资源简介 中小学教育资源及组卷应用平台思维拓展 与数列结合的概率递推问题(马尔科夫链)【背景知识】俄国数学家 Andrey Andreyevich Markov 研究并提出一个用数学方法就能解释自然变化的一般规律模型,被命名为马尔科夫链(Markov Chain)。马尔科夫链为状态空间中经过从一个状态到另一个状态的转换的随机过程,该过程要求具备“无记忆性 ”,即下一状态的概率分布只能由当前状态决定,在时间序列中它前面的事件均与之无关。这种特定类型的“无记忆性 ”称作马尔可夫性质。【知识拓展】①转移概率:对于有限状态集合,定义:为从状态到状态的转移概率.②马尔可夫链:若,即未来状态只受当前状态的影响,与之前的无关.③完备事件组:如果样本空间中一组事件组符合下列两个条件:(1);(2).则称是的一个完备事件组,也称是的一个分割.④全概率公式: 设是一个完备事件组,则有⑤一维随机游走模型,即:设数轴上一个点,它的位置只能位于整点处,在时刻时,位于点,下一个时刻,它将以概率或者()向左或者向右平移一个单位.若记状态表示:在时刻该点位于位置,那么由全概率公式可得:另一方面,由于,代入上式可得:.进一步,我们假设在与处各有一个吸收壁,当点到达吸收壁时被吸收,不再游走.于是,.随机游走模型是一个典型的马尔科夫过程.进一步,若点在某个位置后有三种情况:向左平移一个单位,其概率为,原地不动,其概率为,向右平移一个单位,其概率为,那么根据全概率公式可得:.【例题1】(2023·新高考1卷)甲、乙两人投篮,每次由其中一人投篮,规则如下:若命中则此人继续投篮,若末命中则换为对方投篮.无论之前投篮情况如何,甲每次投篮的命中率均为0.6,乙每次投篮的命中率均为0.8.由抽签确定第1次投篮的人选,第1次投篮的人是甲、乙的概率各为0.5.(1)求第2次投篮的人是乙的概率;(2)求第次投篮的人是甲的概率;(3)已知:若随机变量服从两点分布,且,则.记前次(即从第1次到第次投篮)中甲投篮的次数为,求.【例题2】(2024·山东省实验中学模拟)某品牌女装专卖店设计摸球抽奖促销活动,每位顾客只用一个会员号登陆,每次消费都有一次随机摸球的机会.已知顾客第一次摸球抽中奖品的概率为;从第二次摸球开始,若前一次没抽中奖品,则这次抽中的概率为,若前一次抽中奖品,则这次抽中的概率为.记该顾客第n次摸球抽中奖品的概率为.(1)求的值,并探究数列的通项公式;(2)求该顾客第几次摸球抽中奖品的概率最大,请给出证明过程.【例题3】(2024·成都模拟)某公司为激励员工,在年会活动中,该公司的位员工通过摸球游戏抽奖,其游戏规则为:每位员工前面都有1个暗盒,第1个暗盒里有3个红球与1个白球.其余暗盒里都恰有2个红球与1个白球,这些球的形状大小都完全相同.第1位员工从第1个暗盒里取出1个球,并将这个球放入第2个暗盒里,第2位员工再从第2个暗盒里面取出1个球并放入第3个暗盒里,依次类推,第位员工再从第个暗盒里面取出1个球并放入第个暗盒里.第位员工从第个暗盒中取出1个球,游戏结束.若某员工取出的球为红球,则该员工获得奖金1000元,否则该员工获得奖金500元.设第位员工获得奖金为元.(1)求的概率;(2)求的数学期望,并指出第几位员工获得奖金额的数学期望最大.【例题4】(2024·安阳模拟)网球运动是一项激烈且耗时的运动,对于力量的消耗是很大的,这就需要网球运动员提高自己的耐力.耐力训练分为无氧和有氧两种训练方式.某网球俱乐部的运动员在某赛事前展开了一轮为期90天的封闭集训,在封闭集训期间每名运动员每天选择一种方式进行耐力训练.由训练计划知,在封闭集训期间,若运动员第天进行有氧训练,则第天进行有氧训练的概率为,第天进行无氧训练的概率为;若运动员第天进行无氧训练,则第天进行有氧训练的概率为,第天进行无氧训练的概率为.若运动员封闭集训的第1天进行有氧训练与无氧训练的概率相等.(1)封闭集训期间,记3名运动员中第2天进行有氧训练的人数为,求的分布列与数学期望;(2)封闭集训期间,记某运动员第天进行有氧训练的概率为,求.【例题5】(2024·保定模拟)从甲 乙 丙等5人中随机地抽取三个人去做传球训练.训练规则是确定一人第一次将球传出,每次传球时,传球者都等可能地将球传给另外两个人中的任何一人,每次必须将球传出.(1)记甲乙丙三人中被抽到的人数为随机变量,求的分布列;(2)若刚好抽到甲乙丙三个人相互做传球训练,且第1次由甲将球传出,记次传球后球在甲手中的概率为,①直接写出的值;②求与的关系式,并求.【训练1】(2019 新课标Ⅰ)为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为和,一轮试验中甲药的得分记为.(1)求的分布列;(2)若甲药、乙药在试验开始时都赋予4分,,1,,表示“甲药的累计得分为时,最终认为甲药比乙药更有效”的概率,则,,,2,,,其中,,.假设,.(ⅰ)证明:,1,2,,为等比数列;(ⅱ)求,并根据的值解释这种试验方案的合理性.【训练2】(2024·榆林模拟)为了避免就餐聚集和减少排队时间,某校开学后,食堂从开学第一天起,每餐只推出即点即取的米饭套餐和面食套餐. 已知某同学每天中午会在食堂提供的两种套餐中选择,已知他第一天选择米饭套餐的概率为,而前一天选择了米饭套餐后一天继续选择米饭套餐的概率为,前一天选择面食套餐后一天继续选择面食套餐的概率为,如此往复.(1)求该同学第二天中午选择米饭套餐的概率(2)记该同学第天选择米饭套餐的概率为(Ⅰ)证明:为等比数列;(Ⅱ)证明:当时,.【训练3】(2024·成都模拟)现有甲、乙两名篮球运动员进行投篮练习,甲每次投篮命中的概率为,乙每次投篮命中的概率为.(1)为了增加投篮练习的趣味性,甲、乙两人约定进行如下游戏:甲、乙两人同时投一次篮为一局比赛,若甲投进且乙未投进,则认定甲此局获胜;若甲未投进乙投进,则认定乙此局获胜;其它情况认定为平局,获胜者此局得1分,其它情况均不得分,当一人得分比另一人得分多3分时,游戏结束,且得分多者取得游戏的胜利.求甲恰在第五局结束时取得游戏胜利的概率.(2)投篮练习规定如下规则:甲、乙两人轮流投篮,若命中则此人继续投篮,若未命中则对方投篮,第一次投篮由甲完成,设为第次投篮由甲完成的概率.(i)求,,的值;(ii)求与的关系式,并求出.【训练4】(2024·潍坊模拟)现有甲、乙两个袋子,每个袋子中均装有大小、形状、质地完全相同的个黑球和个红球,若每次分别从两个袋子中随机摸出个球互相交换后放袋子中,重复进行次此操作.记第次操作后,甲袋子中红球的个数为.(1)求的分布列和数学期望;(2)求第次操作后,甲袋子中恰有个红球的概率.【训练5】(2024·曲靖模拟)某中学以学生为主体,以学生的兴趣为导向,注重培育学生广泛的兴趣爱好,开展了丰富多彩的社团活动,其中一项社团活动为《奇妙的化学》,注重培养学生的创新精神和实践能力.本社团在选拔赛阶段,共设两轮比赛.第一轮是实验操作,第二轮是基础知识抢答赛.第一轮给每个小组提供5个实验操作的题目,小组代表从中抽取2个题目,若每个题目的实验流程操作规范可得10分,否则得0分.(1)已知某小组会5个实验操作题目中的3个,求该小组在第一轮得20分的概率;(2)已知恰有甲、乙、丙、丁四个小组参加化学基础知识的抢答比赛,每一次由四个小组中的一个回答问题,无论答题对错,该小组回答后由其他小组抢答下一问题,且其他小组有相同的机会抢答下一问题.记第次回答的是甲的概率是,若.①求和;②写出与之间的关系式,并比较第9次回答的是甲和第10次回答的是甲的可能性的大小.【训练6】(2024·湖南模拟)中国乒乓球队是中国体育军团的王牌之师,屡次在国际大赛上争金夺银,被体育迷们习惯地称为“梦之队”.小明是一名乒乓球运动爱好者,为提高乒乓球水平,决定在假期针对乒乓球技术的五个基本因素:弧线、力量、速度、旋转和落点进行训练.假设小明每天进行多次分项(将五个因素分别对应五项,一次练一项)训练,为增加趣味性,计划每次(从第二次起)都是从上次未训练的四个项目中等可能地随机选一项训练.(1)若某天在五个项目中等可能地随机选一项开始训练,求第三次训练的是“弧线”的概率;(2)若某天仅进行了次训练,五个项目均有训练,且第次训练的是“旋转”,前后训练项不同视为不同的训练顺序,设变量为次训练中“旋转”项训练的次数,求的分布列及期望;(3)若某天规定第一次训练的是“力量”,从第二次起,后面训练项的选择服从上述计划的安排,设表示第次训练的是“力量”的概率,求的值.21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)21世纪教育网(www.21cnjy.com)思维拓展与数列结合的概率递推问题(马尔科夫链)【背景知识】俄国数学家Andrey Andreyevich Markov研究并提出一个用数学方法就能解释自然变化的一般规律模型,被命名为马尔科夫链(Markov Chain)。马尔科夫链为状态空间中经过从一个状态到另一个状态的转换的随机过程,该过程要求具备“无记忆性”,即下一状态的概率分布只能由当前状态决定,在时间序列中它前面的事件均与之无关。这种特定类型的“无记忆性”称作马尔可夫性质。【知识拓展】①转移概率:对于有限状态集合S,定义:P,=P(XX)为从状态i到状态广的转移概率。②马尔可夫链:若P(X4X,X1,X)=P(X时X)=P,即未来状态X+1只受当前状态Xn的影响,与之前的X,X-2,X无关.③完备事件组:如果样本空间2中一组事件组{4,A2,…A}符合下列两个条件:(1)AnA=0,i≠j,ij=1,2,n;(2)04=2则称{A,A2,…A}是2的一个完备事件组,也称是2的一个分割④全概率公式:设{4,A2,A,}是一个完备事件组,则有P(B)=∑P(A)P(B1A)⑤一维随机游走模型,即:设数轴上一个点,它的位置只能位于整点处,在时刻t=0时,位于点x=i(i∈N+),下一个时刻,它将以概率a或者B(a∈(0,1),a+B=1)向左或者向右平移一个单位.若记状态X,表示:在时刻t该点位于位置x=i(i∈N),那么由全概率公式可得:P(X)=P(X)P(XX)+P(X)P(X)另一方面,由于P(X4tX)=B,P(X4tX,)=a,代入上式可得:P=a·P,+B.P·进一步,我们假设在x=0与x=m(m>0,m∈N)处各有一个吸收壁,当点到达吸收壁时被吸收,不再游走.于是,P=0,P=1.随机游走模型是一个典型的马尔科夫过程.进一步,若点在某个位置后有三种情况:向左平移一个单位,其概率为,原地不动,其概率为b,向右平移一个单位,其概率为c,那么根据全概率公式可得:P=aP+bP+CP+【例题1】(2023新高考1卷)甲、乙两人投篮,每次由其中一人投篮,规则如下:若命中则此人继续投篮,若末命中则换为对方投篮.无论之前投篮情况如何,甲每次投篮的命中率均为0.6,乙每次投篮的命中率均为0.8.由抽签确定第1次投篮的人选,第1次投篮的人是甲、乙的概率各为0.5.(1)求第2次投篮的人是乙的概率:(2)求第i次投篮的人是甲的概率:(3)已知:若随机变量X,服从两点分布,且P(X,=)=1-P(X,=0)=gi=l,2n,则E∑X立9记前n次(即从第1次到第n次投篮)中甲投篮的次数为Y,求E(Y).【例题2】(2024·山东省实验中学模拟)某品牌女装专卖店设计摸球抽奖促销活动,每位顾客只用一个会员号登陆,每次消费都有一次随机摸球的机会.已知顾客第一次摸球抽中奖品的概率为;从第二次摸球开始,若前一次没抽中奖品,则这次抽中的概率为方,若前一次抽中奖品,则这次抽中的概率为;·记该顾客第n次摸球抽中奖品的概率为P.(1)求的值,并探究数列{P}的通项公式:(2)求该顾客第几次摸球抽中奖品的概率最大,请给出证明过程. 展开更多...... 收起↑ 资源列表 拓展 与数列结合的概率递推问题(马尔科夫链).docx 拓展 与数列结合的概率递推问题(马尔科夫链).pdf