资源简介 1 光合作用过程中,ATP和ADP在叶绿体中的移动方向不可逆光合作用中,ATP是光反应阶段的产物,为暗反应阶段C3的还原过程供能。因此,ATP在叶绿体中 从光反应的场所(叶绿体类囊体薄膜)向暗反应的场所(叶绿体基质)中移动。而ADP的情况恰好相反, 它是在暗反应阶段由于ATP水解给C3的还原供能时 形成的,在光反应阶段合成ATP时被消耗,所以ADP 是从暗反应场所向光反应场所移动。2 物质跨膜运输方向的不可逆性生物膜对物质的通过具有选择透过性,其中小分 子物质和一些无机盐离子是通过被动运输或主动运输实现的。被动运输由高浓度一侧向低浓度一侧借助于浓度差运输。其中,自由扩散不需要载体协助,也不需要消耗细胞代谢提供的能量,而协助扩散虽然也不需要消耗细胞代谢提供的能量,但需要载体蛋白的协助。即自由扩散和协助扩散(易化扩散)的方向是由高浓度向低浓度运输,如水分子、气体分子、酒精、甘油等的 跨膜运输。主动运输是物质由低浓度向高浓度一侧的运输,既需要载体蛋白的协助,又需要消耗细胞代谢提供的能量。如K+,Na+,Ca2+,氨基酸等物质跨膜运输的方向一般是由低浓度向高浓度一侧运输。动植物细胞在细胞外溶液的浓度小于细胞内溶液浓度时,细胞吸水;而当细胞外溶液浓度大于细胞内溶液浓度时,细胞会失水。3 细胞分化的不可逆性细胞分化是生物在个体发育过程中,由一个或一种细胞增殖后产生的后代,在形态结构、生理功能上 发生稳定性差异的过程。细胞分化的本质是基因在 不同的时间和空间选择性表达的结果。一般来说,生 物体中的细胞分化是一个不可逆的过程,即分化的细 胞会一直保持分化状态直到细胞死亡。而在离体条 件下,高度分化的细胞可以脱分化而表现出全能性, 恢复分裂能力,如植物组织培养。4 生物进化的方向不可逆性生物的进化是一个由简单到复杂、由低等向高 等、由水生向陆生的自然选择发展的过程。现代生物进化理论认为:种群是生物进化的基本单位,生物进 化的实质是自然选择使种群基因频率定向改变,使生物朝着一定方向不断进化。自然选择的方向又是由 生物生存的环境决定的。生物的进化具有时间和空 间上的不可逆性。5 兴奋在两神经元之间传递及在反射弧上传递的不可逆性兴奋在神经元之间的传递是通过突触进行的,由 于神经递质储存于突触小体的突触小泡(也叫突触囊泡)中,且其特异性受体只存在于突触后膜。因此神 经递质只能由突触前膜释放,通过突触间隙作用于突触后膜,进而引起突触后膜电位的变化,使下一个神 经元兴奋或抑制。由此可见,兴奋在突触处的传递是 单向的、不可逆的过程。由于在突触处的传递是单向 的,因此在整个反射弧上的传递也是单向的。6 生长素极性运输的不可逆性生长素在植物胚芽鞘、幼根、幼芽的薄壁细胞之 间的短距离运输是单方向的极性运输。生长素的极性运输是指生长素只能从植物形态学的上端向形态学的下端运输,不能颠倒。这是一种需要载体的主动运输过程。但在成熟的植物组织中,生长素的运输却是非极性运输。7 捕食关系中及生态系统中能量流动方向的不可逆性 食物链中,具有捕食关系的捕食者和被捕食者的关系是长期自然选择的结果,是不可逆转的。例如, 狼捕食羊,但羊不能捕食狼。生态系统的能量流动是单向的,即生态系统中能 量只能从第一营养级流向第二营养级,再依次流向后面的各个营养级,不能逆向流动。这是由生物长期进化所形成的营养结构决定的,即食物链上生物的捕食与被捕食关系是不可逆转的。名词:1、向性运动:是植物体受到单一方向的外界刺激(如光、重力等)而引起的定向运动。2、感性运动:由没有一定方向性的外界刺激(如光暗转变、触摸等)而引起的局部运动,外界刺激的方向与感性运动的方向无关。3、激素的特点:①量微而生理作用显著;②其作用缓慢而持久。激素包括植物激素和动物激素。植物激素:植物体内合成的、从产生部位运到作用部位,并对植物体的生命活动产生显著调节作用的微量有机物;动物激素:存在动物体内,产生和分泌激素的器官称为内分泌腺,内分泌腺为无管腺,动物激素是由循环系统,通过体液传递至各细胞,并产生生理效应的。4、胚芽鞘:单子叶植物胚芽外的锥形套状物。胚芽鞘为胚体的第一片叶,有保护胚芽中更幼小的叶和生长锥的作用。胚芽鞘分为胚芽鞘的尖端和胚芽鞘的下部,胚芽鞘的尖端是产生生长素和感受单侧光刺激的部位和胚芽鞘的下部,胚芽鞘下面的部分是发生弯曲的部位。5、琼脂:能携带和传送生长素的作用;云母片是生长素不能穿过的。6、生长素的横向运输:发生在胚芽鞘的尖端,单侧光刺激胚芽鞘的尖端,会使生长素在胚芽鞘的尖端发生从向光一侧向背光一侧的运输,从而使生长素在胚芽鞘的尖端背光一侧生长素分布多。7、生长素的竖直向下运输:生长素从胚芽鞘的尖端竖直向胚芽鞘下面的部分的运输。8、生长素对植物生长影响的两重性:这与生长素的浓度高低和植物器官的种类等有关。一般说,低浓度范围内促进生长,高浓度范围内抑制生长。9、顶端优势:植物的顶芽优先生长而侧芽受到抑制的现象。由于顶芽产生的生长素向下运输,大量地积累在侧芽部位,使这里的生长素浓度过高,从而使侧芽的生长受到抑制的缘故。解出方法为:摘掉顶芽。顶端优势的原理在农业生产实践中应用的实例是棉花摘心。10、无籽番茄(黄瓜、辣椒等):在没有受粉的番茄(黄瓜、辣椒等)雌蕊柱头上涂上一定浓度的生长素溶液可获得无籽果实。要想没有授粉,就必须在花蕾期进行,因番茄的花是两性花,会自花传粉,所以还必须去掉雄蕊,来阻止传粉和受精的发生。无籽番茄体细胞的染色体数目为2N。语句:1、生长素的发现:(1)达尔文实验过程:A单侧光照、胚芽鞘向光弯曲;B单侧光照去掉尖端的胚芽鞘,不生长也不弯曲;C单侧光照尖端罩有锡箔小帽的胚芽鞘,胚芽鞘直立生长;单侧光照胚芽鞘尖端仍然向光生长。——达尔文对实验结果的认识:胚芽鞘尖端可能产生了某种物质,能在单侧光照条件下影响胚芽鞘的生长。(2)温特实验:A把放过尖端的琼脂小块,放在去掉尖端的胚芽鞘切面的一侧,胚芽鞘向对侧弯曲生长;B把未放过尖端的琼脂小块,放在去掉尖端的胚芽鞘切面的一侧,胚芽鞘不生长不弯曲。——温特实验结论:胚芽鞘尖端产生了某种物质,并运到尖端下部促使某些部分生长。(3)郭葛结论:分离出此物质,经鉴定是吲哚乙酸,因能促进生长,故取名为“生长素”。2、生长素的产生、分布和运输:成分是吲哚乙酸,生长素是在尖端(分生组织)产生的,合成不需要光照,运输方式是主动运输,生长素只能从形态学上端运往下端(如胚芽鞘的尖端向下运输,顶芽向侧芽运输),而不能反向进行。在进行极性运输的同时,生长素还可作一定程度的横向运输。3、生长素的作用:a、两重性:对于植物同一器官而言,低浓度的生长素促进生长,高浓度的生长素抑制生长。浓度的高低是以生长素的最适浓度划分的,低于最适浓度为“低浓度”,高于最适浓度为“高浓度”。在低浓度范围内,浓度越高,促进生长的效果越明显;在高浓度范围内,浓度越高,对生长的抑制作用越大。b、同一株植物的不同器官对生长素浓度的反应不同:根、芽、茎最适生长素浓度分别为10-10、10-8、10-4(mol/L)。4、生长素类似物的应用:a、在低浓度范围内:促进扦插枝条生根----用一定浓度的生长素类似物溶液浸泡不易生根的枝条,可促进枝条生根成活;促进果实发育;防止落花落果。b、在高浓度范围内,可以作为锄草剂。c、果实由子房发育而成,发育中需要生长素促进,而生长素来自正在发育着的种子。5、赤霉素、细胞分裂素(分布在正在分裂的部位,促进细胞分裂和组织分化)、脱落酸和乙烯(分布在成熟的组织中,促进果实成熟)。6、植物的一生,是受到多种激素相互作用来调控的1.基因重组只发生在减数分裂过程和基因工程中。(三倍体、病毒、细菌等不能基因重组)2.细胞生物的遗传物质就是DNA,有DNA就有RNA,有5种碱基,8种核苷酸。3.双缩脲试剂不能检测蛋白酶活性,因为蛋白酶本身也是蛋白质。4.高血糖症≠糖尿病。高血糖症尿液中不含葡萄糖,只能验血,不能用本尼迪特试剂检验。因血液是红色。5.洋葱表皮细胞不能进行有丝分裂,必须是连续分裂的细胞才有细胞周期。6.细胞克隆就是细胞培养,利用细胞增殖的原理。7.细胞板≠赤道板。细胞板是植物细胞分裂后期由高尔基体形成,赤道板不是细胞结构。8.激素调节是体液调节的主要部分。CO2刺激呼吸中枢使呼吸加快属于体液调节。9.注射血清治疗患者不属于二次免疫(抗原+记忆细胞才是),血清中的抗体是多种抗体的混合物。10.刺激肌肉会收缩,不属于反射,反射必须经过完整的反射弧,判断兴奋传导方向有突触或神经节。11.递质分兴奋性递质和抑制性递质,抑制性递质能引起下一个神经元电位变化,但电性不变,所以不会引起效应器反应。12.DNA是主要的遗传物质中“主要”如何理解?每种生物只有一种遗传物质,细胞生物就是DNA,RNA也不是次要的遗传物质,而是针对“整个”生物界而言的。只有少数RNA病毒的遗传物质是RNA。13.隐性基因在哪些情况下性状能表达?①单倍体,②纯合子(如bb或XbY),③位于Y染色体上。14.染色体组≠染色体组型≠基因组三者概念的区别。染色体组是一组非同源染色体,如人类为2个染色体组,为二倍体生物。基因组为22+X+Y,而染色体组型为44+XX或XY。15.病毒不具细胞结构,无独立新陈代谢,只能过寄生生活,用普通培养基无法培养,只能用活细胞培养,如活鸡胚。16.病毒在生物学中的应用举例:①基因工程中作载体,②细胞工程中作诱融合剂,③在免疫学上可作疫苗用于免疫预防。17.遗传中注意事项:(1)基因型频率≠基因型概率。(2)显性突变、隐性突变。(3)重新化整的思路(Aa自交→1AA:2Aa:1aa,其中aa致死,则1/3AA+2/3Aa=1)(4)自交≠自由交配,自由交配用基因频率去解,特别提示:豌豆的自由交配就是自交。(5)基因型的书写格式要正确,如常染色体上基因写前面XY一定要大写。要用题中所给的字母表示。(6)一次杂交实验,通常选同型用隐性,异型用显性。(7)遗传图解的书写一定要写基因型、表现型、×、↓、P、F等符号,遗传图解区别遗传系谱图,需文字说明的一定要写,特别注意括号中的说明。(8)F2出现3:1(Aa自交)出现1:1(测交Aa×aa),出现9:3:3:1(AaBb自交)出现1:1:1:1(AaBb×aabb测交或Aabb×aaBb杂交)。(9)验证基因位于一对同源染色体上满足基因分离定律(或位于两对同源染色体上满足基因自由组合定律)方法可以用自交或测交。(植物一般用自交,动物一般用测交)(10)子代中雌雄比例不同,则基因通常位于X染色体上;出现2:1或6:3:2:1则通常考虑纯合致死效应;子代中雌雄性状比例相同,基因位于常染色体上。(11)F2出现1:2:1(不完全显性),9:7、15:1、12:3:1、9:6;1(总和为16)都是9:3:3:1的变形(AaBb的自交或互交)。(12)育种方法:快速繁殖(单倍体育种,植物组织培养)、最简单育种方法(自交)。(13)秋水仙素作用于萌发的种子或幼苗(未作用的部位,如根部仍为二倍体);秋水仙素的作用原理:有丝分裂前期抑制纺锤体的形成;秋水仙素能抑制植物细胞纺锤体的形成,对动物细胞无效。秋水仙素是生物碱,不是植物激素。(14)遗传病不一定含有致病基因,如21-三体综合征。18.随机(自由)交配与自交区别:随机交配中,交配个体的基因型可能不同,而自交的基因型一定是相同的。随机交配的种群,基因频率和基因型频率均不变(前提无基因的迁移、突变、选择、遗传漂变、非随机交配)符合遗传平衡定律;自交多代,基因型频率是变化的,变化趋势是纯合子个体增加,杂合个体减少,而基因频率不变。19.细胞膜上的蛋白质有糖蛋白(识别功能,如受体、MHC等),载体蛋白,水通道蛋白等。20.减数分裂与有丝分裂比较:减数第一次分裂同源染色体分离,减数第二次分裂和有丝分裂着丝粒断裂,减数分裂有基因重组,有丝分裂中无基因重组,有丝分裂整个过程中都有同源染色体,减数分裂过程中有联会、四分体时期。(识别图象:三看法针对的是二倍体生物)。21.没有纺锤丝的牵拉着丝粒也会断裂,纺锤丝的作用是使姐妹染色单体均分到两极。22.精子、卵细胞属于高度分化的细胞,但全能性较大、无细胞周期。23.表观光合速率判断的方法:坐标图中有“负值”,文字中有“实验测得”。24.哺乳动物无氧呼吸产生乳酸,不产生二氧化碳,酵母菌兼性厌氧型能进行有氧呼吸和无氧呼吸。植物无氧呼吸一般产生酒精、二氧化碳(特例:马铃薯的块茎、玉米的胚、甜菜的块根)。25.植物细胞具有全能性,动物细胞(受精卵、2~8细胞球期、生殖细胞)也有全能性;通常讲动物细胞核具有全能性(实例:克隆羊),胚胎干细胞具有发育全能性。26.基因探针可以是DNA双链、单链或RNA单链,但探针的核苷酸序列是已知的(如测某人是否患镰刀型贫血症),则探针是放射性同位素标记或荧光标记的镰刀型贫血症患者的DNA作为探针。27.病毒作为抗原,表面有多种蛋白质。所以由某病毒引起的抗体有多种。即一种抗原(含有多个抗原分子)引起产生的特异性抗体有多种(一种抗原分子对应一种特异性抗体)。28.每一个浆细胞只能产生一种特异性抗体,所以人体内的B淋巴细胞表面的抗原-MHC受体是有许多种的,而血清中的抗体是多种抗体的混合物。29.抗生素(如青霉素、四环素)只对细菌起作用(抑制细菌细胞壁形成),不能对病毒起作用。30.转基因作物与原物种仍是同一物种,而不是新物种。基因工程实质是基因重组,基因工程为定向变异。31.标记基因(通常选抗性基因)的作用是:用于检测重组质粒是否被导入受体细胞(不含抗性)而选择性培养基(加抗生素的培养基)的作用是:筛选是否导入目的基因的受体细胞。抗生素针对的不是目的基因,而是淘汰不具有抗性的没有导入目的基因的受体细胞。32.产生新物种判断的依据是有没有达到生殖隔离;判断是否为同一物种的依据是能否交配成功并产生可育后代。33.动物细胞融合技术的最重要用途是制备单克隆抗体,而不是培养出动物。34.微生物包括病毒、细菌、支原体、酵母菌等肉眼看不到的微小生物。35.浆细胞是唯一不能识别抗原的免疫细胞。吞噬细胞能识别抗原、但不能特异性识别抗原。36.0℃时,散热增加,产热也增加,两者相等。但生病发热时,是由于体温调节能力减弱,产热增加、散热不畅造成的。37.免疫异常有三种:过敏反应、自身免疫病、免疫缺陷病。38.所有细胞器中,核糖体分布最广(在核外膜、内质网膜上、线粒体、叶绿体内都有分布)。39.生长素≠生长激素。40.线粒体、叶绿体内的DNA也能转录、翻译产生蛋白质。41.细胞分化的实质是基因的选择性表达,指都是由受精卵分裂过来的细胞,结构、功能不同的细胞中,DNA相同,而转录出的RNA不同,所翻译的蛋白质不同。42.精原细胞(特殊的体细胞)通过复制后形成初级精母细胞,通过有丝分裂形成更多的精原细胞。43.tRNA上有3个暴露在外面的碱基,而不是只有3个碱基,是由多个碱基构成的单链RNA。44.观察质壁分离实验时,细胞无色透明,如何调节光线?缩小光圈或用平面反光镜。45.抗体指免疫球蛋白,还有抗毒素、凝集素。但干扰素不是抗体,干扰素是病毒侵入细胞后产生的糖蛋白,具有抗病毒、抗细胞分裂和免疫调节等多种生物学功能。46.基因工程中切割目的基因和质粒的限制酶可以不同。47.基因工程中导入的目的基因通常考虑整合到核DNA,形成的生物可看作杂合子(Aa),产生配子时,可能含有目的基因。一、各内分泌腺及分泌的主要激素 1.下丘脑:合成下丘脑调节性多肽(HRP),包括促甲状腺激素释放激素(TRH) 、促肾上腺皮质激素释放激素(CRH)和促性腺激素释放激素(LRH)。 2.垂体:由垂体合成并分泌的激素有四类:一是促激素,包括促甲状腺激素(TSH)、促性腺激素(促卵泡激素,FSH;促黄体生成激素,LH) 、促肾上腺皮质激素(ACTH);二是生长激素(GH);三是催乳素(PRL);四是黑素细胞激素(MSH);下丘脑合成由垂体释放的激素有催产素和加压素两种。 3.甲状腺:甲状腺激素(T4或T3)。 4.肾上腺:分为肾上腺皮质激素和髓质激素,其中皮质激素包括:性激素类(包括雌激素和雄激素)、盐皮质激素(醛固酮、去氧皮质酮)、糖皮质激素(可的松、皮质酮、氢化可的松);髓质激素包括:肾上腺素和去甲肾上腺素两种。 5.胰岛:包括胰岛素(胰岛B细胞分泌)和胰高血糖素(胰岛A细胞分泌) 。 6.性腺:睾丸分泌雄激素,卵巢分泌雌激素和孕激素。 二、主要激素的功能及异常症 1.促(甲状腺、性腺)激素释放激素:促进垂体合成与分泌相应的促 (甲状腺、性腺、肾上腺皮质)激素,缺乏时表现为对应腺体分泌的激素缺乏症。 2.促(甲状腺、性腺等)激素:促进相应腺体的生长发育,调节相应腺体的激素的合成和分泌,缺乏时表现为对应腺体分泌的激素缺乏症。 3.生长激素:促进生长,主要是促进蛋白质的合成和骨的生长。幼年时分泌不足会导致侏儒症,幼年时分泌过多导致巨人症,成年时分泌过多导致肢端肥大症。 4.催乳素:促进乳腺腺泡的发育,乳腺的合成与分泌。缺乏时导致乳汁缺乏。 5.甲状腺激素:促进新陈代谢,促进生长发育,尤其对中枢神经系统的发育和功能具有重要影响,提高神经系统的兴奋性。异常症包括:甲亢(分泌过多)、呆小症(胎儿分泌不足)、粘液性水肿(成年时分泌不足)、大脖子病(饮食缺碘→甲状腺激素分泌不足→地方性甲状腺肿)。 6.胰岛素:调节糖类代谢,降低血糖浓度,促进血糖合成为糖元,促进糖类的氧化分解,抑制非糖尿病物质转化为葡萄糖,从而使血糖浓度降低。分泌不足导致糖尿病。 7.胰高血糖素:调节糖类代谢,升高血糖浓度。过多→高血糖;过少→低血糖。 8.雌激素:促进雌性生殖器官的发育和生殖细胞的生成,激发并维持雌性第二性征,激发和维持雌性正常的性周期。分泌不足导致第二性征减弱、性欲降低,性周期紊乱。 9.雄激素:促进雄性生殖器官的发育和生殖细胞的生成,激发和维持雄性第二性征。分泌不足会导致第二性征减弱、性欲降低。 10.孕激素:促进子宫内膜和乳腺等的生长发育,为受精卵着床和泌乳准备条件。分泌不足,胎儿无法正常着床。 11.肾上腺素:肾上腺髓质激素,可促进肝糖原分解为葡萄糖,升高血糖浓度,增强机体的应激机能。缺乏时,应激机能减弱。 12.去甲肾上腺素:肾上腺髓质激素,具有增强心脏活动、促使血管收缩、升高血压和促进肝糖元分解升高血糖含量的作用。缺乏时,机体应激机能减弱。 13.醛固酮:属肾上腺盐皮质激素,能促进肾小管和集合管对Na+的重吸收和K+的分泌,维持血钾或血钠的平衡。缺乏时,将导致水盐失衡。 三、激素的化学本质及补充 1.含氮类激素:一是肽类或蛋白质类激素,包括下丘脑、垂体、胰岛和甲状旁腺分泌的激素;二是胺类激素(氨基酸衍生物激素),主要有甲状腺素、肾上腺素和去甲肾上腺素。 2.类固醇激素:肾上腺皮质激素(如醛固酮)、性激素(雄激素、雌激素、孕激素)。 3.脂肪衍生物激素:前列腺素。 由于含氮类激素易被胃肠道消化酶所分解而破坏,临床上不宜口服,应通过静脉注射补充。其它激素既可通过注射补充,也可通过口服方式给予。 1. 显微观察法——观察多种多样的细胞、观察线粒体和叶绿体、观察细胞有丝分裂、观察细胞减数分裂、观察质壁分离和复原、观察染色体变异等2. 差速离心法——分离各种细胞器、制备细胞膜等3. 对比实验法——设置两个或两个以上的实验组通过对结果的比较分析,探究某种因素对实验结果的影响,如“探究酵母菌细胞呼吸的方式”及“酶作用特性相关实验”等4. 密度梯度离心法——用15N标记DNA,证明DNA半保留复制(重带、轻带、中带等)5. 细胞染色法——活细胞染色(健那绿染色线粒体);碘染色法,证明光合作用产生淀粉;死细胞染色(醋酸洋红、龙胆紫、改良苯酚品红染液、吡罗红甲基绿染色剂);台盼蓝染色法鉴定细胞死活;6. 同位素标记法——分泌蛋白的合成与运输;探究光合作用中释放的氧气的来源;暗反应中碳元素去向14CO2→14C3→(14CH2O);噬菌体侵染细菌实验(32P、35S);基因诊断等7. 纸层析法——绿叶中色素的分离(选修1,胡萝卜素的提取与鉴定)8. 梯度设置实验——探究生长素类似物对扦插枝条生根的最适浓度,探究影响酶活性的最适温度和最适pH9. 假说—演绎法——孟德尔两大遗传定律的发现,摩尔根证明基因在染色体上(用白眼雄果蝇为材料),DNA半保留复制方式的证明10. 类比推理法——萨顿提出“基因在染色体上”11.样方法——估算植物及活动能力弱的动物(如蚯蚓、蚜虫)等种群密度12.标志重捕法——估算活动能力强的动物种群密度13. 取样器取样法——探究土壤中小动物类群丰富度14. 抽样检测法——探究培养液中酵母菌种群数量变动15. 模型构建法——构建细胞亚显微结构物理模型,构建DNA双螺旋结构物理模型,构建光合模型、种群特征、细胞分裂等概念模型,构建种群增长两种数学模型(公式、“J”型、“S”型曲线),构建减数分裂、血糖调节过程物理模型16.选修1:从植物材料中提取某些特定成分的三种常用方法a.有机溶剂萃取法,如胡萝卜素的提取与分离b.水蒸气蒸馏法,如玫瑰精油的提取c.压榨法,如橘皮精油的提取17.选修3:目的基因导入受体细胞的方法a.导入植物细胞:农杆菌转化法、基因枪法、花粉管通道法b.导入动物细胞:显微注射法(受体细胞为受精卵)c.导入微生物细胞:Ca2+处理的感受态细胞法18.选修3:目的基因检测的四种方法a.DNA分子杂交技术——检测目的基因是否整合到受体细胞染色体DNA上b.分子杂交技术——检测目的基因是否转录出mRNAc.抗原—抗体杂交技术——检测目的基因是否翻译出蛋白质d.抗病、抗虫等接种实验——检测转基因生物是否被赋予目的基因所控制的生物性状19.选修3:卵母细胞采集的三种方法a.用促性腺激素处理后,从输卵管中冲出卵母细胞(不需培养)b.从屠宰母畜丢弃的卵巢中获取卵母细胞(需培养到MⅡ中期)c.借助超声波探测仪、内窥镜、腹腔镜等工具直接从活体动物卵巢中吸取卵母细胞(需培养至MⅡ中期)1. 生态系统定义:由生物群落与它的无机环境相互作用而形成的统一整体,最大的生态系统是生物圈(是指地球上的全部生物及其无机环境的总和)。2. 生态系统的成分包括(1)非生物的物质和能量(无机环境);(2)生产者:自养生物,主要是绿色植物;(3)消费者:绝大多数动物,除营腐生的动物;(4)分解者:能将动植物尸体或粪便为食的生物(细菌、真菌、腐生生物)。3、食物链中只有生产者和消费者,其起点是生产者植物;第一营养级是生产者;初级消费者是植食性动物4、生态系统的能量流动a、定义:生物系统中能量的输入、传递、转化和散失的过程,输入生态系统总能量是生产者固定的太阳能,b、传递:沿食物链、食物网,c、散失:通过呼吸作用以热能形式散失的。d、过程:一个来源 (上一营养级),三个去向(呼吸作用、未利用、分解者分解作用、传给下一营养级)。e、特点:单向的、逐级递减的(能量金字塔中底层为第一营养级,生产者能量最多 ),相邻两个营养级间的传递效率:10%~20%(一般来讲生态系统的营养剂不超过4—5个)。5、研究能量流动的意义:①:可以帮助人们科学规划,设计人工生态系统,使能量得到最有效的利用②:可以帮助人们合理地调整生态系统中的能量流动关系6. 物质循环:6.1 这里讲的物质是指C、H、O、N、P、S等基本元素的循环6.2 循环是指在地球上最大的生态系统生物圈中循环6.3 特点:全球性和反复循环6.4 炭在生物和非生物之间主要以二氧化碳的形式循环;在生物之间主要以有机物的形式循环。6.5 地球上的二氧化碳主要通过绿色植物的光合作用从无机环境进入生物群落中6.6 碳在生物间的传递途径:食物链6.6能量流动与物质循环之间的异同不同点:在物质循环中,物质是被循环利用的;能量在流经各个营养级时,是逐级递减的,而且是单向流动的,而不是循环流动联系:①两者同时进行,彼此相互依存,不可分割②能量的固定、储存、转移、释放,都离不开物质的合成和分解等过程③物质作为能量的载体,使能量沿着食物链(网)流动;能量作为动力,使物质能够不断地在生物群落和无机环境之间循环往返 7、生态系统中的信息种类:物理信息(通过物理过程传递的信息。如光、声、温度等)、化学信息(通过化学物质传递的信息。如生物碱、有机酸、动物的性外激素)、行为信息(动物特殊的行为。如孔雀开屏、蜜蜂跳舞、求偶炫耀)8、信息传递在生态系统中的作用:①:生命活动的正常进行,离不开信息的传递;生物种群的繁衍,也离不开信息的传递②:信息还能够调节生物的种间关系,以维持生态系统的稳定信息传递在农业生产中的应用:①提高农产品和畜产品的产量②对有害动物进行控制9、生态系统的稳定性:生态系统所具有的保持或恢复自身结构和功能相对稳定的能力。生态系统之所以能维持相对稳定是因为具有自我调节能力,但自我调节能力是有限的当人类活动超过生态系统的调节能力生态系统就会遭到破坏。抵抗力稳定性:生态系统抵抗外界干扰并使自身的结构和功能保持原状的的稳定性能力恢复力稳定性:生态系统在受到外界干扰因素的破坏后恢复到原状的能力10、生态系统一般来说,生态系统中的组分越多,食物网越复杂,其自我调节能力就越强,抵抗力稳定性越高,恢复力稳定性越差。两者是相反的关系。但也有些特殊:沙漠和苔原地区两种能力都差11、提高生态系统稳定性的方法:①控制对生态系统干扰的程度,对生态系统的利用应该适度,不应超过生态系统的自我调节能力②对人类利用强度较大的生态系统,应实施相应的物质、能量投入,保证生态系统的内部结构和功能的协调1.人的成熟红细胞的特殊性:①成熟的红细胞中无细胞核;②成熟的红细胞中无线粒体、核糖体等细胞器结构;③红细胞吸收葡萄糖的方式为协助扩散;④葡萄糖在成熟的红细胞中通过糖酵解获得能量(两条途径:糖直接酵解途径EMP和磷酸己糖旁路途径HMP)。2.蛙的红细胞增殖方式为无丝分裂。3.乳酸菌是细菌,全称叫乳酸杆菌。4.XY是同源染色体,但其大小不一样(Y染色体短小得多),所携带的基因不完全相同(Y染色体上基因少得多)。5.酵母菌是菌,但为真菌类,属于真核生物。6.一般的生化反应都需要酶的催化,可水的光解不需要酶,只是利用光能进行光解,这就是证明“并不是生物体内所有的反应都需要酶”的例子。7.人属于需氧型生物,人的体细胞主要是进行有氧呼吸的,但红细胞却进行无氧呼吸。8.细胞分化一般不可逆,但是植物细胞很容易重新脱分化,然后再分化形成新的植株。9.高度分化的细胞一般不具备全能性,但卵细胞是个特例。10.细胞的分裂次数一般都很有限,但癌细胞又是一个特例。11.人体的酶发挥作用时,一般需要接近中性环境,但胃蛋白酶却需要酸性环境。12.矿质元素一般都是灰分元素,但N例外。13.双子叶植物的种子一般无胚乳,但蓖麻例外;单子叶植物的种子一般有胚乳,但兰科植物例外。14.植物一般都是自养型生物,但菟丝子、大花草、天麻等是典型的异养型植物。15.蜂类、蚁类中的雄性个体是由卵细胞单独发育而来的,只具有母方的遗传物质;雌性个体由受精卵发育而来。16.一般营养物质被消化后,吸收主要是进入血液,但是甘油与脂肪酸则被主要被吸收进入淋巴液中。17.纤维素在人体中是不能消化的,但是它能促进肠的蠕动,有利于防止结肠癌,也是人体必需的营养物质了,所以也称为“第七营养物质”。18.酵母菌的呼吸方式为兼性厌氧型,有氧时进行有氧呼吸,无氧时进行无氧呼吸。19.高等植物无氧呼吸的产物一般是酒精,但是某些高等植物的某些器官的无氧呼吸产物为乳酸,如:马铃薯的块茎、甜菜的块根、玉米的胚等。20.化学元素“砷”是唯一可以使人致癌而不使其他动物致癌的致癌因子。21.体细胞的基因一般是成对存在的,但是,雄蜂和雄蚁就是孤雌生殖,只有卵细胞的染色体。22.体细胞的基因一般是成对存在的,植物中的香蕉是三倍体,进行无性生殖。23.红螺菌的代谢类型为兼性营养厌氧型。24.猪笼草的代谢类型为兼性营养需氧型。25.病毒是DNA或RNA病毒,但是朊病毒没有DNA或RNA,其遗传物质只是蛋白质(“朊”意即是蛋白质)。26.光合作用一般是在叶绿体中进行的,但蓝藻和光合细菌的光合作用不需要叶绿体。27.有氧呼吸一般是在线粒体中进行的,但原核生物的有氧呼吸主要是在细胞质中进行的。28.带“杆”字的、带“球”字的菌都是细菌,是原核生物,但带“菌”字的并非都是原核生物,比如酵母菌属于真核生物(真菌)。29.一般生物都有细胞结构,但是病毒、类病毒及朊病毒它们三类则没有细胞结构。病毒由蛋白质与一种核酸(DNA或RNA)构成;朊病毒只含蛋白质,无核酸;类病毒只含核酸,无蛋白质。30.细菌是原核生物,细菌不一定全是分解者。如硝化细菌是生产者,根瘤菌是消费者。31.微生物的次级代谢产物有色素、抗生素、毒素和激素,而维生素却是初级代谢产物。32.蓝藻和细菌是原核生物,它们结构简单,除了核糖体,一般无其他细胞器。33.消化液中不一定含消化酶。如胆汁中不含任何消化酶。34.吞噬细胞、B细胞、T细胞、记忆细胞、效应T细胞都具有识别作用。35.动物不一定只是消费者。如蚯蚓、蜣螂同时也是分解者。36.植物不一定都是生产者,如菟丝子是消费者;猪笼草、捕蝇草等(兼性营养)也可是消费者。37.真核细胞不一定都进行有丝分裂。如蛙的红细胞进行无丝分裂。38.真核生物的细胞内不一定含有细胞核。如哺乳动物成熟的红细胞。39.分泌到细胞外起作用的蛋白质有:抗体、胰岛素、消化酶等。40.有叶绿体的细胞不一定能合成葡萄糖。如C4植物叶肉细胞有结构完整的叶绿体,但葡萄糖的合成却在维管束鞘细胞中完成。41.大多数酶的最适pH值在7左右,而胃蛋白酶的最适pH值在1.8左右。42.黑藻不是藻类植物。它属于高等植物中的被子植物。在分类上是单子叶植物纲/水鳖科/黑藻属。43.有叶绿体的细胞一定是植物细胞,但植物细胞不一定含叶绿体。如植物根尖等非绿色结构的细胞中不含叶绿体。44.植物细胞也不一定含有液泡。如根尖分生区的细胞。45.有细胞壁的不一定是植物细胞。如细菌、真菌等细胞含细胞壁,但它们不是植物细胞;原核细胞不一定都有细胞壁。如支原体。46.有细胞壁,用纤维素酶处理,有变化的不一定是植物细胞。比如蓝藻;有细胞壁,用纤维素酶处理,无变化的不一定是原核细胞。如酵母菌等真菌。47.可进行光合作用的细胞不一定含有叶绿体。如蓝藻与光合细菌;可进行有氧呼吸的细胞不一定含有线粒体。如好氧细菌。48.病毒只能在宿主细胞里专营寄生生活,在离体的条件下,能以无生命的化学大分子状态存在,对一般抗生素不敏感。49.噬菌体等病毒结构简单,不是原核生物,也无细胞结构。50.细菌细胞壁的成分是肽聚糖,与植物细胞壁的成分(纤维素和果胶)不同。51.有丝分裂一般都是均等分裂,但酵母菌的出芽生殖却是不均等的52.一般营养物质被消化后,吸收主要是进入血液,但是甘油与脂肪酸则被主要被吸收进入淋巴液中。53.呼吸作用中的特例:①酵母菌的呼吸方式为兼性厌氧 ;②高等植物无氧呼吸的产物一般是酒精,但是某些高等植物的某些器官的无氧呼吸产物为乳酸,如:马铃薯的块茎、甜菜的块根、玉米的胚等。54.真核生物的遗传性状多数由细胞核基因决定,但也有一些性状由细胞质基因决定。如椎实螺的壳螺旋方向等。55.所有的逆转录病毒都是动物病毒。一、化学物质的检测方法①淀粉——碘液 (蓝色)②还原性糖——斐林试剂\班氏试剂(砖红色)③CO2——Ca(OH)2溶液(澄清石灰水变浑浊)④乳酸——pH试纸⑤O2——余烬复然⑥蛋白质——被蛋白酶水解 、双缩脲试剂(紫红色)⑦脂肪——苏丹Ⅲ染液 (橘黄色)、苏丹Ⅳ染液 (红色)⑧DNA——二苯胺(蓝色)⑨染色体——龙胆紫溶液,醋酸洋红溶液二、实验条件的控制方法1、加水中氧气——泵入空气或吹气或放入绿色植物2、减少水中氧气——容器密封或油膜覆盖或用凉开水3、除去容器中CO2——NaOH溶液4、除去叶中原有淀粉——置于黑暗环境5、除去叶中叶绿素——酒精水浴加热6、除去光合对呼吸干扰——给植株遮光7、如何得到单色光——棱镜色散或透明薄膜滤光8、血液抗疑——加入柠檬酸钠9、线粒体提取——细胞匀浆离心10、骨无机盐的除去——盐酸溶液11、灭菌方法——培养基用高压蒸汽灭菌;接种环用火焰灼烧灭菌;双手用肥皂冼净,擦干后用75%酒精消毒;实验室或接种箱用甲醛蒸汽或紫外灯灭菌;整个过程都在实验室无菌区或酒精灯旁进行。三、实验结果的显示方法①光合速度——O2释放量或CO2吸收量或有机物生成量◆水生植物可依气泡的产生量或产生速率;◆离体叶片若事先沉入水底可依单位时间内上浮的叶片数目;◆植物体上的叶片可依指示剂(如碘液)处理后叶片颜色深浅。②呼吸速度——O2吸收量或CO2释放量或有机物消耗量③原子或分子转移途径——放射性同位素示踪④细胞液浓度大小——质壁分离⑤植物细胞是否死亡——质壁分离⑥甲状腺激素—动物耗氧量,发育速度等⑦生长激素—生长速度(体重、体长变化)⑧胰岛素作用—动物活动状态⑨菌量—菌落数,亚甲基蓝褪色程度四、实验中控制温度的方法1、还原糖,DNA鉴定——沸水浴加热2、酶促反应——水浴保温3、用酒精溶解叶中的叶绿素——酒精要隔水加热、4、细胞和组织培养以及微生物培养——恒温箱培养五、实验中常用器材和药品的使用1、NaOH:用于吸收CO2或改变溶液的pH2、Ca(OH)2:鉴定CO23、CaCl2提高细菌细胞壁的通透性4、HCl:解离或改变溶液的pH5、NaHCO3:提供CO26、NaCl:配制生理盐水或用于提取DNA7、琼脂:激素或其他物质的载体或培养基的凝固剂8、亚甲基蓝:用于检测污水的细菌含量9、酒精:用于消毒、提纯DNA、叶片脱色及配制解离液10、蔗糖:测定植物细胞液浓度或观察质壁分离和复原、作为碳源和能源物质11、滤纸:过滤或纸层析12、纱布、尼龙布:过滤,遮光13、龙胆紫溶液或醋酸洋红:碱性染料,用于染色体染色14、柠檬酸钠——血液抗凝剂六、一些常见的实验方法⑴、根据颜色来确定某种物质的存在:淀粉+I2(蓝色);还原性糖+斐林试剂(砖红色);脂肪+苏丹Ⅲ(橘黄)或+苏丹Ⅳ(红色);蛋白质+双缩脲试剂(紫色);大肠杆菌+伊红和美蓝(菌落为深紫色,有金属光泽)⑵、用颜色标记法来确定原肠胚三个胚层的分化情况。⑶、用荧光标记法来证明细胞膜具有一定的流动性⑷、同位素示踪法:光合作用产生氧气的来源; 光合作用中二氧化碳的去向;噬菌体侵染细菌实验证明DNA是遗传物质,蛋白质不是遗传物质;DNA的复制是半保留复制。⑸、确定某种元素为植物生长必需的元素的方法:水培法(完全培养液与缺素完全培养液对照)⑹、获得无籽果实的方法:用适宜浓度的生长素处理花蕾期已去雄的子房,如无籽蕃茄、诱导染色体变异,如无籽西瓜。⑺、确定某种激素功能的方法:饲喂法,切除注射法,阉割移植法,切除口服法。⑻、确定传入、传出神经的功能:刺激+观察效应器的反应或测定神经上的电位变化。⑼、植物杂交的方法雌雄同花:花蕾期去雄+套袋 +开花期人工授粉+套袋雌雄异花:花蕾期雌花套袋+开花期人工授粉+套袋⑽、确定某一显性个体基因型的方法:测交; 该显性个体自交。⑾、确定某一性状为显性性状或隐性性状的方法:具有一对相对性状的纯合体的杂交自交,观察后代是否有性状分离。⑿、确定某一个体是否具有抗性基因的方法:确定小麦是否具有抗锈病基因,用锈病菌去侵染,一段时间后,观察有无锈斑出现。⒀、鉴定血型的方法:用标准血清与待测血型混合,在显微镜下观察血液的凝集情况。⒁、育种的方法:杂交育种;人工诱变育种;单倍体育种;基因工程育种;细胞工程育种;多倍体育种等。⒂、测定种群密度的方法:样方法; 标志重捕法⒃、生态瓶的制作方法;瓶必须透明,且封闭⒄、分离微生物的方法:平板划线法;用选择培养基培养(如:圆褐固氮菌的分离,金黄色葡萄球菌的分离,细菌和酵母菌的分离)⒅、测定微生物群体生长的方法:测定细菌的数目---显微计数测定细菌的重量---取一定体积的培养基,经离心分离,反复洗涤后,称湿重,或烘干后称干重。七、实验研究方法1、显微观察法 如观察植物细胞有丝分裂的实验,观察植物细胞质壁分离和复原的实验。2、观察法 观察微生物的外在性状和表现等,如观察注射了甲状腺激素的小狗的活动状况,观察动物的毛色和植物花色的遗传实验等。3、同位素示踪法 如噬菌体侵染细菌的实验,用18O和14C追踪光合作用中氧原子和碳原子转移途径的实验等。4、加法创意 如用饲喂法研究甲状腺激素的实验、用注射法研究生长激素的实验,用移植法研究性激素的实验等。5、减法创意 如用阉割法、摘除法研究性激素、甲状腺激素、生长激素的实验,雌蕊授粉后除去发育着的种子实验等。6、杂交实验法 如孟德尔发现遗传定律的植物杂交、测交的实验,小麦的杂交实验等。7、化学分析法 如番茄和水稻对Ca 和Si选择吸收的实验,叶绿体中色素的提取和分离实验等。8、理论分析法 如大小草履虫竞争的实验,植物根向地生长、茎背地生长的实验,植物向光性的实验等。9、模拟实验法 如渗透作用的实验装置,分离定律的模拟实验等。八、实验技术1、光学显微镜的使用适用于观察生物的微观结构,如细胞的结构,包括光镜下可看到的各种细胞器。2、临时装片、切片和涂片的制作技术适用于显微观察,凡需在显微镜下观察的生物材料,必须先制成临时装片、切片或涂片。如“观察植物细胞的质壁分离和复原的实验”中要制作洋葱表皮的临时装片,在生物组织中脂肪的鉴定中要制作花生种子的切片等。3、研磨和过滤技术适用于从生物组织中提取物质,如酶、色素等。研磨时要先将生物材料切碎,然后加入研磨剂〈常用SiO2〉、提取液及其他必要物质,充分研磨后,往往要进行过滤,以除去滤渣,所用过滤器具则根据需要或或根据试题中提供的器材加以选用,如可用滤纸、纱布、脱脂棉、尼龙布等。4、解离技术用于破坏细胞壁,分散植物细胞,制作临时装片。5、恒温技术适用于有酶参加的生化反应,一般用水浴或恒温箱。根据题目要求选用。6、纸层析技术适用于溶液中物质分离。重要步骤包括制备滤纸条、画滤液细线、层析分离。7、根尖培养技术 观察植物根尖有丝分裂的实验8、溶液培养法 探究植物必需的矿质元素的实验,〈拓展——微生物生长因子的判断的实验〉;植物的无土栽培〈注意溶液浓度和溶解氧〉。 展开更多...... 收起↑ 资源列表 高中复习资料:生物中7个不可逆性.docx 高中生物88个高频考点.docx 高中生物实验中试剂的作用及实验方法总结.docx 高中生物必背知识点:动物激素分类解读.docx 高中生物教材涉及的19种技术方法.docx 高中生物生态系统及其稳定性知识点.docx 高中生物生物考试常用特例汇总.docx 高中生物:植物的激素调节重点知识点.docx