,加深学生对相关结论的理解,提高学生分析问题、解决问题的能力。在“二次根式”一章,让学生根据平方根的意义填空,进而得出以及(a≥0)的结论。让学生通过特殊数值的计算体会二次根式的乘除法则规定的合理性。在“一元二次方程”一章,让学生思考各种类型的一元二次方程如何用配方法得解,讨论如何配方。通过设置探究栏目加大了让学生探究解决实际问题的力度。此外,本章中的选学内容“观察与猜想 发现一元二次方程根与系数的关系”也是强调结论的探索过程。在“旋转”一章,旋转的性质,中心对称的性质,在平面直角坐标系中,如果两个点关于原点对称,那么这两个点的坐标有什么关系,这些内容都是让学生进行探究的。此外,本章还安排了许多探索和发现图形之间的变换关系的问题。在“圆”一章,结论较多,也注意体现了结论的探索过程。例如结合圆的轴对称性,发现垂径定理及其推论;利用圆的旋转发现圆中弧、弦、圆心角之间的关系;通过度量,发现圆心角与圆周角的数量关系;利用直观操作,发现点与圆、直线与圆、圆与圆之间的位置关系等等。在“概率”一章,则注意通过解决具体问题获得对概率的理解,掌握用列举法求概率的方法以及用频率估计概率的方法。(三)注重联系实际1. 从实际出发引入有关内容在本书中,二次根式的概念、二次根式的加减都是从实际问题引出的,体现了式在表示数量关系上的作用。一元二次方程的概念则是通过雕像设计、制作方盒、排球比赛等问题引出的,体现了方程刻画现实世界的作用。旋转的概念则是由时针、叶片等实例引入的,体现了图形变换与实际的紧密联系。在“圆”一章,由赵州桥的主桥拱半径的问题引出垂径定理;由海洋馆中观景问题引出圆周角与圆心角、圆周角之间的关系。概率的概念也是结合掷币试验帮助学生理解的。2. 运用有关内容解决实际问题本书内容与实际联系紧密,在掌握了相关内容以后,又可以运用它们解决实际问题。在本书中,一元二次方程的应用是这方面的一个重点。教科书通过设置探究栏目,解决传播、成本下降率、面积、匀变速运动等问题,突出这一重点。圆的内容可以用来解决许多实际问题,求赵州桥的主桥拱半径的问题,求正多边形亭子地基的周长与面积,计算蒙古包的用料都要借助圆的有关知识。概率也有广泛的应用。用列举法可以求出许多实际问题中的概率。还特意安排课题学习的内容,使学生对概率的应用有进一步的体会。三、几个值得关注的问题(一)把握好教学要求在本书中,既有一元二次方程、圆这样的传统的重要内容,又有概率初步知识这样的新增内容,需要对内容要求有一个很好的把握。在“二次根式”一章,主要是了解二次根式的概念及其加、减、乘、除运算法则,并会用它们进行有关实数的简单四则运算。有些内容,像分母有理化,在课程标准中是明确不作要求的。这样可以突出二次根式概念和运算的重点。在“一元二次方程”一章,主要是让学生能够根据具体问题中的数量关系,列出一元二次方程,进一步体会方程是刻画现实世界的一个有效的数学模型;理解配方法,会用配方法、公式法、因式分解法解简单的数字系数的一元二次方程。而一元二次方程根与系数的关系只作为选学内容要求。这样可以突出一元二次方程解法和应用的重点。在“旋转”一章,主要是通过具体实例认识旋转,探索它的基本性质,理解对应点到旋转中心的距离相等、对应点与旋转中心连线所成的角彼此相等的性质;能够按要求作出简单平面图形旋转后的图形;了解平行四边形、圆是中心对称图形;探索图形之间的变换关系(轴对称、平移、旋转及其组合),灵活运用轴对称、平移、旋转的组合进行图案设计。本章涉及的图形不宜过于复杂,重点在于对图形变换的理解。在“圆”一章,主要是对圆及其相关图形的认识,很多内容带有一定的综合性,因此不宜提出过高的要求。本章涉及的证明是从全套书关于推理证明的总体设计安排,是让学生进一步体会推理证明。因此与证明有关的题目的综合性不宜过强,难度不宜过大。概率初步知识是新增内容,也不宜提出过高的要求。主要是让学生在具体情境中了解概率的意义,会用列举法计算简单事件发生的概率;知道大量重复实验时频率可作为事件发生概率的估计值;通过实例进一步丰富对概率的认识,并能解决一些实际问题。由于所学内容不多,本章涉及的问题也不宜过于复杂。(二)加强信息技术的应用在本书中,对旋转等图形变换以及对圆等图形的认识,比较适合采用信息技术工具。在“旋转”一章中,可以利用计算机中的画图软件探索旋转的性质。再有,利用旋转变换可以进行图案设计,借助计算机则更加方便。此外, 利用计算机中的画图软件可以方便地作出一个图形关于原点O的对称图形。利用软件的度量功能得出坐标,从而发现关于原点对称的点的坐标的关系。在“圆”一章,许多内容可以借助信息技术工具进行研究。例如,有许多计算机软件具有测量功能,可以方便地测出圆周角、圆心角的大小,从而发现它们之间的关系。另外,还可以利用信息技术工具,画出动态的图形,方便直线与圆、圆与圆的位置关系的研究。这些内容在书中都有明确的提示,有条件的同学可以尝试。在本书的教学中,如有条件,应注意发挥信息技术工具的作用第二十一章 “二次根式”简介本章内容“二次根式”是《数学课程标准》中“数与代数”领域的重要内容。从《数学课程标准》看,关于数的内容,第三学段主要学习有理数和实数。对于有理数和实数,本套教课书主要分三章编写,分别是7年级上册第1章“有理数”,7年级下册第10章“实数”和本章“二次根式”。本章是在第10章的基础上继续研究有关实数的内容。在第10章“实数”中,学生学习了一些有关实数的概念和运算,所学概念主要有平方根、算术平方根、立方根以及无理数和实数的概念;关于运算,主要是利用平方运算和立方运算求某些数的平方根和立方根,并对有理数的运算性质和运算法则在实数的运算中仍然成立这一点有所体验。本章是在第10章的基础上,进一步研究二次根式的概念和运算。在本章中,学生将学习二次根式的概念、性质、运算法则和化简的方法,通过对二次根式的概念和性质的学习,学生将对实数的概念有更深刻的认识,通过对二次根式的加、减、乘、除运算的学习,学生将对实数的简单四则运算有进一步的了解。学习本章的关键是理解二次根式的概念和性质,它们是学习二次根式的化简与运算的依据,重点是二次根式的化简和运算,难点是正确理解二次根式的性质和运算法则的合理性。本章内容与已学 “实数”“整式”“勾股定理”等内容联系紧密,同时也是以后将要学习的“解直角三角形”“一元二次方程”和“二次函数”等内容的重要基础,并为学习高中数学中不等式、函数以及解析几何等的大部分知识作好准备。本章教学时间约需9课时,具体分配如下(仅供参考):21.1 二次根式 约2课时21.2 二次根式的乘除 约2课时21.3 二次根式的加减 约3课时数学活动小结 约2课时一、教科书内容与课程学习目标(一)本章知识结构框图(二)教科书内容本章内容分为三节,第一节主要学习二次根式的概念和性质,本节既是第10章相关内容的发展,同时又是后面两节内容的基础,因此本节起承上启下的作用;第二节是二次根式的乘除运算,主要研究二次根式的乘除运算法则和二次根式的化简;第三节是二次根式的加减,主要研究二次根式的加减运算法则和进一步完善二次根式的化简。在第21.1节 “二次根式”中,教科书首先给出四个实际问题,这些实际问题的背景是学生比较熟悉的,其中包含的数学关系也是比较简单的,前三个是几何问题,分别是已知直角三角形的两条直角边求斜边的长、已知正方形的面积求边长和已知圆的面积求半径,最后一个实际问题是物理方面的,涉及到的数学关系是,要求用h表示t。解决这四个问题需要利用已学的平方根和算术平方根的知识,这四个问题的答案,在结果的表达式上有共同的特点,即都是用算术平方根的形式表示出来的,这样教科书就从实际问题出发,通过分析所得答案的表达式的共同特点引出二次根式的概念。在二次根式的概念中,重要的一点是理解被开方数是非负数的要求,教科书结合例题对此进行了较详细的分析。接下去,教科书依次探讨了关于二次根式的结论:是一个非负数、、(a≥0)。对于“是非负数”,教科书是利用算术平方根的概念得到的;对于,教科书则采用由特殊到一般的方法归纳得出的。在研究这个结论时,教科书首先设置“探究”栏目,要求学生利用算术平方根的概念进行几个具体的计算,并对运算过程和运算结果进行进一步的分析,最后归纳给出这条结论;对于结论(a≥0),教科书同样采用了让学生通过具体计算,分析运算过程和运算结果,最后归纳得出一般结论的方法进行研究。第一节的内容是学习后两节内容的直接基础。对于二次根式的运算,教科书首先研究了乘除运算,这是21.2节“二次根式的乘除”的内容。本节中,除了学习二次根式的乘除运算法则外,还研究了二次根式的化简。对于二次根式的乘除运算,教科书首先研究了二次根式的乘法运算,二次根式的乘法法则是利用由特殊到一般的方法归纳给出的。教科书先设置一个“探究”栏目,在“探究”栏目中包含两个不同层次的探究问题。第一步是让学生通过计算发现规律,第二步是让学生对发现的规律进行验证,因此第一步中的被开方数都是完全平方数,这样有助于学生发现规律,第二步中的被开方数不是完全平方数,要求用计算器进行验算,以确认规律是否正确。这样,学生通过“探究”栏目的活动,就可以发现与之间的关系,从而得到二次根式乘法的运算法则,运用运算法则就可以进行二次根式的乘法运算。如果将二次根式的乘法法则反过来看,就可以得到积的算术平方根的性质,利用这条性质可以化简二次根式,这样教科书就给出了一种化简二次根式的方法。对于二次根式的除法运算,类似于乘法运算,教科书也采用了由特殊到一般的方法,通过归纳得出二次根式除法的运算法则,继而得到商的算术平方根的性质,利用这条性质也可以化简二次根式,这样教科书又给出一种化简二次根式的方法。本节最后,教科书结合本章例题,给出了最简二次根式的概念,明确了化简二次根式的方向,这为下一节学习二次根式的加减运算作好铺垫。第21.3节是“二次根式的加减”,本小节的主要内容是二次根式的加减运算和二次根式的加、减、乘、除混合运算,本小节的基础是学生已经掌握了把一个二次根式化简成最简二次根式的方法。学习二次根式的运算是研究数学的需要,也是实际的需要。本节开始,教科书结合一个实际问题引出二次根式的加法运算,使学生感到研究二次根式的加减运算是实际的需要。这个实际问题是要在一块长方形木板上截出两块面积不同的正方形木板,当然解决这个实际问题的方法可能不同,教科书采用的是先求出两个正方形的边长的和,再将这个和与长方形的长进行比较的方法,利用这种方法会遇到求二次根式的和的问题,这样教科书就从实际问题出发引出了二次根式的加法运算的问题。之后,教科书结合这个例子,研究了二次根式加减运算的法则,明确了二次根式的加减首先是化简,在化简之后就是类似于整式的加减运算了。整式加减无非是去括号与合并同类项,二次根式在化简之后也是如此,合并被开方数相同的二次根式(合并同类二次根式)实际上相当于合并同类项,合并的依据是分配律,关于这一点,在第10章“实数”中已经有所涉及,教科书也在边空给出说明。在分别学习了二次根式的加、减、乘、除运算的基础上,就可以研究它们的混合运算了。教科书以例题的方式介绍了二次根式的加、减、乘、除混合运算的例子,突出了二次根式与整式之间的关系,体现了整式的运算性质、公式和法则与二次根式相关内容的一致性。(三)课程学习目标对于本章内容,教学中应达到以下几方面要求:1. 理解二次根式的概念,了解被开方数必须是非负数的理由;2. 了解最简二次根式的概念;3. 理解并掌握下列结论:(1))是非负数; (2); (3)(a≥0);4. 掌握二次根式的加、减、乘、除运算法则,会用它们进行有关实数的简单四则运算;5. 了解代数式的概念,进一步体会代数式在表示数量关系方面的作用。二、本章编写特点(一)注意加强知识间的纵向联系本章内容属于“数与代数”这个领域,对于实数的内容,本套教科书主要分为两章学习,分别是七年级下册的第10章“实数”和本章“二次根式”。在“实数”一章中,主要研究了平方根、立方根的概念和求法,实数的有关概念和运算,学生对数的认识已经由有理数的范围扩大到实数范围,并对实数的运算性质和运算法则有了初步的感受,这些就为本章的学习打下基础。因此,本章编写时充分注意与已有经验的联系,在“实数”一章的基础上进行编写。例如,对于二次根式的加减运算,在“实数”一章中,学生在体验“有理数的运算律和运算法则在实数的范围内仍然成立”的过程中有所接触,本章就在此基础上利用分配律给出了加减法的运算法则,使学生进一步体会运算律在数的扩充过程中的一致性。本章内容与第15章“整式”有着密切的联系。由于数式通性,当将二次根式中的实数看成字母时,二次根式的运算实际上就是整式的运算,因此整式的运算法则和公式在二次根式的运算中继续使用,因此本章编写时,强调了与整式相关内容的联系。例如,教科书在介绍二次根式的混合运算时,强调了利用多项式的乘法法则和乘法公式进行运算,突出了二次根式运算的本质,这样的编写方式加强了知识之间的相互联系,有助于使学生的学习形成正迁移。(二)加强与实际的联系研究二次根式的概念和运算既是数学内在的需要,也是实际的需要,因此本章编写时,注意加强与实际的联系。例如,二次根式概念的引入是结合四个实际问题展开的,二次根式加法运算是结合实际中裁截板材引出的,另外本章也有较多的应用本章内容解决实际问题的例题和习题,如计算钢材问题、确定纸张规格问题、电视塔的传播半径问题等。加强二次根式与实际的联系,将一些重要的概念和运算紧密结合实际生活展开,使学生在解决实际问题的过程中认识二次根式的有关概念和运算,这样的一种编写方式有助于学生理解二次根式的本质,调动学生学习数学的积极性.(三)加大学生探索空间,体现由特殊到一般的认识过程由于本章内容与以前所学的实数内容有较多联系,在思考问题的方法上与整式的内容又有很多相通之处,因此对于一些重要结论,编写时注意了让学生通过观察、思考、讨论等探究活动归纳得出结论的过程。例如,对于二次根式的乘法法则,教科书首先让学生利用二次根式的概念和性质进行几个具体的计算,其中有两个二次根式相乘的问题,也有积的算术平方根的问题,学生通过具体计算,并观察所得结果发现二次根式相乘与积的算术平方根之间的关系,并利用发现的规律进行计算,然后利用计算器进行验证,最后归纳得出二次根式的乘法运算法则,这个过程实际上让学生通过探究活动经历了一个由特殊到一般的认识过程;同样,二次根式的除法运算法则也是采用通过学生的探索活动,由特殊到一般地归纳得出结论的方法。这样,根据本章内容的特点,本章编写时尽可能多地给学生留出探索交流的空间,通过这样的探究活动发展学生的思维能力,有效改变学生的学习方式,掌握认识事物的一般规律.三、几个值得关注的问题(一)适当加强练习,为后续学习打好基础本章内容属于“数与代数”领域中较基础的内容,尤其是二次根式的加、减、乘、除运算是后续学习解直角三角形、一元二次方程和二次函数的重要基础,例如在“锐角三角函数”一章中,会遇到很多实际问题,在解决实际问题的过程中,要遇到将二次根式化成最简二次根式以及二次根式的加减运算,在“一元二次方程”中,利用公式法解方程时,会用到二次根式的性质,在“二次函数”一章中,判断二次函数的图象与x轴是否有交点时,会遇到根的判别式中被开方数小于0的情形,这里需要深刻理解二次根式的意义。因此二次根式的有关概念和运算是学好这些后续内容的重要基础,而熟练掌握二次根式的概念和运算需要一定的训练。这样,教学中可以适当增加练习,使学生较好地理解二次根式的意义,较好地掌握二次根式的性质和运算,为后续的学习打下良好的基础,也为学习高中数学中不等式、函数以及解析几何等的大部分知识作好准备。另外,本章内容与“整式”“勾股定理”等联系紧密,在加强练习的过程中,要注意强调知识之间的相互联系,进一步加深对整式和勾股定理等内容的理解,使学生养成以联系和发展的观点学习数学的习惯.(二)引导学生理解数学的本质本章的重点是让学生理解二次根式的概念和,并会熟练运用法则进行运算。本章编写时,注重说明性质和法则成立的合理性,突出了它们的数学本质。例如,教科书在介绍二次根式的性质时,首先让学生通过探究活动,对这条性质有所感受,然后再从算术平方根的意义出发,结合具体例子对这条性质进行分析,最后由特殊到一般地得到这条性质,这样就可以使学生对这条性质的数学实质有了较深刻的认识。另外,对于概念,本章编写时遵循淡化概念名词,突出概念实质的原则。例如,本章在介绍二次根式的乘除运算时,没有给出分母有理化的概念,而是结合具体例子说明了分母有理化的要求,再如,对于二次根式的加减运算,教科书回避了同类二次根式的概念,突出强调了运算时先将二次根式化成最简二次根式再进行合并的方法。这样处理内容的目的是使学生将学习的重点放在理解数学的本质上来。因此,教学中注意体会教科书的编写意图,培养学生的数学能力。第二十二章“一元二次方程”简介教科书内容和课程学习目标(一)教科书内容本章的主要内容包括:一元二次方程及其有关概念,一元二次方程的解法(配方法、公式法、因式分解法)以及运用一元二次方程分析和解决实际问题.全章共包括三节:22.1 一元二次方程22.2 降次22.3 实际问题与一元二次方程22.1 节以实际问题为背景,引出一元二次方程的概念,归纳出一元二次方程的一般形式,给出一元二次方程的根的概念,并提出一元二次方程的根不唯一.这些概念是全章后续内容的基础.22.2节讨论一元二次方程的基本解法,其中包括配方法、公式法和因式分解法等,这一节是全章的重点内容之一。本套教科书在本章之前的方程都是一次方程或可化为一次方程的分式方程,一元二次方程是首次出现的一次以上的方程。解二次方程的基本策略是将其转化为一次方程,这就是“降次”。22.2节首先通过解比较简单的一元二次方程,引导学生认识直接开平方法解方程;然后讨论比较复杂的一元二次方程,通过对比一边为完全平方形式的方程,使学生认识配方法的基本原理并掌握其具体方法;有了配方法作基础,再讨论如何用配方法解一元二次方程的一般形式,就得到一元二次方程的求根公式,于是有了直接利用公式的公式法。本节最后讨论因式分解法解一元二次方程,这种解法要使方程的一边为两个一次因式相乘,另一边为0,再分别令每个一次因式为0。这几种解法都是依降次的思想,将二次方程转化为一次方程,只是具体的降次手段有所不同。22.3节安排了4个探究内容,结合实际问题,分别讨论传播问题、增长率问题、几何图形面积问题和匀变速运动。一元二次方程与许多实际问题都有联系,本节不是按照实际问题的类型分类和选材的,而是选取几个具有一定代表性的实际问题来进一步讨论如何建立和利用方程模型,重点在分析实际问题中的数量关系并以方程形式进行表示,这种数学建模思想的体现与前面有关方程各章是一致的,只是在问题中数量关系的复杂程度上又有新的发展,数学模型由一次方程或可以化为一次方程的分式方程变为一元二次方程。本章从引言到小结始终保持贴近实际、贴近生活。这样安排的主要目的是:1.反映客观世界与数学的密切联系;2.加强对应用数学知识分析和解决实际问题的意识和能力的培养。课程标准没有将一元二次方程的根与系数的关系(韦达定理)列为必学内容,因此本章也未在课文中安排有关内容。考虑到部分学有余力的学生可以进一步扩大对一元二次方程的认识,以及这个内容是比较重要的数学知识,教科书在选学栏目“观察与猜想”中安排了有关内容,希望能提供一些问题给部分学生去探究。在本章小结中,教科书通过本章知识结构图和思考题,再次强调解一元二次方程与实际问题之间的联系,突出解一元二次方程的基本思路以及具体方法,这是本章的重点内容。一元二次方程是本套初中数学教科书中所学习的最后一种方程,从某种意义上说,学习本章也具有对方程的学习进行总结的作用。(二)本章知识结构框图(三)课程学习目标1.以分析实际问题中的等量关系并求解其中的未知数为背景,认识一元二次方程及其有关概念;2.根据化归的思想,抓住“降次”这一基本策略,掌握配方法、公式法和因式分解法等一元二次方程的基本解法;3.经历分析和解决实际问题的过程,体会一元二次方程的数学模型作用,进一步提高在实际问题中运用方程这种重要数学工具的基本能力。(四)课时安排本章教学时间约需13课时,具体分配如下(仅供参考):22.1 一元二次方程 2课时22.2 降次 6课时22.3 实际问题与一元二次方程 3课时数学活动小结 2课时二、本章编写特点本章教科书在编写中力图体现以下两个特点。(一)重视一元二次方程与实际的联系,再次体现数学建模思想数学是以数量关系和空间形式为主要研究对象的科学,数量关系和空间形式是从现实世界中抽象出来的,这样的抽象是一个逐步深入的过程.方程是含有未知数的等式,它们表达了数量之间的相等关系。正如前面所学习过的其他方程,一元二次方程可以表达许多实际问题中包含的数量相等关系,因而也可以作为分析和解决这些问题的重要数学模型。从反映方程与实际问题的密切联系的角度看,本章与本套教科书前面有关方程的各章是一脉相承的,实际问题情境始终贯穿于本章之中。如前所述,本章从引言到小结始终保持贴近实际、贴近生活。引言中的雕像问题是典型的黄金分割问题,本章内容由它说起,引出一个具体的一元二次方程,接着在22.1节又利用面积问题和体育比赛中的组合问题补充两个一元二次方程的具体例子,在这三个具体例子的基础上归纳出一元二次方程的定义及一般形式。这样编排可以反映一元二次方程及其有关概念是来源于现实世界的。在22.2节讨论一元二次方程的解法时,教科书安排了问题1~3,它们都是比较简单的实际问题。这样编排可以反映讨论一元二次方程的解法是解决现实世界实际问题的客观需要,使学生感受到学习一元二次方程的解法可以解决许多实际问题。在22.3节,教科书安排了探究1~4,它们是比前面出现的实际问题更复杂的实际问题,讨论这些问题是在前面学习的基础上拾级而上。这样编排可以结合本章内容再次体现数学建模思想,进一步加强利用一元二次方程分析解决实际问题能力的培养训练,提高学生应用数学知识于实际问题的兴趣和意识,从长远看这将有助于培养学生理论联系实际的意识和开拓创新精神.本章结尾的小结中,再次以知识结构图的形式强化数学建模思想,表现实际问题和列、解一元二次方程的联系,这种概括起了画龙点睛的作用。(二)重视一元二次方程的特殊性,突出解一元二次方程的基本策略以及解法中的关键步骤在学习本章之前,学生已经分两次学习过整式方程(一元一次方程、二元一次方程组),并且学习了可以化为一元一次方程的分式方程,他们对于解方程的基本思路(使方程逐步化为的形式)已经比较熟悉,按照这种思路可以继续考虑一元二次方程的解法。一元二次方程与前面的方程相比,特点在于未知数的次数是2(二次),新的问题是如何将一元二次方程转化为已经会解的方程,即一次方程。从这个新问题入手,可以自然地引出解一元二次方程的基本策略和关键步骤。教科书分析问题时注意了体现出“降次” 是很自然、很合理地产生的,这是在原来已经认识了的解方程的基本思路基础上,结合一元二次方程的实际而得到的解决问题的基本策略。这样处理既突出了一元二次方程解法上的特点及其算理,又反映了一元二次方程与一元一次方程在解法上的内在联系。各种解法中能够创造条件实现降次的步骤(配方、开方、分解因式等)就是该解法的关键步骤,它们是落实降次的具体措施。教科书的第22.2节以“降次”为节名,其用意在于强调解一元二次方程的基本策略。在讨论各种具体解法时,教科书把重点放在分析方程的形式特征上,并结合这些特征提出具体的有针对性的解法,强调其中的关键步骤所起的重要作用,这些内容形成了课文的核心部分。三、几个值得关注的问题本章的主要内容包括一元二次方程的基本概念、基本解法、应用举例等,这些都是重要的基础知识,打好基础很重要,因此教学中应注意使学生切实掌握它们。此外,本章教学应特别关注以下问题。(一)教学中应重视联系实际问题,加强对于数学建模思想的渗透在本章的教学和学习中,应重视相关内容与实际的联系,可以选择一些适合一元二次方程内容而又接近本班学生生活的实际问题,结合这些问题展开教学的内容。要注意避免脱离任何实际问题单纯地讲述一元二次方程的内容,虽然这种纯数学的处理方法在数学体系内部并无问题,但是从教学角度看它具有局限性,不适合初中学生接受,也不利于全面地提高学生素质。总之,要充分注意有关现实背景,通过它们反映出一元二次方程来自实际又服务于实际,加强对一元二次方程是解决现实问题的一种数学模型的反映。对于把实际问题转化为有关一元二次方程的问题,关键是弄清实际问题的背景,找出实际问题中相关数量之间的相等关系,并把这样的关系 “翻译”为一元二次方程。这里需要指出,正确地理解实际问题情境是完成这一工作的基础。因此,本章的教学不能是封闭于数学知识内部的,而应是联系实际问题的开放式的,同时在丰富的内容中不失提炼数学知识这个精髓,最终使学生掌握数学基础知识,提高数学基本技能和能力,并且能运用它们处理某些实际问题。在本章的教学中,可以从多种角度表达和思考实际问题,例如借助图象、表格、式子等进行不同形式来描述问题,分析问题,发现其中的数量关系,并建立相应的一元二次方程模型。教学中还应使学生认识到数学方法解决问题的结果要接受实际检验,注意检验所得方程及其根的实际意义,进行必要的讨论,找出合乎实际的结果。(二)教学中应结合一元二次方程的特点,从说理的角度讨论方程的解法本章所讨论的对象是一元二次方程,它的特殊性是其未知数为二次,这是前所未见的。将面临的新问题转化为已经会解的老问题,是解决问题的基本思路。正因如此,将一元二次方程转化为一元一次方程,即“降次”,成为解一元二次方程的基本策略。这也是化归思想在解一元二次方程时的具体体现。教学中应从一元二次方程的特点入手,通过对比以前所学方程来分析一元二次的特殊性,分析一元二次方程解法的产生背景,使学生认识到降次是自然的、合理的,从而能顺利地接受它,并用它探究一元二次方程的具体解法,而不是死记硬背解法步骤。教学中应重视使学生明白各种解法的道理,结合探究解法再次体会化归思想在解方程时的指导作用,进而理解一元二次方程的具体解法的关键步骤及其算理,将已有对解方程的认识再继续加深和扩大。教学中应反复指出学习一元二次方程的解法时要了解以下两点:1.用配方法、因式分解法等解一元二次方程时,要通过适当的变形先使方程转化为一元一次方程,也就是使未知数从二次变为一次。一元二次方程的降次变形,是由一个二次方程得到两个一次方程,因此一个一元二次方程有两个根。.2.配方法是公式法的基础,通过配方法得出了求根公式;公式法是直接利用求根公式,它省略了具体的配方过程。第二十三章“旋转”简介学生已经学习了平移与轴对称,对于图形变换已经有所认识。从平移与轴对称的学习来看,学习一种图形变换大致包括以下内容:(1) 通过具体实例认识这种图形变换;(2) 探索这种图形变换的性质;(3) 作出一个图形经过这种图形变换后的图形;(4)利用这种图形变换进行图案设计;?(5) 用坐标表示这种图形变换。本章“旋转”的学习也是从以上几个方面展开的。关于(5),本章只涉及用坐标表示中心对称。本章教学时间约需8课时,具体分配如下(仅供参考):23.1 图形的旋转 2课时23.2 中心对称 3课时23.3 课题学习 图案设计 2课时数学活动小结 1课时一、教科书内容和课程学习目标(一)本章知识结构框图(二)教科书内容按照全套教科书的内容安排,本章学习第三种图形变换──旋转。此前,学生已经学习了平移与轴对称两种图形变换。本章第一节学习旋转的有关内容;在此基础上,第二节学习特殊的旋转──中心对称;第三节则是平移、轴对称、旋转的综合运用。在第一节中,首先通过时针、叶片等实例引出旋转的概念。然后设置了一个“探究”栏目,让学生探索对应点到旋转中心的距离相等、对应点与旋转中心连线所成的角彼此相等等性质。接下来,安排了一个按要求作出简单平面图形旋转后的图形的例题。最后说明利用旋转进行简单的图案设计的内容。在本节中,旋转的概念、性质以及有关作图的内容环环相扣:由概念得出性质;由性质得出有关作图的方法。应关注这些内容之间的联系,使前一部分内容为后一部分内容作好准备,使后一部分内容复习巩固前一部分内容。第二节有三部分内容:中心对称的概念、性质和有关作图,中心对称图形的概念,以及关于原点对称的点的坐标的关系。关于中心对称,首先通过具体例子给出中心对称的概念,然后探究中心对称的性质,最后说明作与已知图形中心对称的图形的方法。关于中心对称的定义,学生应能体会到以下两层意思:(1)有两个图形,能够完全重合,即形状大小都相同;(2)对重合的方式有限制,也就是它们的位置关系必须满足一个条件:将其中一个图形绕某点旋转180°后能够与另一个图形重合。也就是说,全等的图形不一定是中心对称的,而中心对称的两个图形一定是全等的。关于中心对称图形,主要让学生通过线段、平行四边形加以认识,并了解中心对称与中心对称图形的联系与区别。关于原点对称的点的坐标的关系可以由学生探究得出,由此得到利用坐标作与已知图形关于原点对称的图形的方法。第三节是“课题学习”的内容,要求学生探索图形之间的变换关系(轴对称、平移、旋转及其组合),灵活运用轴对称、平移、旋转的组合进行图案设计。此前,教科书在七年级下册第五章“相交线与平行线”安排了平移以及利用平移进行图案设计的内容;在八年级上册第十四章“轴对称”安排了轴对称以及利用轴对称进行图案设计的内容,并指出“将平移和轴对称结合起来,可以设计出更美丽的图案”。通过平移与轴对称的学习,学生已经具备了一定的用图形变换进行图案设计的知识与经验,这些是学生运用平移、轴对称、旋转的组合进行图案设计的基础。在本节中,首先通过一个例子让学生对课题有所了解,然后让学生搜集图案,设计图案。搜集图案并加以分析,了解图形之间的变换关系有助于学生自己进行图案设计。设计图案的过程中,应关注学生构思、实施、合作交流等环节。(三)课程学习目标本章的学习目标如下:1.通过具体实例认识旋转,探索它的基本性质,理解对应点到旋转中心的距离相等、对应点与旋转中心连线所成的角彼此相等的性质;2.能够按要求作出简单平面图形旋转后的图形,欣赏旋转在现实生活中的应用。3.通过具体实例认识中心对称,探索它的基本性质,理解对应点所连线段被对称中心平分的性质,了解平行四边形、圆是中心对称图形;4.探索图形之间的变换关系(轴对称、平移、旋转及其组合),灵活运用轴对称、平移、旋转的组合进行图案设计。二、本章编写特点(一)注重联系实际旋转与现实生活联系紧密,为此,章前引言中列举了旋转的大量实例。应通过实例认识和感受旋转。中心对称图形在现实生活中也比较常见,也可以通过具体实例加深学生对中心对称图形的认识。许多美丽的图案可以由旋转设计而成。让学生利用旋转进行图案设计,可以复习巩固所学的知识,调动学生学习的积极性。让学生运用轴对称、平移、旋转的组合进行图案设计,可以进一步深化学生所学知识,加强图形变换与现实生活的联系。(二)注重探索结论本章在多处设置探究点,给学生思考探索留有余地。图23.1-3中,△ AˊBˊCˊ由△ABC旋转而成,让学生结合此图探究旋转的性质。图23.2-3中,△ ABC与△AˊBˊCˊ关于点O对称。学生已经知道,成轴对称的两点所连线段被对称轴垂直平分。在此基础上,让学生发现成中心对称的两点所连线段与对称中心有什么关系。在平面直角坐标系中,如果两个点关于原点对称,那么这两个点的坐标有什么关系,这一点是让学生结合图23.2-9进行探究的。许多图形可以由基本图形旋转而成。为了更好地认识图形,本章安排了许多探索和发现图形之间的变换关系的问题。探索和发现图形之间的变换关系也有助于学生运用轴对称、平移、旋转的组合进行图案设计。(三)注重与已学图形变换的联系同平移、轴对称一样,已知图形经过旋转得到一个新图形。平移、轴对称不改变图形的形状和大小,旋转也具有这样的性质。因此,平移、轴对称和旋转都是全等变换。以后所学的相似变换则不具有这个性质。在作已知图形平移后的图形或作与已知图形成轴对称的图形时,只要确定已知图形中的一些特殊点(如多边形的顶点)的对应点,这种处理对于作已知图形旋转后的图形也适用。中心对称与轴对称类比着来学习,对学生掌握新知识有帮助。本章的第2个活动还从坐标的角度揭示了中心对称与轴对称的关系。一般地,点A(x,y)关于x轴的对称点B的坐标是(x,-y),点B(x,-y)关于y轴的对称点C的坐标是(-x,-y)。因为点A的坐标是(x,y),点C的坐标是(-x,-y),所以点A与点C关于原点对称。由此可知,将一点作上述两次轴对称变换相当于作出这个点关于原点的对称点。在本章中,还要求学生综合运用所学图形变换进行图案设计,这样做可以加强变换之间的联系,深化学生对图形变换的认识。三、几个值得关注的问题(一)关于中心对称和中心对称图形与轴对称和轴对称图形类似,中心对称和中心对称图形是两个不同而又紧密联系的概念。中心对称和中心对称图形的区别是:中心对称是指两个全等图形之间的相互位置关系,成中心对称的两个图形中,其中一个图形上所有点关于对称中心的对称点都在另一个图形上,反之,另一个图形上所有点关于对称中心的对称点又都在这个图形上;而中心对称图形是指一个图形本身成中心对称,中心图形上所有点关于对称中心的对称点都在这个图形本身上。中心对称和中心对称图形的联系是:如果将中心对称的两个图形看成一个整体(一个图形),那么这个图形就是中心对称图形;一个中心对称图形,如果把对称的部分看成是两个图形,那么它们又是关于中心对称的。应帮助学生认清中心对称和中心对称图形的区别与联系,获得清晰明确的认识。(二)关于计算机的使用利用计算机中的画图软件可以方便地作出一个图形绕某一点O旋转某个角度后的图形。可以利用软件的度量功能,从而发现对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角。改变点O的位置或改变这个图形的位置,再对这个图形作旋转变换,仍然可以得出上述结论。利用旋转变换可以进行图案设计,借助计算机则更加方便。有条件的话,可以让学生充分发挥自己的想象力,进行这方面的尝试。利用计算机中的画图软件可以方便地作出一个图形关于原点O的对称图形。利用软件的度量功能得出坐标,从而发现:两个点关于原点对称时,它们的坐标符号相反。改变这个图形的位置,仍然可以得出上述结论。在以上诸方面,计算机都可以发挥作用,如果条件具备,可以加以尝试。第二十四章“圆”简介与三角形、四边形等一样,圆也是基本的平面图形,也是“空间与图形”的主要研究对象,是人们生活中常见的图形。本章将在学生前面学习了一些基本的直线形──三角形、四边形等的基础上,进一步研究一个基本的曲线形──圆,探索圆的有关性质,了解与圆有关的位置关系等,并结合一些图形性质的证明,进一步发展学生的逻辑思维能力。本章共安排四个小节和两个选学内容,教学时间大约需要17课时,具体安排如下(仅供参考):24.1 圆 5课时24.2 与圆有关的位置关系 6课时24.3 正多边形和圆 2课时24.4 弧长和扇形的面积 2课时数学活动小结 2课时一、教科书内容和课程学习目标(一)本章知识结构框图本章知识结构如下图所示:(二)教科书内容本章是在学习了直线图形的有关性质的基础上,来研究一种特殊的曲线图形──圆的有关性质。圆也是常见的几何图形之一,不仅日常生活中的许多物体是圆形的,而且在工农业生产、交通运输、土木建筑等方面都可以看到圆。圆的有关性质,也被广泛的应用。圆也是平面几何中最基本的图形之一,它不仅在几何中有重要地位,而且是进一步学习数学以及其他科学的重要的基础。圆的许多性质,比较集中地反映了事物内部量变与质变的关系、一般与特殊的关系、矛盾的对立统一关系等等。结合圆的有关知识,可以对学生进行辩证唯物主义世界观的教育。所以这一章的教学,在初中的学习中也占有重要地位。本章是在小学学过的一些圆的知识的基础上,系统的研究圆的概念、性质、圆中有关的角、点与圆、直线与圆、圆与圆、圆与正多边形之间的位置、数量关系。本章共分为四个小节,第1小节是“圆”,主要是圆的有关概念和性质,圆的概念和性质是进一步研究圆与其他图形位置、数量关系的主要依据,是全章的基础。这一节包括“圆”“垂直于弦的直径”“弧、弦、圆心角”“圆周角”四个部分。“24.1.1 圆”的主要内容是圆的定义和圆中的一些相关概念。圆的定义是研究圆的有关性质的基础。在小学,学生接触过圆,对它有一定的认识。教科书首先结合生活中一些圆的实际例子,在学生小学学过的画圆的基础上,通过设置一个观察栏目,用“发生法”给出了圆的定义。进一步的教科书又分析了圆上每一个点与圆心的距离都等于定长,同时到定点的距离等于定长的点都在圆上,这样实际上从点和集合的角度进一步认识圆,这样再认识之后,学生对圆的认识就加深了。接下来,是与圆有关的一些概念,如半径、直径、弦、弧等,对于这些概念要让学生结合图形进行认识,并多进行比较,以搞清他们的异同。在接下来的几部分,教科书探究并证明了垂径定理、弧、弦、圆心角的关系定理、圆周角定理。垂径定理及其推论反映了圆的重要性质,是圆的轴对称性的具体化,也是证明线段相等、角相等、垂直关系的重要依据,同时也为进行圆的计算和作图提供了方法和依据;圆周角定理及其推论对于角的计算、证明角相等、弧、弦相等等问题提供了十分简便的方法。所以垂径定理及其推论、圆周角定理及其推论是本小节的重点,也是本章的重点内容。而垂径定理及其推论的条件和结论比较复杂,容易混淆,圆周角定理的证明要用到完全归纳法,学生对与分类证明的必要性不易理解,所以这两部分内容也是本节的难点。“24.2 与圆有关的位置关系”包括三部分内容,点与圆的位置关系、直线与圆的位置关系、圆与圆的位置关系。在“点与圆的位置关系”中,教科书首先结合射击问题,给出了点与圆的三种不同位置关系,接下来讨论了过三点的圆,并结合“过同一直线上的三点不能作圆”介绍了反证法。在“直线与圆的位置关系”中,教科书首先讨论了直线与圆的三种位置关系,然后重点研究了直线与圆相切的情况,给出了直线与圆相切的判定定理、性质定理、切线长定理,在此基础上介绍了三角形的内切圆。在“圆与圆的位置关系”中,重点是讨论圆与圆的不同位置关系。本小节中,直线与圆的位置关系是中心内容,切线的判定定理、性质定理、切线长定理等则是研究直线与圆的有关问题时常用的定理,是本节的重点内容。反证法的思想在前面章节有所渗透,在这一小节正式提出,它是一种间接证法,学生接受还是有一定的困难,所以对于反证法的教学是本节的一个难点;另外切线的判定定理和性质定理的题设和结论容易混淆,证明性质定理又要用到反证法,因此这两个定理的教学也是本节的难点,这些也同时是本章的难点。正多边形是一种特殊的多边形,它有一些类似于圆的性质。例如,圆有独特的对称性,它不仅是轴对称图形、中心对称图形,而且它的任意一条直径所在直线都是它的对称轴,绕圆心旋转任意一个角度都能和原来的图形重合。正多边形也是轴对称图形,正n边形就有n条对称轴,当n为偶数时,它也是中心对称图形,而且绕中心每旋转,都能和原来的图形重合,可见正多边形和圆有很多内在的联系。另外,正多边形也在生产和生活中有着广泛的应用,所以教科书接下来安排了“正多边形和圆”的内容。教科书回顾学生已经了解的正多边形概念的基础上,以正五边形为例,证明了利用等分圆周得到正五边形的方法,接下来介绍了正多边形的有关概念,如中心、半径、中心角、边心距等,并进一步介绍了画正多边形的方法。正多边形的有关计算是本节的重点内容,这些计算都是几何中的基础知识,正确掌握它们也要综合运用以前所学的知识,这些知识在生产和生活中也常要用到。本节的教学难点在学生对正n边形中“n”的接受和理解上。学生对三角形、四边形、圆等这些具体图形比较习惯,对于泛指的n边形不习惯。为了降低难度,教科书涉及的证明、计算等问题都是结合具体的多边形为例的,教学时要注意把这种针对具体图形的结论和方法推广,使学生实现由具体到抽象,特殊到一般的认识上的飞跃,提高学生的思维能力。教科书接下来的24.4节的主要内容是一些与圆有关的计算,包括两部分“弧长和扇形的面积”“圆锥的侧面积和全面积”。“弧长和扇形的面积”是在小学学过的圆周长、面积公式的基础上推导出来的,应用这些公式,就可以计算一些与圆有关的简单组合图形的周长和面积。由于圆锥的侧面展开图是扇形,所以教科书接下来介绍了圆锥的侧面积和全面积的计算。这些计算不仅是几何中基本的计算,也是日常生活中经常要用到的,运用这些知识也可以解决一些简单的实际问题。圆锥的侧面积的计算还可以培养学生的空间观念,因此对这部分内容的教学也要重视。(三)课程学习目标1.理解圆及其有关概念,理解弧、弦、圆心角的关系,探索并了解点与圆、直线与圆、圆与圆的位置关系,探索并掌握圆周角与圆心角的关系、直径所对的圆周角的特征。2.了解切线的概念,探索并掌握切线与过切点的半径之间的位置关系,能判定一条直线是否为圆的切线,会过圆上一点画圆的切线。3.了解三角形的内心和外心,探索如何过一点、两点和不在同一直线上的三点作圆。4.了解正多边形的概念,掌握用等分圆周画圆的内接正多边形的方法;会计算弧长及扇形的面积、圆锥的侧面积及全面积。5.结合相关图形性质的探索和证明,进一步培养学生的合情推理能力,发展学生的逻辑思维能力和推理论证的表达能力;通过这一章的教学,进一步培养学生综合运用知识的能力,运用学过的知识解决问题的能力,同时对学生进行辩证唯物主义世界观的教育。二、本章编写特点(一)突出图形性质的探索过程,重视直观操作和逻辑推理的有机结合圆是日常生活中常见的图形之一,也是平面几何中的基本图形,本章重点研究了与圆有关的一些性质。教科书在编写时,注意突出图形性质的探索过程,重视直观操作和逻辑推理的有机结合,通过多种手段,如观察度量、实验操作、图形变换、逻辑推理等来探索图形的性质。例如结合圆的轴对称性,发现垂径定理及其推论;利用圆的旋转对称性,发现圆中弧、弦、圆心角之间的关系;通过观察、度量,发现圆心角与圆周角、圆周角之间的数量关系;利用直观操作,发现点与圆、直线与圆、圆与圆之间的位置关系等等。在学生通过观察、操作、变换探究出图形的性质后,还要求学生能对发现的性质进行证明,使直观操作和逻辑推理有机的整合在一起,使推理论证成为学生观察、实验、探究得出结论的自然延续。(二)注意联系实际圆是人们日常生活和生产中应用较广的一种几何图形,不仅日常生活中许多物体是圆形的,而且在工农业生产、交通运输、土木建筑等方面都可以见到圆。这部分内容与实际联系比较紧密。在教科书编写时,也充分注意到这一点。例如,在引入圆、正多边形等概念时,举出了大量的实际生活中的例子;在介绍点与圆、直线与圆、圆与圆的位置关系时,也是注意从它们在实际生活中的应用引入;利用垂径定理解决求赵州桥的主桥拱半径的问题;根据海洋馆中人们视野的关系引出研究圆周角与圆心角、圆周角之间的关系;利用正多边形的有关计算求亭子的地基;实际问题中有关弧长、扇形的面积、圆锥的侧面积和全面积的计算问题等等。教科书的例、习题中也有一些实际应用的例子等等。这些材料都是从实际中提炼出来的,要通过这些知识的教学,帮助学生从实际生活中发现数学问题、运用所学知识解决实际问题。教学时,还可以根据本地区的实际,选择一些实际问题,引导学生加以解决,提高他们应用知识解决问题的能力。(三)重视渗透数学思想方法教学中不仅要教知识,更重要的是教方法,本章重涉及的数学思想方法也比较多。例如,圆周角定理证明中的通过分类讨论,把一般问题转化为特殊情况来证明;研究点与圆、直线与圆、圆与圆的位置关系时的分类的思想;研究正多边形的有关问题是通过把问题转化为解直角三角形来解决的;正多边形的画图是通过等分圆来完成的;等等。通过这些知识的教学,使学生学会化未知为已知、化复杂为简单、化一般为特殊或化特殊为一般的思考方法,提高学生分析问题和解决问题的能力。另外,在本章,通过理论联系实际,对学生进行唯物论认识论的教育;通过圆的许多性质之间的内在联系,圆与其他图形之间量变与质变的关系,一般与特殊之间的关系等,对学生进行辩证唯物主义观点的教育;使学生增强民族的自豪感和振兴中华的使命感,对他们进行学习目的的教育,培养他们良好的个性品质。三、几个值得关注的问题(一)进一步培养推理论证能力从培养学生的逻辑思维能力来说,“圆”这一阶段处于学生初步掌握了推理论证方法的基础上进一步巩固和提高的阶段,不仅要求学生能熟练地用综合法证明命题,熟悉探索法的推理过程,而且要求了解反证法。教学中要重视推理论证的教学,进一步提高学生的思维能力。教科书在这方面也还是很重视的。在推理与证明的要求方面,除了要求学生对经过观察、实验、探究得出的结论进行证明以外,有一些图形的性质是直接由已有的结论经过推理论证得出的。另外,为了巩固并提高学生的推理论证能力,本章的定理证明中,除了采用了规范的证明方法外,还有一些采用了探索式的证明方法。这种方法不是先有了定理再去证明它,而是根据题设和已有知识,经过推理,得出结论。这些对激发学生的学习兴趣,活跃学生的思维,对发展学生的思维能力有好处。教学中要注意启发和引导,使学生在熟悉“规范证明”的基础上,推理论证能力有所提高和发展。另外,这部分内容所涉及的图形很多是圆和直线形的组合,而且题目也相对以前比较复杂,教学时应注意多帮助学生复习有关直线形的知识,做到以新带旧、新旧结合,而且要加强解题思路的分析,帮助学生树立已知与未知、简单与复杂、特殊与一般在一定条件下可以转化的思想,使学生学会把未知化为已知,把复杂问题化为简单问题,把一般问题化为特殊问题的思考方法。如对于圆周角定理的证明,可以先从最简单的情况──角的一边经过圆心时入手,再推广到一般情形。通过这样的训练,可以提高学生逻辑思维能力和分析解决实际问题的能力。(二)重视知识间的联系与综合 圆是学生学习的第一个曲线形。学生由学习直线形到曲线形,在认识上是一个飞跃。在教学时,应注意充分利用学生在小学学过的圆的知识,搞好衔接。同时要注意加强圆和直线形的联系,把圆和直线形的有关问题对照讲解。如在讲“不在同一直线上的三个点确定一个圆”时,可以和“两点确定一条直线”相对照,这样可以加深学生对知识的理解。教科书在编写时,也注意从学生学习的规律出发,加强新旧知识的联系,发挥知识的迁移作用。例如,在讲圆的定义时,先回顾小学学过的定义,在分析圆上的点的特征的基础上,用集合语言重新给出描述;在学习圆及正多边形的计算时,注意将新知识与直角三角形的知识、小学学过的圆的周长与面积的知识联系起来,使新知识在学生眼里不陌生,容易接受。圆是一种特殊曲线,它有独特的对称性。它不仅是轴对称图形、中心对称图形,而且它的任何一条直径所在直线都是它的对称轴。绕圆心旋转任意一个角度都能与原来的图形重合(旋转对称性)。圆的对称性在日常生活和生产中有着广泛的应用,因此应当让学生很好地掌握。在研究圆的有关性质时,充分利用圆的对称性也是本章编写的一个特点。如垂径定理,弧、弦、圆心角的关系,切线长定理等,都是让学生充分利用圆的这些对称性,通过观察、实验等探究出性质,再进行证明,体现图形的认识、图形的变换、图形的证明的有机结合。这些也是教学时应当重点注意的。(三)注意把握好教学要求 本章教学内容与以往教材内容相比,删减幅度比较大(原义教大纲教材53课时,现在17课时),教学时要注意把握好教学要求。教学内容应当限制在课标和教材所出现的范围,按照课标要求删减的内容,教学中不要再拣回,以免影响学生对基础知识的学习。对于推理论证的要求,课程标准中在本章没有明确规定。教科书中是按照整套教科书对于推理证明的要求来处理的。在本章,要求学生对于一些圆的有关性质进行证明,并利用这些性质去证明一些相关的结论。但要注意,这里的证明也要控制难度,对于一般学生,控制在教科书“综合应用”的题目难度内,对于学有余力的学生,可以要求他们完成“拓广探索”栏目的习题。反证法的思想在七年级上册教科书代数部分就有涉及,在后续的相关章节也有应用。但当时只是渗透反证法的思想,没有作为一种方法提出。在本章,结合“过同一直线上的三点不能作圆”,正式提出了反证法,并且在后续内容,如“圆的切线垂直于过切点的半径”的证明时也有应用。由于反证法是一种间接证法,学生接受起来有一定困难。因此,教科书主要是要求让学生理解反证法的思想,后续习题也没有安排相应的习题。这里也要注意把握好对反证法的要求,不要让学生作过多过难的关于反证法的习题。另外,圆有许多重要性质,其中最主要的是圆的对称性(轴对称和旋转不变性),教科书在证明圆的许多重要性质时,都运用了它的对称性。但是,因为用对称的定义证明问题,对学生来说比较困难,所以在本章的教学中, 一方面要重视利用圆的对称性(教科书中在使用圆的对称性);另一方面又不应要求学生严格地利用对称性写出证明过程。教学中要把握好这个要求。 (四)重视信息技术的应用在本章的教学中,有条件的学校还是要重视信息技术工具的使用。利用信息技术工具,可以很方便地制作图形,可以很方便地让图形动起来。许多计算机软件还具有测量功能,这也有利于我们在图形运动变化的过程中去发现其中不变的位置关系和数量关系,有利于发现图形的性质。例如,本章许多图形的性质都可以利用计算机软件设置一些探究活动,让图形动起来,在这种运动变化中发现图形的性质。如弧、弦、圆心角之间的关系。有许多计算机软件具有测量功能,可以方便地测出角的大小和线段的长度,这也有利于在运动变化中观察它们的关系,发现图形的性质。如圆周角定理。另外还可以通过计算机软件让图形动起来,在动态变化过程中去发现点与圆、直线与圆、圆与圆的位置关系,还可以通过测量,去发现这种位置关系所对应的数量关系,如直线与圆的位置关系中直线到圆心的距离与圆的半径的关系,两圆位置关系中圆心距与圆半径的关系等。第二十五章“概率初步”简介从《数学标准》看,本章属于“统计与概率”领域,对于该领域的内容,本套教科书共安排了四章,这四章采用统计和概率分开编排的方式,前三章是统计,最后一章是概率。一方面,概率与统计相对独立,另一方面概率又以统计为依托。本章概率知识的学习要以前三章的统计部分的知识为基础。本章教学时间约需14课时,具体分配如下(仅供参考):25.1 概 率 约4课时25.2 用列举法求概率 约4课时25.3 利用频率估计概率 约2课时25.4 课题学习 约2课时数学活动 小结 约2课时一、教科书内容和课程学习目标(一)本章知识结构框图(二)教科书内容本章的主要内容是随机事件的定义,概率的定义,计算简单事件概率的方法,主要是列举法(包括列表法和画数行图法),利用频率估计概率。中心内容是体会随机观念和概率思想。全章共包括3节:25.1 概 率学生在前两个学段已经接触到了一些与可能性有关的初步知识,在本节将学习更加数学化和抽象化地描述可能性的知识──概率。在25.1.1节中,教科书通过设置的问题1的抽签问题和问题2的掷骰子问题,让学生来感受到,在一定条件下重复进行实验时,有些事件是必然发生的,有些事件是不可能发生的,有些事件是有可能发生也有可能不发的。教科书为了避免出现太多的概念,所以没有给出必然事件和不可能事件的概念,只给出了随机事件的概念。在学习了问题1和问题2后,学生就能够判断一个事件是必然会发生的事件、不可能发生的事件还是随机事件。问题3是一个摸球问题,通过这个问题要使学生在前两个学段知识的基础上进一步认识随机事件发生的可能性,即:一般地,随机事件发生的可能性有大有小,不同的随机事件发生的可能性大小有可能不同。通过问题3的学习,使学生能够初步判断几个事件发生的可能性的相对大小。在学习了25.1.1节的随机事件以及随机发生的可能性大小的基础上,25.1.2节给出了对事件发生可能性的更加抽象和更加数学化的描述──概率。教科书设置了一个投币实验,一方面让学生亲自动手实验获得数据,另一方面还给出投币实验的历史数据,为学生发现规律提供帮助。通过学生的亲手实验和历史数据,学生能够用自己在“统计”中学过的频率知识来研究投掷一枚硬币时“正面向上”的频率的大小。可以发现,在重复投掷一枚硬币时,“正面向上”的频率在0.5的左右摆动,随着投掷次数的增加,一般地,频率会呈现出一定的稳定性:在0.5的左右摆动的幅度会越来越小。由于“正面向上”的频率呈现出上述的稳定性,我们就用0.5这个常数来表示“正面向上”发生的可能性到大小。从随机事件发生的频率逐渐稳定到的常数可以刻画随机事件发生的可能性的大小这一事实出发,教科书引出了概率的定义:一般地,在大量重复实验中,如果事件A发生的频率会稳定在某个常数P附近,那么这个常数P就叫做事件A发生的概率,记为P(A)=p。则根据概率的定义可知,当A是不可能发生的事件时P(A)=0,;当A是必然发生的事件时P(A)=1,;当A是随机事件时,0<P(A)<1;概率的值越大则事件发生的可能性就越大。从概率定义可知,概率是通过大量重复实验中频率的稳定性得到的一个0~1的常数,它反映了事件发生的可能性的大小。需要注意,概率是针对大量重复实验而言的,大量重复实验反映的规律并非意味着在每一次实验中一定存在。从这个意义上说,即使某事件发生的概率非常大,但在一次实验中也有可能不发生;即使事件发生的概率非常小,但在一次实验中也可能发生。25.2 用列举法求概率在本节的开始,教科书设计了两个实验:抽签实验和掷骰子实验。通过这两个实验可以发现如下的规律:一般地,如果在一次实验中,共有种可能的结果,并且它们发生的可能性都相等,事件A包含其中的种结果,那么事件A发生的概率为P(A)=。事实上,这个规律也可以看作从另一角度出发给出的概率定义,即概率的古典定义。根据概率的古典定义,我们采用列举的方法计算一些简单事件的概率。例1~3都是通过列举的方法得到在一次实验中所有可能的结果数,以及所求事件包含的结果数,即而计算出所求事件的概率。例4与前三个例题有所不同,这个事件在实验时包含了两步,这就要求把两步可能的结果都列举出来,再利用古典定义来计算概率。例4的实验中每一步可能的结果只有两个,两步的所有可能结果也只有2×2=4个。与例4类似,例5的每次实验也是包含两步,但每一步可能产生的结果数却远较例4为多,有6个。这样,用例4那样简单的列举法就有些捉襟见肘了,这时教科书给出了一种比较方便的列举方法──列表法,这种方法适合在两步的实验中,每一步出现的结果较多的情况。采用这种方法可以一目了然地看出投掷两个骰子可能出现的所有结果为6×6=36个。与例5相比,例6的难度有进一步的提高,所提问的两个事件都包含了3步,对于包含3步的实验,这是一个3维的问题,用例5中列表的方法来列举出所有可能的结果已经不可能。为此,教科书在例题中给出了一种新的列举方法──树形图法。树形图法是一种适应性比较广泛的方法,能够用列表法解决的问题当然也能用树形图方法来解决,应该说,这种方法是第三学段的学生在尚未掌握概率乘法的情况下,用处最广泛的方法。25.3 利用频率估计概率由25.1节的概率定义可知,在同样条件下,大量重复实验时,根据一个随机事件发生的频率所逐渐稳定到的常数可以估计这个事件发生的概率,教科书在第25.3节就结合具体情境研究了如何用频率估计概率。问题1考查了某种幼数移植的成活率,幼树的成活率实际上就是一种概率。这个实际问题中的移植实验不属于各种结果可能性相等的类型,因而也就不能用25.2节中概率的古典定义去计算概率,只能用频率去估计。在同样条件下,大量移植这种幼树并统计成活情况(制成统计表的形式),计算成活频率,随着移植棵数的增加,成活频率会越来越稳定于某个常数,这个常数就是这种幼树的移植成活率,在这个移植成活率问题中,事实上应用了“用样本估计总体”的统计思想。问题1的目的比较单纯,而问题2则略显复杂:除了确定柑橘损坏的概率外,还要在去掉损坏柑橘后保证利润的前提下,确定柑橘的零售价格。这里一方面要应用“用样本估计总体”的统计思想以及用频率估计概率的思想计算出柑橘的损坏率,另一方面还要根据已知的损坏率为达到盈利的目的采取定价决策。问题3指出,在解决某些实际的概率问题时,有时应用实际的考查对象有时是不方便的,这样就提出了模拟实验必要性与合理性。设置这个问题的目的不在于让学生获得最后的精确结果,而是让学生根据具体的问题情境设计合适的模拟实验策略。最后,在本节中教科书还介绍了用计算器如何产生随机数,如何用计算器进行模拟实验。25.4 课题学习 键盘上字母的排列规律教材在最后一节安排了一个具有一定综合性和活动性的“课题学习”,这个“课题学习”选用了与学生生活联系密切的键盘上字母的排列规律问题。由于本章是《课程标准》“统计与概率”部分的最后一章,因此这个课题学习的综合性比前面三章统计中的课题学习更强。为了便于教学操作,教科书没有像以前那样要求学生进行收集数据、用统计表图整理和描述数据的整个统计过程,而是直接把需要的数据──字母使用频率以表格的形式直接提供给他们,仅要求他们根据频率,按从大到小地把键盘上的字母排列出来,最后估计每个字母出现的概率,从而解释为什么键盘上的字母为什么如此排列。完成这个课题学习,要求学生综合运用本章及以前所学的统计与概率的知识和方法,通过经历从大到小地排列各字母使用频率的过程,感受概率在现实生活中的重要作用。在这个过程中,让学生进一步感受用样本估计总体的统计思想及概率的思想,进一步体验概率在进行决策时的重要作用。(三)课程学习目标本章教科书的设计与编写以下列目标为出发点:1.理解什么是必然发生的事件、不可能发生的事件,什么是随机事件;2.在具体情境中了解概率的意义,体会概率是描述不确定现象的规律的数学模型,理解概率的取值范围的意义,发展随机观念。能够运用列举法(包括列表、画树形图)计算简单事件发生的概率;3.能够通过实验,获得事件发生的频率;知道大量重复实验时频率可作为事件发生概率的估计值,理解频率与概率的区别与联系。通过实例进一步丰富对概率的认识,并能解决一些实际问题。了解进行模拟实验的必要性,能根据问题的实际背景设计合理的模拟实验。二、本章编写特点(一)注重随机观念的渗透本章是第三学段“统计与概率”的最后一章,主要内容是理解随机观念及概率的思想方法。在现实世界中,有许多现象我们是可以事先预言其结果的,如下雨必有云;同性电荷相斥;在△ABC中,若AB=AC,则∠B=∠C;因为,所以。以上事实的反面,下雨而无云;同性电荷相吸;,而等。这种在一定条件下必然发生或必然不发生的现象称为确定性事件(或现象)。确定性事件的特点是:当条件给定时,其结果可以事先确切地预言或推算。代数、几何都是研究这类现象的工具。然而,在现实世界中还存在着许多现象,我们无法事先断定其结果。例如,向上抛出一枚硬币,落地时其结果是正面向上,还是背面向上?事先是无法准确断言的。又如新生儿的体重,在出生之前也无法准确断言是多少。某一路段,在一定时间段内有多少车辆通过,也是无法事先断定的。这类事件很多。它们的共同特点是:在相同的条件下,重复同一实验(或观察)时,会得到不同的结果,就一次或少数几次实验来看,其结果是不确定的、无规律的,但当大量重复实验(或观察)时,其结果就整体来说呈现出某种固有规律性。例如,将上述的抛硬币实验大量重复时,就可以发现正面朝上或反面朝上的次数总是大致相等的。通过大量统计新生婴儿的体重时,也会发现这些数字绝大多数集中在某一点附近,离开这点越远数字越少,呈现出一种确定的分布。这种大量重复实验(或观察)时所呈现出的集体规律性,称为统计规律。这类在个别实验中呈现出不确定性,而在大量重复实验中,又具有某种统计规律的现象,这就是随机事件。随机事件在现实世界中是普遍存在的,教师应该努力培养学生的随机观念,并让学生知道,研究随机事件掌握其规律进而利用其规律是有实际意义的。概率论就是研究和揭示随机现象统计规律的数学工具。教师应举出大量事件,让学生判断,这些事件是确定性事件还是随机事件。教师应该注意,所举的事例一定要在学生的知识范围和生活经验之内,超出这个范围,对培养学生的随机观念是无益的。(二)突出概率思想的内涵在前两个学段,学生对事件发生的可能性的大小已经有了初步的认识,在本章,他们将学习一种用确定性的数学来研究不确定现象的模型──概率。对于随机事件及其概率的认识,学生需要一个较长时期的认知过程。学生对概率思想的理解和掌握会随着自身年龄的增长以及知识面和生活经验的延伸而发展。我们知道,概率的获取有理论计算和实验估算两种,从这两个理解角度出发,可以给出不同的概率定义:一个是古典概型(理论计算),另一个是实验概率(用频率估计)。本章的定义是从第二个角度给出的。对于随机事件概率的计算,有些用理论计算比较方便,比如说本章25.2节“用列举法求概率”中的概率,事实上采用的就是理论计算。还有一些事件的概率无法用理论计算来解决,就只能通过概率实验,用频率来估算。比如25.3节“利用频率估计概率”中的概率估算。还有一类事件的概率,比如投硬币或投骰子某一面朝上,既可以用理论来计算也可以用频率来估算,从理论上说,硬币两个面是是对称的,两个面分别朝上的可能性是相等的,所以两个面朝上的概率都为0.5,通过大量的重复试验也可以估算出硬币正面朝上的概率为0.5;投骰子的道理相同。应该让学生们理解,在遇到任何计算概率的问题时,如果能够用理论来计算首先就应该采用理论计算的方式,这样的计算是概率的精确值,用频率估计概率通常会出现误差,当然这样的误差是正常的。注意让学生理解概率的内涵,概率是针对大量重复实验而言的,大量重复实验反映的规律并非意味着在每一次实验中一定存在。从这个意义上说,即使某一事件发生的概率非常大,但在一次实验中也有可能不发生;即使一事件发生的概率非常小,但在一次实验中也可能发生,比如买奖券中奖。(三)深刻领会概率概念中蕴涵的辨证思想人们在长期的实践中发现,在随机现象大量重复中,由于众多微小的偶然因素的影响,每次测得的结果虽不尽相同(具有偶然性),但大量重复测得结果的平均值却几乎必然地稳定于某一定数。这个规律称为大数法则,亦称大数定律,是证明大量随机现象统计规律的一组定理的总称。在理解概率的定义时,有一点必须注意:即使某事件发生的概率是,也并不意味次随机实验,事件必然会发生1次,尽管概率值本身是精确的。这个事实说明:必然性与偶然性(即随机性)是对立统一的概念,偶然性蕴涵内在必然的规律;反过来被断定为必然的东西,是由纯粹的偶然性构成的。三、几个值得关注的问题(一)注意揭示概率与频率的联系与区别 初学统计与概率的学生常常无法理解概率与频率的内在联系与区别,有时会把两者相混淆。教师应该向学生指明,从数学角度来说,统计与概率这两个学科是互为依托,相互作用的。概率这一概念是建立在频率这一统计量的稳定性基础之上的,而统计也离不开概率的理论支撑。相同条件下,一个事件发生的概率是一个常数,是由事件固有的属性决定的,但是如果用概率实验的方法,频率会随着样本空间的变化而变化,但随着样本的增加,频率会越来越集中于一个常数,这个数就是概率。所以用频率估计出来的概率通常是不精确的,要有误差。这就是所说的“实验概率稳定于理论概率而又不等于理论概率”。(二)鼓励学生动手实验,注意现代信息技术的应用为了首先让学生通过具体的实验操作获得一定的活动经验,促进对概率意义的理解与掌握,教科书在25.1.2节给出概率定义之前,设置了一个投掷硬币的实验,为学生提供一个体验概率实验的机会。由于在这个实验中需要获得的投掷次数相对较多,所以这里就需要发动 全体学生积极参与,动手实验,靠集体的力量快速地获得实验频率,圆满地完成实验。在学习用频率估计概率这部分内容时,一方面要鼓励学生亲自动手,集体合作,这主要是针对一些比较简单的实验,比如说投币实验,投图钉实验以及像阅读与理解短文中的布丰投针实验等。另一方面也鼓励学生采用模拟方法进行实验,特别是利用计算机或计算器进行模拟实验。我们知道,为了使用频率估计的概率尽可能地准确就需要进行大量的重复实验,这样的实验是极其费时费力的,所以应该鼓励学生使用现代信息技术,比如教科书就给出了用计算器产生随机数的例子。在学生掌握模拟实验时,重要的不是获得最终的结果,而是针对一个现实问题,让学生提出一种切实可行的进行模拟实验的策略,教科书25.3节的问题3就是这样。(三)注意把握好教学难度 必须注意的是,本学段的概率内容还处在一个比较初级的水平,就《课程标准》来看,这个阶段的学生并没有学习概率中的乘法,所以他们还只能用列表法和树形图法计算一些简单的概率问题。因此,如果问题超过3步的难度,学生完成起来就会非常吃力。所以一般来说,教学中不益将问题的难度超过3步(四)注意选取丰富、科学且真实的素材,充分体现概率与生活的密切联系概率与现实生活的联系越来越紧密,这一领域的内容对学生来说应该是充满趣味性和吸引力的,本套教科书编写时特别注意将概率的学习与实际问题紧密结合,选择典型的、学生感兴趣的和富有时代气息的现实问题作为例子,在解决这些实际问题的过程中学习计算概率的方法,掌握概率的概念、理解概率的意义,本章亦是如此。例如,在第25.1节中,教科书借助于“抽签问题”和“掷骰子问题”引出随机事件的概念;用“摸球问题”来引出事件发生的可能性的大小;用“投币实验”引出概率的统计学定义;又如25.2节中的例3,这是一个“扫雷游戏题”,相信使用过电脑的学生对其一定不会陌生,当然,没有用过电脑的学生在阅读本题的背景后,对本题也一定会很感兴趣的。再如,在第20.3节中,教科书选择了一个与学生生活密切联系的“键盘上字母的排列规律”作为“课题学习”,使学生综合运用本章知识和方法来体会概率在现实中的应用。因此,教学时要注意联系实际问题,可以和学生一起挖掘身边的素材进行教学,使学生在解决实际问题的过程中,体会随机的思想,培养概率思维,同时也使学生感受到概率与实际生活的密切联系,体会概率在采取决策解决现实问题中的作用,调动学生学习统计概率知识的积极性。《人教版九年级上册全书教案》第二十一章 二次根式 教材内容 1.本单元教学的主要内容: 二次根式的概念;二次根式的加减;二次根式的乘除;最简二次根式. 2.本单元在教材中的地位和作用: 二次根式是在学完了八年级下册第十七章《反比例正函数》、第十八章《勾股定理及其应用》等内容的基础之上继续学习的,它也是今后学习其他数学知识的基础. 教学目标 1.知识与技能 (1)理解二次根式的概念. (2)理解(a≥0)是一个非负数,()2=a(a≥0),=a(a≥0). (3)掌握·=(a≥0,b≥0),=·;=(a≥0,b>0),=(a≥0,b>0). (4)了解最简二次根式的概念并灵活运用它们对二次根式进行加减. 2.过程与方法 (1)先提出问题,让学生探讨、分析问题,师生共同归纳,得出概念.再对概念的内涵进行分析,得出几个重要结论,并运用这些重要结论进行二次根式的计算和化简. (2)用具体数据探究规律,用不完全归纳法得出二次根式的乘(除)法规定,并运用规定进行计算. (3)利用逆向思维,得出二次根式的乘(除)法规定的逆向等式并运用它进行化简. (4)通过分析前面的计算和化简结果,抓住它们的共同特点,给出最简二次根式的概念.利用最简二次根式的概念,来对相同的二次根式进行合并,达到对二次根式进行计算和化简的目的. 3.情感、态度与价值观 通过本单元的学习培养学生:利用规定准确计算和化简的严谨的科学精神,经过探索二次根式的重要结论,二次根式的乘除规定,发展学生观察、分析、发现问题的能力. 教学重点 1.二次根式(a≥0)的内涵.(a≥0)是一个非负数;()2=a(a≥0);=a(a≥0)及其运用. 2.二次根式乘除法的规定及其运用. 3.最简二次根式的概念. 4.二次根式的加减运算. 教学难点 1.对(a≥0)是一个非负数的理解;对等式()2=a(a≥0)及=a(a≥0)的理解及应用. 2.二次根式的乘法、除法的条件限制. 3.利用最简二次根式的概念把一个二次根式化成最简二次根式. 教学关键 1.潜移默化地培养学生从具体到一般的推理能力,突出重点,突破难点. 2.培养学生利用二次根式的规定和重要结论进行准确计算的能力,培养学生一丝不苟的科学精神. 单元课时划分 本单元教学时间约需11课时,具体分配如下: 21.1 二次根式 3课时 21.2 二次根式的乘法 3课时 21.3 二次根式的加减 3课时 教学活动、习题课、小结 2课时21.1 二次根式第一课时 教学内容 二次根式的概念及其运用 教学目标 理解二次根式的概念,并利用(a≥0)的意义解答具体题目. 提出问题,根据问题给出概念,应用概念解决实际问题. 教学重难点关键 1.重点:形如(a≥0)的式子叫做二次根式的概念; 2.难点与关键:利用“(a≥0)”解决具体问题. 教学过程 一、复习引入 (学生活动)请同学们独立完成下列三个问题: 问题1:已知反比例函数y=,那么它的图象在第一象限横、纵坐标相等的点的坐标是___________.问题2:如图,在直角三角形ABC中,AC=3,BC=1,∠C=90°,那么AB边的长是__________. 问题3:甲射击6次,各次击中的环数如下:8、7、9、9、7、8,那么甲这次射击的方差是S2,那么S=_________. 老师点评:问题1:横、纵坐标相等,即x=y,所以x2=3.因为点在第一象限,所以x=,所以所求点的坐标(,). 问题2:由勾股定理得AB= 问题3:由方差的概念得S= . 二、探索新知 很明显、、,都是一些正数的算术平方根.像这样一些正数的算术平方根的式子,我们就把它称二次根式.因此,一般地,我们把形如(a≥0)的式子叫做二次根式,“”称为二次根号. (学生活动)议一议: 1.-1有算术平方根吗? 2.0的算术平方根是多少? 3.当a<0,有意义吗? 老师点评:(略) 例1.下列式子,哪些是二次根式,哪些不是二次根式:、、、(x>0)、、、-、、(x≥0,y≥0). 分析:二次根式应满足两个条件:第一,有二次根号“”;第二,被开方数是正数或0. 解:二次根式有:、(x>0)、、-、(x≥0,y≥0);不是二次根式的有:、、、. 例2.当x是多少时,在实数范围内有意义? 分析:由二次根式的定义可知,被开方数一定要大于或等于0,所以3x-1≥0,才能有意义. 解:由3x-1≥0,得:x≥ 当x≥时,在实数范围内有意义. 三、巩固练习 教材P练习1、2、3. 四、应用拓展 例3.当x是多少时,+在实数范围内有意义? 分析:要使+在实数范围内有意义,必须同时满足中的≥0和中的x+1≠0. 解:依题意,得 由①得:x≥- 由②得:x≠-1 当x≥-且x≠-1? 展开更多...... 收起↑ 资源预览