资源简介 中小学教育资源及组卷应用平台专题04 因式分解和分式方程(易错必刷44题18种题型) 因式分解的意义 因式分解-运用公式法 提公因式法与公式法的综合运用 因式分解-十字相乘法等 分式有意义的条件 分式有意义的条件 分式的值 因式分解-提公因式法 因式分解-运用公式法 因式分解-分组分解法 因式分解的应用 分式的值为零的条件 分式的值为零的条件 分式的基本性质 分式的加减法 分式的化简求值 分式方程的解 解分式方程 分式方程的增根 分式方程的应用一.因式分解的意义(共5小题)1.若多项式x2﹣ax﹣1可分解为(x﹣2)(x+b),则a+b的值为( )A.2 B.1 C.﹣2 D.﹣1【答案】A【解答】解:∵(x﹣2)(x+b)=x2+bx﹣2x﹣2b=x2+(b﹣2)x﹣2b=x2﹣ax﹣1,∴b﹣2=﹣a,﹣2b=﹣1,∴b=0.5,a=1.5,∴a+b=2.故选:A.2.下列各式变形中,是因式分解的是( )A.a2﹣2ab+b2﹣1=(a﹣b)2﹣1B.2x2+2x=2x2(1+)C.(x+2)(x﹣2)=x2﹣4D.x4﹣1=(x2+1)(x+1)(x﹣1)【答案】D【解答】解:A a2﹣2ab+b2﹣1=(a﹣b)2﹣1中不是把多项式转化成几个整式积的形式,故A错误;B 2x2+2x=2x2(1+)中不是整式,故B错误;C (x+2)(x﹣2)=x2﹣4是整式乘法,故C错误;D x4﹣1=(x2+1)(x2﹣1)=(x2+1)(x+1)(x﹣1),故D正确.故选:D.3.对于①x﹣3xy=x(1﹣3y),②(x+3)(x﹣1)=x2+2x﹣3,从左到右的变形,表述正确的是( )A.都是因式分解B.都是乘法运算C.①是因式分解,②是乘法运算D.①是乘法运算,②是因式分解【答案】C【解答】解:①x﹣3xy=x(1﹣3y),从左到右的变形是因式分解;②(x+3)(x﹣1)=x2+2x﹣3,从左到右的变形是整式的乘法,不是因式分解;所以①是因式分解,②是乘法运算.故选:C.4.如果把多项式x2﹣8x+m分解因式得(x﹣10)(x+n),那么m= ﹣20 ,n= 2 .【答案】见试题解答内容【解答】解:根据题意得:x2﹣8x+m=(x﹣10)(x+n)=x2+(n﹣10)x﹣10n∴n﹣10=﹣8,﹣10n=m解得m=﹣20,n=2;故应填﹣20,2.5.仔细阅读下面的例题,并解答问题:例题:已知二次三项式x2﹣4x+m有一个因式是x+3,求另一个因式以及m的值.解法一:设另一个因式为x+n,得x2﹣4x+m=(x+3)(x+n)则x2﹣4x+m=x2+(n+3)x+3n,∴解得n=﹣7,m=﹣21.∴另一个因式为x﹣7,m的值为﹣21.解法二:设另一个因式为x+n,得x2﹣4x+m=(x+3)(x+n)∴当x=﹣3时,x2﹣4x+m=(x+3)(x+n)=0即(﹣3)2﹣4×(﹣3)+m=0,解得m=﹣21∴x2﹣4x+m=x2﹣4x﹣21=(x+3)(x﹣7)∴另一个因式为x﹣7,m的值为﹣21.问题:仿照以上一种方法解答下面问题.(1)若多项式x2﹣px﹣6分解因式的结果中有因式x﹣3,则实数p= 1 .(2)已知二次三项式2x2+3x﹣k有一个因式是2x+5,求另一个因式及k的值.【答案】见试题解答内容【解答】解:(1)设另一个因式为x+a,得x2﹣px﹣6=(x﹣3)(x+a)则x2﹣px﹣6=x2+(a﹣3)x﹣3a,∴,解得a=2,p=1.故答案为:1.(2)设另一个因式为(x+n),得2x2+3x﹣k=(2x+5)(x+n)则2x2+3x﹣k=2x2+(2n+5)x+5n∴,解得n=﹣1,k=5,∴另一个因式为(x﹣1),k的值为5.二.公因式(共1小题)6.多项式﹣5mx3+25mx2﹣10mx各项的公因式是( )A.5mx2 B.﹣5mx3 C.mx D.﹣5mx【答案】D【解答】解:﹣5mx3+25mx2﹣10mx各项的公因式是﹣5mx,故选:D.三.因式分解-提公因式法(共2小题)7.若长和宽分别是a,b的长方形的周长为10,面积为4,则a2b+ab2的值为( )A.14 B.16 C.20 D.40【答案】C【解答】解:∵长和宽分别是a,b的长方形的周长为10,面积为4,∴2(a+b)=10,ab=4,∴a+b=5,则a2b+ab2=ab(a+b)=20.故选:C.8.把﹣a(x﹣y)﹣b(y﹣x)+c(x﹣y)分解因式正确的结果是( )A.(x﹣y)(﹣a﹣b+c) B.(y﹣x)(a﹣b﹣c)C.﹣(x﹣y)(a+b﹣c) D.﹣(y﹣x)(a+b﹣c)【答案】B【解答】解:﹣a(x﹣y)﹣b(y﹣x)+c(x﹣y),=a(y﹣x)﹣b(y﹣x)﹣c(y﹣x),=(y﹣x)(a﹣b﹣c).故选:B.四.因式分解-运用公式法(共2小题)9.若4x2﹣(k﹣1)x+9能用完全平方公式因式分解,则k的值为 13或﹣11 .【答案】见试题解答内容【解答】解:∵4x2﹣(k﹣1)x+9是一个完全平方式,∴k﹣1=±12,解得:k=13或k=﹣11,故选:13或﹣11.10.分解因式:(4a+b)2﹣4(a+b)2.【答案】3(2a+b)(2a﹣b).【解答】解:(4a+b)2﹣4(a+b)2=(4a+b)2﹣(2a+2b)2=(4a+b+2a+2b)(4a+b﹣2a﹣2b)=(6a+3b)(2a﹣b)=3(2a+b)(2a﹣b).五.提公因式法与公式法的综合运用(共3小题)11.将a3b﹣ab进行因式分解,正确的是( )A.a(a2b﹣b) B.ab(a﹣1)2C.ab(a+1)(a﹣1) D.ab(a2﹣1)【答案】C【解答】解:a3b﹣ab=ab(a2﹣1)=ab(a+1)(a﹣1),故选:C.12.因式分解:(1)4m2n﹣8mn2﹣2mn(2)m2(m+1)﹣(m+1)(3)4x2y+12xy+9y(4)(x2﹣6)2+2(x2﹣6)﹣15.【答案】见试题解答内容【解答】解:(1)4m2n﹣8mn2﹣2mn=2mn(2m﹣4n﹣1);(2)m2(m+1)﹣(m+1)=(m+1)(m2﹣1)=(m+1)2(m﹣1);(3)4x2y+12xy+9y=y(4x2+12x+9)=y(2x+3)2;(4)(x2﹣6)2+2(x2﹣6)﹣15=(x2﹣6﹣3)(x2﹣6+5)=(x2﹣9)(x2﹣1)=(x+3)(x﹣3)(x+1)(x﹣1).13.先阅读下列材料,再解答下列问题:材料:因式分解:(x+y)2+2(x+y)+1解:将“x+y”看成整体,令x+y=A,则原式=A2+2A+1=(A+1)2再将“A”还原,得:原式=(x+y+1)2上述解题用到的是“整体思想”,整体思想是数学解题中常用的一种思想方法,请你解下列问题:(1)因式分解:9+6(x﹣y)+(x﹣y)2= (x﹣y+3)2 .(2)因式分解:(a+b)(a+b﹣8)+16.(3)证明:若n为正整数,则式子(n+1)(n+2)(n+3)(n+4)+1的值一定是某一个整数的平方.【答案】见试题解答内容【解答】解:(1)将“x﹣y”看成整体,令x﹣y=A,则原式=A2+6A+9=(A+3)2再将“A”还原,得:原式=(x﹣y+3)2故答案为:(x﹣y+3)2;(2)因式分解:(a+b)(a+b﹣8)+16.将“a+b”看成整体,令a+b=A,则原式=A(A﹣8)+16=A2﹣8A+16=(A﹣4)2再将“A”还原,得:原式=(a+b﹣4)2;(3)证明:(n+1)(n+2)(n+3)(n+4)+1=(n+1)(n+4) (n+3)(n+2)+1=(n2+5n+4)(n2+5n+6)+1令n2+5n=A,则原式=(A+4)(A+6)+1=A2+10A+25=(A+5)2=(n2+5n+5)2∵n为正整数,∴n2+5n+5是整数,∴式子(n+1)(n+2)(n+3)(n+4)+1的值是某一个整数的平方.六.因式分解-分组分解法(共1小题)14.已知整数a,b满足2ab+4a=b+3,则a+b的值是( )A.0或﹣3 B.1 C.2或3 D.﹣2【答案】A【解答】解:由2ab+4a=b+3,得:2ab+4a﹣b﹣2=1∴(2a﹣1)(b+2)=1,∵2a﹣1,b+2都为整数,∴或,解得或,∴a+b=0或﹣3.故选:A.七.因式分解-十字相乘法等(共2小题)15.若多项式2x2+ax﹣6能分解成两个一次因式的积,且其中一个一次因式2x﹣3,则a的值为( )A.1 B.5 C.﹣1 D.﹣5【答案】A【解答】解:∵多项式2x2+ax﹣6能分解成两个一次因式的积,且其中一个次因式2x﹣3,﹣6=﹣3×2.∴2x2+ax﹣6=(2x﹣3)(x+2)=2x2+x﹣6.∴a=1.故选A.16.若关于x的二次三项式x2+kx+b因式分解为(x﹣1)(x﹣3),则k+b的值为( )A.﹣1 B.1 C.﹣7 D.7【答案】A【解答】解:由题意得:x2+kx+b=(x﹣1)(x﹣3)=x2﹣4x+3,∴k=﹣4,b=3,则k+b=﹣4+3=﹣1.故选:A.八.因式分解的应用(共8小题)17.已知x2+2x﹣1=0,则x4﹣5x2+2x的值为( )A.0 B.﹣1 C.2 D.1【答案】A【解答】解:∵x2+2x﹣1=0,∴x2=1﹣2x,x4﹣5x2+2x=(x2)2﹣5x2+2x=(1﹣2x)2﹣5(1﹣2x)+2x=1﹣4x+4x2﹣5+10x+2x=4x2+8x﹣4=4(1﹣2x)+8x﹣4=4﹣8x+8x﹣4=0,故选:A.18.已知正数a,b满足a3b+ab3﹣2a2b+2ab2=7ab﹣8,则a2﹣b2=( )A.1 B.3 C.5 D.不能确定【答案】B【解答】解:∵a3b+ab3﹣2a2b+2ab2=7ab﹣8, ab(a2+b2)﹣2ab(a﹣b)=7ab﹣8, ab(a2﹣2ab+b2)﹣2ab(a﹣b)+2a2b2﹣7ab+8=0, ab(a﹣b)2﹣2ab(a﹣b)+2a2b2﹣7ab+8=0, ab[(a﹣b)2﹣2(a﹣b)+1]+2(a2b2﹣4ab+4)=0, ab(a﹣b﹣1)2+2(ab﹣2)2=0,∵a、b均为正数,∴ab>0,∴a﹣b﹣1=0,ab﹣2=0,即a﹣b=1,ab=2,解方程,解得a=2、b=1,a=﹣1、b=﹣2(不合题意,舍去),∴a2﹣b2=4﹣1=3.故选:B.19.已知496﹣1可以被60到70之间的某两个整数整除,则这两个数是( )A.61,63 B.63,65 C.65,67 D.63,64【答案】B【解答】解:利用平方式公式进行分解该数字:496﹣1=(448+1)(448﹣1)=(448+1)(424+1)(424﹣1)=(448+1)(424+1)(412+1)(46+1)(43+1)(43﹣1)=(448+1)(424+1)(412+1)(46+1)×65×63故选:B.20.已知x2+x=1,那么x4+2x3﹣x2﹣2x+2020的值为( )A.2019 B.2020 C.2021 D.2022【答案】A【解答】解:∵x2+x=1,∴x4+2x3﹣x2﹣2x+2020=x4+x3+x3﹣x2﹣2x+2020=x2(x2+x)+x3﹣x2﹣2x+2020=x2+x3﹣x2﹣2x+2020=x(x2+x)﹣x2﹣2x+2020=x﹣x2﹣2x+2020=﹣x2﹣x+2020=﹣(x2+x)+2020=﹣1+2020=2019.故选:A.21.已知x2+x+1=0,则x2019+x2018+x2017+…+x+1的值是( )A.0 B.1 C.﹣1 D.2【答案】B【解答】解:原式=(x2019+x2018+x2017)+(x2016+x2015+x2014)+ +(x3+x2+x)+1=x2017(x2+x+1)+x2014(x2+x+1)+ +x(x2+x+1)+1=0+0+0+ +0+1=1.故选:B.22.已知a+b=2,则a2﹣b2+4b的值为 4 .【答案】见试题解答内容【解答】解:∵a+b=2,∴a2﹣b2+4b,=(a+b)(a﹣b)+4b,=2(a﹣b)+4b,=2a+2b,=2(a+b),=2×2,=4.故答案为:4.23.a,b,c是△ABC的三边,若(a2+b2)(a﹣b)=c2(a﹣b),则△ABC的形状是 等腰或直角 三角形.【答案】见试题解答内容【解答】解:∵(a2+b2)(a﹣b)=c2(a﹣b)∴(a﹣b)(a2+b2﹣c2)=0∴a﹣b=0或a2+b2﹣c2=0,①当a﹣b=0时,解得:a=b,此时△ABC是等腰三角形;②直角三角形,理由如下,如图所示:在△ABC中,设AB=c,AC=b,BC=a,∠ACB=90°,四个全等直角三角拼接成边长为c的大正方形,边长为a﹣b的小正方形,由面积的和差得:S正方形ABMN=S正方形CDEF+4 S△ABC,∴=a2﹣2ab+b2+2ab=a2+b2∴a2+b2﹣c2=0即△ABC是直角三角形;故答案为等腰或直角.24.阅读材料:若m2﹣2mn+2n2﹣4n+4=0,求m,n的值.解:∵m2﹣2mn+2n2﹣4n+4=0,∴(m2﹣2mn+n2)+(n2﹣4n+4)=0,∴(m﹣n)2+(n﹣2)2=0,∴(m﹣n)2=0,(n﹣2)2=0,∴n=2,m=2.根据你的观察,探究下面的问题:(1)a2+b2+6a﹣2b+10=0,则a= ﹣3 ,b= 1 .(2)已知x2+2y2﹣2xy+8y+16=0,求xy的值.(3)已知△ABC的三边长a、b、c都是正整数,且满足2a2+b2﹣4a﹣8b+18=0,求△ABC的周长.【答案】见试题解答内容【解答】(1)解:由:a2+b2+6a﹣2b+10=0,得:(a+3)2+(b﹣1)2=0,∵(a+3)2≥0,(b﹣1)2≥0,∴a+3=0,b﹣1=0,∴a=﹣3,b=1.故答案为:﹣3; 1.(2)由x2+2y2﹣2xy+8y+16=0得:(x﹣y)2+(y+4)2=0∴x﹣y=0,y+4=0,∴x=y=﹣4∴xy=16.答:xy的值为16.(3)由2a2+b2﹣4a﹣8b+18=0得:2(a﹣1)2+(b﹣4)2=0,∴a﹣1=0,b﹣4=0,∴a=1,b=4;已知△ABC的三边长a、b、c都是正整数,由三角形三边关系知c=4,∴△ABC的周长为9.九.分式有意义的条件(共1小题)25.当x= 0或1 时,分式无意义.【答案】见试题解答内容【解答】解:根据题意得,x(x﹣1)=0,解得x1=0,x2=1.故答案为:0或1.一十.分式的值为零的条件(共1小题)26.如果分式的值为0,那么x的值为( )A.﹣1 B.1 C.﹣1或1 D.1或0【答案】B【解答】解:根据题意,得|x|﹣1=0且x+1≠0,解得,x=1.故选:B.一十一.分式的值(共1小题)27.若1<x<2,则的值是( )A.﹣3 B.﹣1 C.2 D.1【答案】D【解答】解:∵1<x<2,∴x﹣2<0,x﹣1>0,x>0,∴原式=﹣1﹣(﹣1)+1=1,故选:D.一十二.分式的基本性质(共3小题)28.若=2,则= .【答案】见试题解答内容【解答】解:由=2,得x+y=2xy则===.故答案为.29.若把分式中的x和y都变为原来的3倍,那么分式的值( )A.变为原来的3倍 B.变为原来的C.变为原来的 D.不变【答案】B【解答】解:用3x和3y代替式子中的x和y得:,则分式的值变为原来的.故选:B.30.阅读下列材料:通过小学的学习我们知道,分数可分为“真分数”和“假分数”,而假分数都可化为带分数.如:.我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.如,这样的分式就是假分式;,这样的分式就是真分式.类似地,假分式也可以化为带分式(即:整式与真分式的和的形式).如:,;解决下列问题:(1)分式是 真 分式(填“真”或“假”);(2)将假分式化为带分式;(3)如果x为整数,分式的值为整数,求所有符合条件的x的值.【答案】(1)真;(2)x﹣2+;(3)﹣1或﹣3或11或﹣15.【解答】解:(1)分式是真分式;故答案为:真;(2);(3)原式=,∵分式的值为整数,∴x+2=±1或±13,∴x=﹣1或﹣3或11或﹣15.一十三.分式的加减法(共2小题)31.如图,若x为正整数,则表示﹣的值的点落在( )A.段① B.段② C.段③ D.段④【答案】B【解答】解∵﹣=﹣=1﹣=又∵x为正整数,∴≤<1故表示﹣的值的点落在②故选:B.32.分式中,在分子、分母都是整式的情况下,如果分子的次数低于分母的次数,称这样的分式为真分式.例如,分式,是真分式.如果分子的次数不低于分母的次数,称这样的分式为假分式.例如,分式,是假分式.一个假分式可以化为一个整式与一个真分式的和.例如,.(1)将假分式化为一个整式与一个真分式的和;(2)若分式的值为整数,求x的整数值.【答案】见试题解答内容【解答】解:(1)由题可得,==2﹣;(2)===x﹣1+,∵分式的值为整数,且x为整数,∴x+1=±1,∴x=﹣2或0.一十四.分式的化简求值(共1小题)33.先化简,再求值:,然后从0,1,2,3四个数中选择一个恰当的数代入求值.【答案】,﹣.【解答】解:原式=(﹣) = =,∵x≠3,0,2,∴当x=1时,原式==﹣.一十五.分式方程的解(共4小题)34.若关于x的分式方程﹣1=无解,则m的值 ﹣或﹣ .【答案】见试题解答内容【解答】解:方程两边同乘x(x﹣3),得x(2m+x)﹣(x﹣3)x=2(x﹣3)(2m+1)x=﹣6x=﹣,当2m+1=0,方程无解,解得m=﹣.x=3时,m=﹣,x=0时,m无解.故答案为:﹣或﹣.35.若方程的根为正数,则k的取值范围是( )A.k<2 B.﹣3<k<2C.k≠﹣3 D.k<2且 k≠﹣3【答案】A【解答】解:方程两边都乘以(x+3)(x+k)得:3(x+k)=2(x+3),3x+3k=2x+6,3x﹣2x=6﹣3k,x=6﹣3k,∵方程的根为正数,∴6﹣3k>0,解得:k<2,∵分式方程的解为正数,x+3≠0,x+k≠0,x≠﹣3,k≠3,即k的范围是k<2,故选:A.36.已知关于x的分式方程=1的解是非负数,则m的取值范围是 m≥2且m≠3 .【答案】见试题解答内容【解答】解:去分母得,m﹣3=x﹣1,解得x=m﹣2,由题意得,m﹣2≥0,解得,m≥2,x=1是分式方程的增根,所有当x=1时,方程无解,即m≠3,所以m的取值范围是m≥2且m≠3.故答案为:m≥2且m≠3.37.若关于x的方程有正整数解,且关于x的不等式组有且只有3个整数解,则符合条件的所有整数a的和为 ﹣4 .【答案】﹣4.【解答】解:方程的解为x=,根据题意,得,解得a<1,a为奇数且a≠﹣5.∵不等式的解集为﹣5≤x<,且只有3个整数解,∴﹣3<≤﹣2,解得﹣7<a≤1.综上:﹣7<a<1,a为奇数且a≠﹣5,∴a=﹣3,﹣1.∵﹣3﹣1=﹣4,∴符合条件的所有整数a的和为﹣4故答案为:﹣4.一十六.解分式方程(共2小题)38.解方程:(1);(2).【答案】(1)无解;(2)x=﹣2.【解答】解:(1),原分式方程可化为:+2=,﹣3+2(x﹣4)=1﹣x,﹣3+2x﹣8=1﹣x,2x+x=1+8+3,3x=12,x=4,检验:把x=4代入(x﹣4)=0,∴原分式方程无解;(2),原分式方程可化为:﹣1=,1+4x﹣(x﹣2)=﹣3,1+4x﹣x+2=﹣3,4x﹣x=﹣3﹣1﹣2,3x=﹣6,x=﹣2,检验:把x=﹣2代入(x﹣2)≠0,∴原分式方程解为x=﹣2.39.代数式的值比代数式的值大4,则x= 2 .【答案】见试题解答内容【解答】解:由题意得:﹣=4,x+2=4(2x﹣3),解得:x=2,检验:当x=2时,2x﹣3≠0,∴x=2是原方程的根,故答案为:2.一十七.分式方程的增根(共1小题)40.若方程=1有增根,则它的增根是( )A.0 B.1 C.﹣1 D.1和﹣1【答案】B【解答】解:方程两边都乘(x+1)(x﹣1),得6﹣m(x+1)=(x+1)(x﹣1),由最简公分母(x+1)(x﹣1)=0,可知增根可能是x=1或﹣1.当x=1时,m=3,当x=﹣1时,得到6=0,这是不可能的,所以增根只能是x=1.故选:B.一十八.由实际问题抽象出分式方程(共1小题)41.在临桂新区建设中,需要修一段全长2400m的道路,为了尽量减少施工对县城交通工具所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度.若设原计划每天修路xm,则根据题意可得方程 .【答案】见试题解答内容【解答】解:原计划用的时间为:,实际用的时间为:.所列方程为:,故答案为:.一十九.分式方程的应用(共3小题)42.甲、乙两人加工同一种零件,甲每天加工的数量是乙每天加工数量的1.5倍,两人各加工600个这种零件,甲比乙少用5天.(1)求甲、乙两人每天各加工多少个这种零件?(2)已知甲、乙两人加工这种零件每天的加工费分别是150元和120元,现有3000个这种零件的加工任务,甲单独加工一段时间后另有安排,剩余任务由乙单独完成.如果总加工费不超过7800元,那么甲至少加工了多少天?【答案】见试题解答内容【解答】解:(1)设乙每天加工x个零件,则甲每天加工1.5x个零件,由题意得:=+5化简得600×1.5=600+5×1.5x解得x=40∴1.5x=60经检验,x=40是分式方程的解且符合实际意义.答:甲每天加工60个零件,乙每天加工,40个零件.(2)设甲加工了a天,乙加工了b天,则由题意得,由①得b=75﹣1.5a ③将③代入②得150a+120(75﹣1.5a)≤7800解得a≥40,当a=40时,y=15,符合问题的实际意义.答:甲至少加工了40天.43.在“扶贫攻坚”活动中,某单位计划选购甲、乙两种物品慰问贫困户.已知甲物品的单价比乙物品的单价高10元,若用500元单独购买甲物品与450元单独购买乙物品的数量相同.①请问甲、乙两种物品的单价各为多少?②如果该单位计划购买甲、乙两种物品共55件,总费用不少于5000元且不超过5050元,通过计算得出共有几种选购方案?【答案】见试题解答内容【解答】解:①设乙种物品单价为x元,则甲种物品单价为(x+10)元,由题意得:=解得x=90经检验,x=90符合题意∴甲种物品的单价为100元,乙种物品的单价为90元.②设购买甲种物品y件,则乙种物品购进(55﹣y)件由题意得:5000≤100y+90(55﹣y)≤5050解得5≤y≤10∴共有6种选购方案.44.某项工程,乙队单独完成所需天数是甲队单独完成所需天数的1.5倍;若由甲队先做10天,剩下的工程再由甲、乙两队合作30天刚好如期完成.(1)求甲、乙两队单独完成这项工程各需多少天?(2)已知甲队每天的施工费用为2.5万元,乙队每天的施工费用为2万元,工程预算的施工费用为160万元.①若在甲、乙工程队工作效率不变的情况下使施工时间最短,问安排预算的施工费用是否够用?若不够用,需追加预算多少万元?②若要求施工总费用不超预算又要如期完工,问甲工程队至少需要施工几天?【答案】见试题解答内容【解答】解:(1)设甲队单独完成这项工程需要x天,则乙队单独完成这项工程需要1.5x天.根据题意,得:(10+30)+×30=1,解得 x=60.经检验,x=60是原方程的根.∴1.5x=60×1.5=90.答:甲、乙两队单独完成这项工程分别需60天和90天.(2)①设甲、乙两队合作完成这项工程需要y天,(+)y=1,解得:y=36,36×(2.5+2)=162(万元),∵162>160,∴不够,需追加162﹣160=2(万元),答:不够用,需追加预算2万元;②甲工程队需要施工a天,乙工程队需要施工b天,根据题意得:,由①得:2b=180﹣3a③,把③代入②得:2.5a+180﹣3a≤160,a≥40,∴甲工程队至少需要施工40天.21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台专题04 因式分解和分式方程(易错必刷44题18种题型) 因式分解的意义 因式分解-运用公式法 提公因式法与公式法的综合运用 因式分解-十字相乘法等 分式有意义的条件 分式有意义的条件 分式的值 因式分解-提公因式法 因式分解-运用公式法 因式分解-分组分解法 因式分解的应用 分式的值为零的条件 分式的值为零的条件 分式的基本性质 分式的加减法 分式的化简求值 分式方程的解 解分式方程 分式方程的增根 分式方程的应用一.因式分解的意义(共5小题)1.若多项式x2﹣ax﹣1可分解为(x﹣2)(x+b),则a+b的值为( )A.2 B.1 C.﹣2 D.﹣12.下列各式变形中,是因式分解的是( )A.a2﹣2ab+b2﹣1=(a﹣b)2﹣1B.2x2+2x=2x2(1+)C.(x+2)(x﹣2)=x2﹣4D.x4﹣1=(x2+1)(x+1)(x﹣1)3.对于①x﹣3xy=x(1﹣3y),②(x+3)(x﹣1)=x2+2x﹣3,从左到右的变形,表述正确的是( )A.都是因式分解B.都是乘法运算C.①是因式分解,②是乘法运算D.①是乘法运算,②是因式分解4.如果把多项式x2﹣8x+m分解因式得(x﹣10)(x+n),那么m= ,n= .5.仔细阅读下面的例题,并解答问题:例题:已知二次三项式x2﹣4x+m有一个因式是x+3,求另一个因式以及m的值.解法一:设另一个因式为x+n,得x2﹣4x+m=(x+3)(x+n)则x2﹣4x+m=x2+(n+3)x+3n,∴解得n=﹣7,m=﹣21.∴另一个因式为x﹣7,m的值为﹣21.解法二:设另一个因式为x+n,得x2﹣4x+m=(x+3)(x+n)∴当x=﹣3时,x2﹣4x+m=(x+3)(x+n)=0即(﹣3)2﹣4×(﹣3)+m=0,解得m=﹣21∴x2﹣4x+m=x2﹣4x﹣21=(x+3)(x﹣7)∴另一个因式为x﹣7,m的值为﹣21.问题:仿照以上一种方法解答下面问题.(1)若多项式x2﹣px﹣6分解因式的结果中有因式x﹣3,则实数p= .(2)已知二次三项式2x2+3x﹣k有一个因式是2x+5,求另一个因式及k的值.二.公因式(共1小题)6.多项式﹣5mx3+25mx2﹣10mx各项的公因式是( )A.5mx2 B.﹣5mx3 C.mx D.﹣5mx三.因式分解-提公因式法(共2小题)7.若长和宽分别是a,b的长方形的周长为10,面积为4,则a2b+ab2的值为( )A.14 B.16 C.20 D.408.把﹣a(x﹣y)﹣b(y﹣x)+c(x﹣y)分解因式正确的结果是( )A.(x﹣y)(﹣a﹣b+c) B.(y﹣x)(a﹣b﹣c)C.﹣(x﹣y)(a+b﹣c) D.﹣(y﹣x)(a+b﹣c)四.因式分解-运用公式法(共2小题)9.若4x2﹣(k﹣1)x+9能用完全平方公式因式分解,则k的值为 .10.分解因式:(4a+b)2﹣4(a+b)2.五.提公因式法与公式法的综合运用(共3小题)11.将a3b﹣ab进行因式分解,正确的是( )A.a(a2b﹣b) B.ab(a﹣1)2C.ab(a+1)(a﹣1) D.ab(a2﹣1)12.因式分解:(1)4m2n﹣8mn2﹣2mn(2)m2(m+1)﹣(m+1)(3)4x2y+12xy+9y(x2﹣6)2+2(x2﹣6)﹣15.13.先阅读下列材料,再解答下列问题:材料:因式分解:(x+y)2+2(x+y)+1解:将“x+y”看成整体,令x+y=A,则原式=A2+2A+1=(A+1)2再将“A”还原,得:原式=(x+y+1)2上述解题用到的是“整体思想”,整体思想是数学解题中常用的一种思想方法,请你解下列问题:(1)因式分解:9+6(x﹣y)+(x﹣y)2= .(2)因式分解:(a+b)(a+b﹣8)+16.(3)证明:若n为正整数,则式子(n+1)(n+2)(n+3)(n+4)+1的值一定是某一个整数的平方.六.因式分解-分组分解法(共1小题)14.已知整数a,b满足2ab+4a=b+3,则a+b的值是( )A.0或﹣3 B.1 C.2或3 D.﹣2七.因式分解-十字相乘法等(共2小题)15.若多项式2x2+ax﹣6能分解成两个一次因式的积,且其中一个一次因式2x﹣3,则a的值为( )A.1 B.5 C.﹣1 D.﹣516.若关于x的二次三项式x2+kx+b因式分解为(x﹣1)(x﹣3),则k+b的值为( )A.﹣1 B.1 C.﹣7 D.7八.因式分解的应用(共8小题)17.已知x2+2x﹣1=0,则x4﹣5x2+2x的值为( )A.0 B.﹣1 C.2 D.118.已知正数a,b满足a3b+ab3﹣2a2b+2ab2=7ab﹣8,则a2﹣b2=( )A.1 B.3 C.5 D.不能确定19.已知496﹣1可以被60到70之间的某两个整数整除,则这两个数是( )A.61,63 B.63,65 C.65,67 D.63,6420.已知x2+x=1,那么x4+2x3﹣x2﹣2x+2020的值为( )A.2019 B.2020 C.2021 D.202221.已知x2+x+1=0,则x2019+x2018+x2017+…+x+1的值是( )A.0 B.1 C.﹣1 D.222.已知a+b=2,则a2﹣b2+4b的值为 .23.a,b,c是△ABC的三边,若(a2+b2)(a﹣b)=c2(a﹣b),则△ABC的形状是 三角形.24.阅读材料:若m2﹣2mn+2n2﹣4n+4=0,求m,n的值.解:∵m2﹣2mn+2n2﹣4n+4=0,∴(m2﹣2mn+n2)+(n2﹣4n+4)=0,∴(m﹣n)2+(n﹣2)2=0,∴(m﹣n)2=0,(n﹣2)2=0,∴n=2,m=2.根据你的观察,探究下面的问题:(1)a2+b2+6a﹣2b+10=0,则a= ,b= .(2)已知x2+2y2﹣2xy+8y+16=0,求xy的值.(3)已知△ABC的三边长a、b、c都是正整数,且满足2a2+b2﹣4a﹣8b+18=0,求△ABC的周长.九.分式有意义的条件(共1小题)25.当x= 时,分式无意义.一十.分式的值为零的条件(共1小题)26.如果分式的值为0,那么x的值为( )A.﹣1 B.1 C.﹣1或1 D.1或0一十一.分式的值(共1小题)27.若1<x<2,则的值是( )A.﹣3 B.﹣1 C.2 D.1一十二.分式的基本性质(共3小题)28.若=2,则= .29.若把分式中的x和y都变为原来的3倍,那么分式的值( )A.变为原来的3倍 B.变为原来的C.变为原来的 D.不变30.阅读下列材料:通过小学的学习我们知道,分数可分为“真分数”和“假分数”,而假分数都可化为带分数.如:.我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.如,这样的分式就是假分式;,这样的分式就是真分式.类似地,假分式也可以化为带分式(即:整式与真分式的和的形式).如:,;解决下列问题:(1)分式是 分式(填“真”或“假”);(2)将假分式化为带分式;(3)如果x为整数,分式的值为整数,求所有符合条件的x的值.一十三.分式的加减法(共2小题)31.如图,若x为正整数,则表示﹣的值的点落在( )A.段① B.段② C.段③ D.段④32.分式中,在分子、分母都是整式的情况下,如果分子的次数低于分母的次数,称这样的分式为真分式.例如,分式,是真分式.如果分子的次数不低于分母的次数,称这样的分式为假分式.例如,分式,是假分式.一个假分式可以化为一个整式与一个真分式的和.例如,.(1)将假分式化为一个整式与一个真分式的和;(2)若分式的值为整数,求x的整数值.一十四.分式的化简求值(共1小题)33.先化简,再求值:,然后从0,1,2,3四个数中选择一个恰当的数代入求值.一十五.分式方程的解(共4小题)34.若关于x的分式方程﹣1=无解,则m的值 .35.若方程的根为正数,则k的取值范围是( )A.k<2 B.﹣3<k<2C.k≠﹣3 D.k<2且 k≠﹣336.已知关于x的分式方程=1的解是非负数,则m的取值范围是 .37.若关于x的方程有正整数解,且关于x的不等式组有且只有3个整数解,则符合条件的所有整数a的和为 .一十六.解分式方程(共2小题)38.解方程:(1); (2).39.代数式的值比代数式的值大4,则x= .一十七.分式方程的增根(共1小题)40.若方程=1有增根,则它的增根是( )A.0 B.1 C.﹣1 D.1和﹣1十八.由实际问题抽象出分式方程(共4小题)41.在临桂新区建设中,需要修一段全长2400m的道路,为了尽量减少施工对县城交通工具所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度.若设原计划每天修路xm,则根据题意可得方程 .42.甲、乙两人加工同一种零件,甲每天加工的数量是乙每天加工数量的1.5倍,两人各加工600个这种零件,甲比乙少用5天.(1)求甲、乙两人每天各加工多少个这种零件?(2)已知甲、乙两人加工这种零件每天的加工费分别是150元和120元,现有3000个这种零件的加工任务,甲单独加工一段时间后另有安排,剩余任务由乙单独完成.如果总加工费不超过7800元,那么甲至少加工了多少天?43.在“扶贫攻坚”活动中,某单位计划选购甲、乙两种物品慰问贫困户.已知甲物品的单价比乙物品的单价高10元,若用500元单独购买甲物品与450元单独购买乙物品的数量相同.①请问甲、乙两种物品的单价各为多少?②如果该单位计划购买甲、乙两种物品共55件,总费用不少于5000元且不超过5050元,通过计算得出共有几种选购方案?44.某项工程,乙队单独完成所需天数是甲队单独完成所需天数的1.5倍;若由甲队先做10天,剩下的工程再由甲、乙两队合作30天刚好如期完成.(1)求甲、乙两队单独完成这项工程各需多少天?(2)已知甲队每天的施工费用为2.5万元,乙队每天的施工费用为2万元,工程预算的施工费用为160万元.①若在甲、乙工程队工作效率不变的情况下使施工时间最短,问安排预算的施工费用是否够用?若不够用,需追加预算多少万元?②若要求施工总费用不超预算又要如期完工,问甲工程队至少需要施工几天?21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)21世纪教育网(www.21cnjy.com) 展开更多...... 收起↑ 资源列表 【北师大版八下数学期末复习必刷题】专题04 因式分解、分式和分式方程(考题猜想 易错必刷44题18种题型)(原卷版).docx 【北师大版八下数学期末复习必刷题】专题04 因式分解、分式和分式方程(考题猜想 易错必刷44题18种题型)(解析版).docx