河南省2024中考导向总复习数学模拟试卷(原卷版+解析版)

资源下载
  1. 二一教育资源

河南省2024中考导向总复习数学模拟试卷(原卷版+解析版)

资源简介

中小学教育资源及组卷应用平台
河南省2024中考导向总复习数学模拟试卷
注意事项:1.本试卷共8页,三大题,满分120分,考试时间100分钟.
2.本试卷上不要答题,请按答题卡上注意事项的要求,直接把答案填写在答题卡上.答在试卷上的答案无效.
一、选择题(每小题3分,共30分)
1. 下列各数中,最小的是( )
A. B. 0 C. D. 2
【答案】A
【解析】
【分析】根据正数大于零,零大于负数,可得答案.
详解】解:正数大于零,零大于负数,得
故选:A.
【点睛】本题考查了有理数比较大小,正数大于零,零大于负数,熟练掌握有理数的大小比较的方法是解题的关键.
2. 某运动会颁奖台如图所示,它的主视图是(   )
A. B. C. D.
【答案】C
【解析】
【详解】从正面看到的图形如图所示:

故选C.
3. 从提出北斗建设工程开始,北斗导航卫星研制团队攻坚克难,突破重重关键技术,建成独立自主,开放兼容的全球卫星导航系统,成为世界上第三个独立拥有全球卫星导航系统的国家,现在每分钟200多个国家和地区的用户访问使用北斗卫星导航系统超70000000次.其中70000000用科学记数法表示为( )
A. B. C. D.
【答案】D
【解析】
【分析】本题考查了用科学记数法表示绝对值较大的数,一般形式为,其中,确定与的值是解本题的关键.本题确定,即可.
【详解】解:,
故选D
4. 如图,AB和CD相交于点O,则下列结论正确的是( )
A. ∠1=∠2 B. ∠2=∠3 C. ∠1>∠4+∠5 D. ∠2<∠5
【答案】A
【解析】
【分析】根据对顶角性质、三角形外角性质分别进行判断,即可得到答案.
【详解】解:由两直线相交,对顶角相等可知A正确;
由三角形的一个外角等于它不相邻的两个内角的和可知
B选项为∠2>∠3,
C选项为∠1=∠4+∠5,
D选项为∠2>∠5.
故选:A.
【点睛】本题考查了三角形的外角性质,对顶角性质,解题的关键是熟练掌握三角形的外角性质进行判断.
5. 下列计算正确的是( )
A. B. C. D.
【答案】D
【解析】
【分析】根据分式的约分可判断A,根据幂的乘方运算可判断B,根据分式的加法运算可判断C,根据零指数幂的含义可判断D,从而可得答案.
【详解】解:,故A不符合题意;
,故B不符合题意;
,故C不符合题意;
,运算正确,故D符合题意;
故选D
【点睛】本题考查分式的约分,幂的乘方运算,分式的加法运算,零指数幂,熟记运算法则是解本题的关键.
6. 关于x的一元二次方程根的情况,下列说法中正确的是(  )
A. 有两个不相等的实数根 B. 有两个相等的实数根
C. 没有实数根 D. 无法确定
【答案】C
【解析】
【分析】直接利用一元二次方程根的判别式即可得.
【详解】解:,
其中,,,
∴,
∴方程没有实数根.
故选:C.
【点睛】本题主要考查了一元二次方程根的判别式,对于一元二次方程,若,则方程有两个不相等的实数根,若,则方程有两个相等的实数根,若,则方程没有实数根.
7. “敬老爱老”是中华民族的优秀传统美德.小刚、小强计划利用暑期从,,三处养老服务中心中,随机选择一处参加志愿服务活动,则两人恰好选到同一处的概率是( )
A. B. C. D.
【答案】B
【解析】
【分析】画出树状图展示所有9种等可能的结果数,找出两人恰好选择同一场所的结果数,然后根据概率公式求解.
【详解】解:画树状图如图:
共有9种等可能的结果数,其中两人恰好选择同一场所的结果数为3,
∴小刚、小强两人恰好选择同一场馆的概率,
故选:B.
【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果,再从中选出符合事件或的结果数目,然后利用概率公式计算事件或事件的概率.
8. 如图,在中,半径互相垂直,点在劣弧上.若,则( )
A. B. C. D.
【答案】D
【解析】
【分析】根据互相垂直可得所对的圆心角为,根据圆周角定理可得,再根据三角形内角和定理即可求解.
【详解】解:如图,
半径互相垂直,

所对的圆心角为,
所对的圆周角,
又,

故选D.
【点睛】本题考查圆周角定理、三角形内角和定理,解题的关键是掌握:同圆或等圆中,同弧所对的圆周角等于圆心角的一半.
9. 下列函数中,的值随值的增大而减小的是( )
A. B. C. D.
【答案】D
【解析】
【分析】根据二次函数的性质,一次函数的性质,逐项分析判断即可求解.
【详解】解:A. ,,对称轴为直线,
当时,的值随值的增大而减小,当时,的值随值的增大而增大,故该选项不正确,不符合题意;
B. ,,对称轴为直线,
当时,的值随值的增大而增大,当时,的值随值的增大而减小,故该选项不正确,不符合题意;
C. ,,的值随值的增大而增大,故该选项不正确,不符合题意;
D. ,,值随值的增大而减小,故该选项正确,符合题意;
故选:D.
【点睛】本题考查了一次函数与二次函数的性质,熟练掌握一次函数与二次函数的性质是解题的关键.
10. 如图1,正方形的边长为4,为边的中点.动点从点出发沿匀速运动,运动到点时停止.设点的运动路程为,线段的长为,与的函数图象如图2所示,则点的坐标为( )
A. B. C. D.
【答案】C
【解析】
【分析】证明,,,则当P与A,B重合时,最长,此时,而运动路程为0或4,从而可得答案.
【详解】解:∵正方形的边长为4,为边的中点,
∴,,,
当P与A,B重合时,最长,
此时,
运动路程为0或4,
结合函数图象可得,
故选C
【点睛】本题考查的是从函数图象中获取信息,正方形的性质,勾股定理的应用,理解题意,确定函数图象上横纵坐标的含义是解本题的关键.
二、填空题(每小题3分,共15分)
11. 若在实数范围内有意义,请写出一个满足条件的的值______.
【答案】答案不唯一
【解析】
【分析】此题考查了二次根式的有意义的条件,二次根式被开方数大于等于零时,二次根式有意义,据此解答.
【详解】解:要使若在实数范围内有意义,
则,
即,
则写出一个满足条件的的值为.
故答案为:答案不唯一.
12. 已知x,y满足的方程组是,则x+y的值为 ___.
【答案】5.
【解析】
【分析】将方程组中的两个方程直接相减即可求解.
【详解】解:
用②﹣①得:x+y=5,
故答案为:5.
【点睛】本题考查二元一次方程组的解,熟练掌握二元一次方程组的解法,通过观察方程组中两个方程的特点,灵活计算是解题的关键.
13. 为积极响应“助力旅发大会,唱响美丽郴州”的号召,某校在各年级开展合唱比赛,规定每支参赛队伍的最终成绩按歌曲内容占30%,演唱技巧占50%,精神面貌占20%考评.某参赛队歌曲内容获得90分,演唱技巧获得94分,精神面貌获得95分.则该参赛队的最终成绩是___________分.
【答案】93
【解析】
【分析】利用加权平均数的计算方法进行求解即可.
【详解】解:由题意,得:(分);
∴该参赛队的最终成绩是93分,
故答案为:93
【点睛】本题考查加权平均数,熟练掌握加权平均数的计算方法,是解题的关键.
14. 如图,的半径为,为的弦,点为上的一点,将沿弦翻折,使点与圆心重合,则阴影部分的面积为_______.(结果保留与根号)
【答案】
【解析】
【分析】根据折叠的性质得出是等边三角形,则,,根据阴影部分面积即可求解.
【详解】解:如图所示,连接,设交于点
∵将沿弦翻折,使点与圆心重合,
∴,

∴,
∴是等边三角形,
∴,,
∴,
∴阴影部分面积
故答案为:.
15. 如图,在三角形纸片中,,点是边上的动点,将三角形纸片沿对折,使点落在点处,当时,的度数为___________.
【答案】或
【解析】
【分析】分两种情况考虑,利用对称的性质及三角形内角和等知识即可完成求解.
【详解】解:由折叠的性质得:;
∵,
∴;
①当在下方时,如图,
∵,
∴,
∴;
②当在上方时,如图,
∵,
∴,
∴;
综上,的度数为或;
故答案为:或.
【点睛】本题考查了折叠的性质,三角形内角和,注意分类讨论.
三、解答题(本大题共8个小题,满分75分)
16. (1)计算:;
(2)化简:.
【答案】(1);(2).
【解析】
【分析】本题主要考查了分式的混合计算,负整数指数幂,求特殊角三角函数值:
(1)先计算特殊角三角函数值和负整数指数幂,再计算加减法即可;
(2)先把小括号内的式子通分,再把除法变成乘法后约分化简即可得到答案.
【详解】(1)解:原式

(2)解:原式

17. 为了调动员工的积极性,商场家电部经理决定确定一个适当的月销售目标,对完成目标的员工进行奖励.家电部对20名员工当月的销售额进行统计和分析.
数据收集(单位:万元):
5.0 9.9 6.0 5.2 8.2 6.2 7.6 9.4 8.2 7.8
5.1 7.5 6.1 6.3 6.7 7.9 8.2 8.5 9.2 9.8
数据整理:
销售额/万元
频数 3 5 4 4
数据分析:
平均数 众数 中位数
7.44 8.2
问题解决:
(1)填空:_________,_________.
(2)若将月销售额不低于7万元确定为销售目标,则有_____名员工获得奖励.
(3)经理对数据分析以后,最终对一半的员工进行了奖励.员工甲找到经理说:“我这个月的销售额是7.5万元,比平均数7.44万元高,所以我的销售额超过一半员工,为什么我没拿到奖励?”假如你是经理,请你给出合理解释.
【答案】(1)4,7.7
(2)12 (3)7.5万元小于中位数7.7万元,有一半多的员工销售额比7.5万元高,故员工甲没拿到奖励
【解析】
【分析】(1)根据所给数据及中位数的定义求解;
(2)根据频数分布表求解;
(3)利用中位数进行决策.
【小问1详解】
解:该组数据中有4个数在7与8之间,故,
将20个数据按从小到大顺序排列,第10位和第11位分别是7.6,7.8,故中位数,
故答案为:4,7.7;
【小问2详解】
解:月销售额不低于7万元的有:(人),
故答案为:12;
【小问3详解】
解:7.5万元小于中位数7.7万元,有一半多员工销售额比7.5万元高,故员工甲没拿到奖励.
【点睛】本题考查频数分布表,中位数,利用中位数做决策等,解题的关键是掌握中位数的求法及意义.
18. 如图,点E是矩形的边上的一点,且.
(1)尺规作图(请用铅笔):作的平分线,交的延长线于点F,连接.(保留作图痕迹,不写作法);
(2)试判断四边形的形状,并说明理由.
【答案】(1)见解析 (2)四边形是菱形,理由见解析
【解析】
【分析】(1)根据题意结合尺规作角平分线的方法作图即可;
(2)根据矩形的性质和平行线的性质得出,结合角平分线的定义可得,则,然后根据平行四边形和菱形的判定定理得出结论.
【小问1详解】
解:如图所示:
【小问2详解】
四边形是菱形;
理由:∵矩形中,,
∴,
∵平分,
∴,
∴,
∴,
∵,
∴,
∵,
∴四边形是平行四边形,
又∵,
∴平行四边形是菱形.
【点睛】本题主要考查了尺规作角平分线,矩形的性质,平行线的性质,等腰三角形的判定,平行四边形的判定以及菱形的判定等知识,熟练掌握相关判定定理和性质定理是解题的关键.
19. 如图,正比例函数与反比例函数的图象交于A,两点,点C在x轴负半轴上,.
(1)______,______,点C的坐标为______.
(2)点P在x轴上,若以B,O,P为顶点的三角形与相似,求点P的坐标.
【答案】(1),,
(2)点P的坐标为或
【解析】
【分析】(1)点B是两函数图象的交点,利用待定系数法求出m,k的值;根据“A,B两点关于原点对称”求出点A的坐标,过点A作x轴的垂线,利用等腰直角三角形的性质,结合图形,求出点C的坐标.
(2)根据点P在x轴上,结合图形,排除点P在x轴负半轴上的情形,当点P在x轴正半轴上时,两个三角形中已有一对角相等,而夹角的两边的对应关系不确定,故分类讨论:①;②.分别求出两种情况下的长,从而得出点P的坐标.
【小问1详解】
(1)将代入,得,
∴.
将代入,得,
∴.
如图,过点A作轴于点D,则.
∵点A,B关于原点O对称,
∴,
∴.
又∵,
∴,
∴,
∴.
故答案为:,,;
【小问2详解】
由(1)可知,,.
当点P在x轴的负半轴上时,,
∴.
又∵,
∴与不可能相似.
当点P在x轴的正半轴上时,.
①若,则,
∵,
∴,
∴;
②若,则,
又∵,,
∴,
∴.
综上所述,点P的坐标为或.
【点睛】本题考查了反比例函数与一次函数的交点问题、相似三角形的性质.熟练掌握用待定系数法求函数表达式,并能利用数形结合思想和分类讨论思想分析是解答本题的关键.
20. 某实践探究小组想测得湖边两处的距离,数据勘测组通过勘测,得到了如下记录表:
实践探究活动记录表
活动内容 测量湖边A、B两处的距离
成员 组长:××× 组员:××××××××××××
测量工具 测角仪,皮尺等
测量示意图 说明:因为湖边A、B两处的距离无法直接测量,数据勘测组在湖边找了一处位置C.可测量C处到A、B两处的距离.通过测角仪可测得的度数.
测量数据 角的度数
边的长度 米

数据处理组得到上面数据以后做了认真分析.他们发现不需要勘测组的全部数据就可以计算出A、B之间的距离.于是数据处理组写出了以下过程,请补全内容.
已知:如图,在中,._________.(从记录表中再选一个条件填入横线)
求:线段的长.(为减小结果的误差,若有需要,取,取,取进行计算,最后结果保留整数.)
【答案】米,线段约长为77米;米,线段的约长为77米
【解析】
【分析】填入数据米.作于点D,在和中,解直角三角形即可求解.
【详解】(1)当填入米时:
已知:如图,在中,.米.(从记录表中再选一个条件填入横线)
求:线段的长.
解:作于点D,
在中,,,
∴,,
在中,,,
∴,
∴,
∴(米),
答:线段的约长为77米.
(2)当填入米时:
已知:如图,在中,.米.(从记录表中再选一个条件填入横线)
求:线段的长.
解:作于点D,
在中,,,
∴,
∴,
在中,,,
∴,
∴(米),
答:线段的约长为77米.
【点睛】本题考查了解直角三角形的应用-其他问题,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.
21. 某服装店经销A,B两种T恤衫,进价和售价如下表所示:
品名 A B
进价(元/件) 45 60
售价(元/件) 66 90
(1)第一次进货时,服装店用6000元购进A,B两种T恤衫共120件,全部售完获利多少元?
(2)受市场因素影响,第二次进货时,A种T恤衫进价每件上涨了5元,B种T恤衫进价每件上涨了10元,但两种T恤衫的售价不变.服装店计划购进A,B两种T恤衫共150件,且B种T恤衫的购进量不超过A种T恤衫购进量的2倍.设此次购进A种T恤衫m件,两种T恤衫全部售完可获利W元.
①请求出W与m的函数关系式;
②服装店第二次获利能否超过第一次获利?请说明理由.
【答案】(1)2880元
(2)①;②服装店第二次获利不能超过第一次获利,理由见解析
【解析】
分析】(1)根据条件,购进恤衫件,购进恤衫件,列出方程组解出、值,最后求出获利数;
(2)①根据条件,可列,整理即可;
②由①可知,,一次函数随的增大而减小,当时,取最大值计算出来和第一次获利比较即可.
【小问1详解】
解:设购进A种T恤衫件,购进B种T恤衫件,根据题意列出方程组为:

解得,
全部售完获利(元).
【小问2详解】
①设第二次购进种恤衫件,则购进种恤衫件,根据题意,即,

②服装店第二次获利不能超过第一次获利,理由如下:
由①可知,,
,一次函数随的增大而减小,
当时,取最大值,(元),

服装店第二次获利不能超过第一次获利.
【点睛】本题考查了一元二次方程组的应用,读懂题意列出函数解析式是解本题的关键.
22. 嘉嘉和淇淇在玩沙包游戏.某同学借此情境编制了一道数学题,请解答这道题.
如图,在平面直角坐标系中,一个单位长度代表1m长.嘉嘉在点处将沙包(看成点)抛出,并运动路线为抛物线的一部分,淇淇恰在点处接住,然后跳起将沙包回传,其运动路线为抛物线的一部分.
(1)写出的最高点坐标,并求a,c的值;
(2)若嘉嘉在x轴上方的高度上,且到点A水平距离不超过的范围内可以接到沙包,求符合条件的n的整数值.
【答案】(1)的最高点坐标为,,;
(2)符合条件的n的整数值为4和5.
【解析】
【分析】(1)利用顶点式即可得到最高点坐标;点在抛物线上,利用待定系数法即可求得a的值;令,即可求得c的值;
(2)求得点A的坐标范围为,求得n的取值范围,即可求解.
【小问1详解】
解:∵抛物线,
∴的最高点坐标为,
∵点在抛物线上,
∴,解得:,
∴抛物线的解析式为,令,则;
【小问2详解】
解:∵到点A水平距离不超过的范围内可以接到沙包,
∴点A的坐标范围为,
当经过时,,
解得;
当经过时,,
解得;

∴符合条件的n的整数值为4和5.
【点睛】本题考查了二次函数的应用,联系实际,读懂题意,熟练掌握二次函数图象上点的坐标特征是解题的关键.
23. 如图①,小红在学习了三角形相关知识后,对等腰直角三角形进行了探究,在等腰直角三角形中,,过点作射线,垂足为,点在上.
(1)【动手操作】
如图②,若点在线段上,画出射线,并将射线绕点逆时针旋转与交于点,根据题意在图中画出图形,图中的度数为_______度;
(2)【问题探究】
根据(1)所画图形,探究线段与的数量关系,并说明理由;
(3)【拓展延伸】
如图③,若点在射线上移动,将射线绕点逆时针旋转与交于点,探究线段之间的数量关系,并说明理由.
【答案】(1)作图见解析;135
(2);理由见解析
(3)或;理由见解析
【解析】
【分析】(1)根据题意画图即可;先求出,根据,求出;
(2)根据,,证明、P、B、E四点共圆,得出,求出,根据等腰三角形的判定即可得出结论;
(3)分两种情况,当点P在线段上时,当点P在线段延长线上时,分别画出图形,求出之间的数量关系即可.
【小问1详解】
解:如图所示:
∵,
∴,
∵,
∴,
∴;
故答案为:135.
【小问2详解】
解:;理由如下:
连接,如图所示:
根据旋转可知,,
∵,
∴、P、B、E四点共圆,
∴,
∴,
∴,
∴.
【小问3详解】
解:当点P在线段上时,连接,延长,作于点F,如图所示:
根据解析(2)可知,,
∵,
∴,
∴,
∵,
∴,
∴,
∵,,
∴为等腰直角三角形,
∴,
∵为等腰直角三角形,
∴,
即;
当点P在线段延长线上时,连接,作于点F,如图所示:
根据旋转可知,,
∵,
∴、B、P、E四点共圆,
∴,
∴,
∴,
∴,
∵,
∴,
∴,
∵,
∴,
∴,
∵,
∴,
∵,,
∴为等腰直角三角形,
∴,
即;
综上分析可知,或.
【点睛】本题主要考查了等腰三角形的判定和性质,三角形全等的判定和性质,圆周角定理,四点共圆,等腰直角三角形的性质,解题的关键是作出图形和相关的辅助线,数形结合,并注意分类讨论.中小学教育资源及组卷应用平台
河南省2024中考导向总复习数学模拟试卷
注意事项:1.本试卷共8页,三大题,满分120分,考试时间100分钟.
2.本试卷上不要答题,请按答题卡上注意事项的要求,直接把答案填写在答题卡上.答在试卷上的答案无效.
一、选择题(每小题3分,共30分)
1. 下列各数中,最小的是( )
A. B. 0 C. D. 2
2. 某运动会颁奖台如图所示,它的主视图是(   )
A B. C. D.
3. 从提出北斗建设工程开始,北斗导航卫星研制团队攻坚克难,突破重重关键技术,建成独立自主,开放兼容的全球卫星导航系统,成为世界上第三个独立拥有全球卫星导航系统的国家,现在每分钟200多个国家和地区的用户访问使用北斗卫星导航系统超70000000次.其中70000000用科学记数法表示为( )
A. B. C. D.
4. 如图,AB和CD相交于点O,则下列结论正确的是( )
A. ∠1=∠2 B. ∠2=∠3 C. ∠1>∠4+∠5 D. ∠2<∠5
5. 下列计算正确的是( )
A. B. C. D.
6. 关于x的一元二次方程根的情况,下列说法中正确的是(  )
A. 有两个不相等的实数根 B. 有两个相等的实数根
C. 没有实数根 D. 无法确定
7. “敬老爱老”是中华民族的优秀传统美德.小刚、小强计划利用暑期从,,三处养老服务中心中,随机选择一处参加志愿服务活动,则两人恰好选到同一处的概率是( )
A. B. C. D.
8. 如图,在中,半径互相垂直,点在劣弧上.若,则( )
A. B. C. D.
9. 下列函数中,值随值的增大而减小的是( )
A. B. C. D.
10. 如图1,正方形的边长为4,为边的中点.动点从点出发沿匀速运动,运动到点时停止.设点的运动路程为,线段的长为,与的函数图象如图2所示,则点的坐标为( )
A. B. C. D.
二、填空题(每小题3分,共15分)
11. 若在实数范围内有意义,请写出一个满足条件的的值______.
12. 已知x,y满足的方程组是,则x+y的值为 ___.
13. 为积极响应“助力旅发大会,唱响美丽郴州”的号召,某校在各年级开展合唱比赛,规定每支参赛队伍的最终成绩按歌曲内容占30%,演唱技巧占50%,精神面貌占20%考评.某参赛队歌曲内容获得90分,演唱技巧获得94分,精神面貌获得95分.则该参赛队的最终成绩是___________分.
14. 如图,的半径为,为的弦,点为上的一点,将沿弦翻折,使点与圆心重合,则阴影部分的面积为_______.(结果保留与根号)
15. 如图,在三角形纸片中,,点是边上的动点,将三角形纸片沿对折,使点落在点处,当时,的度数为___________.
三、解答题(本大题共8个小题,满分75分)
16. (1)计算:;
(2)化简:.
17. 为了调动员工的积极性,商场家电部经理决定确定一个适当的月销售目标,对完成目标的员工进行奖励.家电部对20名员工当月的销售额进行统计和分析.
数据收集(单位:万元):
5.0 9.9 6.0 5.2 8.2 6.2 7.6 9.4 8.2 7.8
51 7.5 6.1 6.3 6.7 7.9 8.2 8.5 9.2 9.8
数据整理:
销售额/万元
频数 3 5 4 4
数据分析:
平均数 众数 中位数
7.44 8.2
问题解决:
(1)填空:_________,_________.
(2)若将月销售额不低于7万元确定为销售目标,则有_____名员工获得奖励.
(3)经理对数据分析以后,最终对一半的员工进行了奖励.员工甲找到经理说:“我这个月的销售额是7.5万元,比平均数7.44万元高,所以我的销售额超过一半员工,为什么我没拿到奖励?”假如你是经理,请你给出合理解释.
18. 如图,点E是矩形的边上的一点,且.
(1)尺规作图(请用铅笔):作的平分线,交的延长线于点F,连接.(保留作图痕迹,不写作法);
(2)试判断四边形的形状,并说明理由.
19. 如图,正比例函数与反比例函数的图象交于A,两点,点C在x轴负半轴上,.
(1)______,______,点C的坐标为______.
(2)点P在x轴上,若以B,O,P为顶点的三角形与相似,求点P的坐标.
20. 某实践探究小组想测得湖边两处的距离,数据勘测组通过勘测,得到了如下记录表:
实践探究活动记录表
活动内容 测量湖边A、B两处的距离
成员 组长:××× 组员:××××××××××××
测量工具 测角仪,皮尺等
测量示意图 说明:因为湖边A、B两处的距离无法直接测量,数据勘测组在湖边找了一处位置C.可测量C处到A、B两处的距离.通过测角仪可测得的度数.
测量数据 角的度数
边的长度 米

数据处理组得到上面数据以后做了认真分析.他们发现不需要勘测组的全部数据就可以计算出A、B之间的距离.于是数据处理组写出了以下过程,请补全内容.
已知:如图,在中,._________.(从记录表中再选一个条件填入横线)
求:线段的长.(为减小结果的误差,若有需要,取,取,取进行计算,最后结果保留整数.)
21. 某服装店经销A,B两种T恤衫,进价和售价如下表所示:
品名 A B
进价(元/件) 45 60
售价(元/件) 66 90
(1)第一次进货时,服装店用6000元购进A,B两种T恤衫共120件,全部售完获利多少元?
(2)受市场因素影响,第二次进货时,A种T恤衫进价每件上涨了5元,B种T恤衫进价每件上涨了10元,但两种T恤衫的售价不变.服装店计划购进A,B两种T恤衫共150件,且B种T恤衫的购进量不超过A种T恤衫购进量的2倍.设此次购进A种T恤衫m件,两种T恤衫全部售完可获利W元.
①请求出W与m的函数关系式;
②服装店第二次获利能否超过第一次获利?请说明理由.
22. 嘉嘉和淇淇在玩沙包游戏.某同学借此情境编制了一道数学题,请解答这道题.
如图,在平面直角坐标系中,一个单位长度代表1m长.嘉嘉在点处将沙包(看成点)抛出,并运动路线为抛物线的一部分,淇淇恰在点处接住,然后跳起将沙包回传,其运动路线为抛物线的一部分.
(1)写出的最高点坐标,并求a,c的值;
(2)若嘉嘉在x轴上方的高度上,且到点A水平距离不超过的范围内可以接到沙包,求符合条件的n的整数值.
23. 如图①,小红在学习了三角形相关知识后,对等腰直角三角形进行了探究,在等腰直角三角形中,,过点作射线,垂足,点在上.
(1)动手操作】
如图②,若点在线段上,画出射线,并将射线绕点逆时针旋转与交于点,根据题意在图中画出图形,图中的度数为_______度;
(2)【问题探究】
根据(1)所画图形,探究线段与的数量关系,并说明理由;
(3)【拓展延伸】
如图③,若点在射线上移动,将射线绕点逆时针旋转与交于点,探究线段之间的数量关系,并说明理由.

展开更多......

收起↑

资源列表