广东省惠州市2025届高三上学期第一次调研考试数学试题(图片版,含答案)

资源下载
  1. 二一教育资源

广东省惠州市2025届高三上学期第一次调研考试数学试题(图片版,含答案)

资源简介

惠州市 2025 届高三第一次调研考试试题
高三数学参考答案与评分细则
一、单项选择题:本题共 8小题,每小题满分 5分,共 40分.
题号 1 2 3 4 5 6 7 8
答案 D A B C A C B C
1 2.【解析】由已知 A x∣x 3x 0 {x | 0 x 3}, B {x∣lnx 0} {x | x 1},
所以 A B {x |1 x 3}.故选:D.
1 z 1 i2.【解析】由题设有 2 i ,故 z 1+i ,故 z z 1 i 1 i 2,故选 A.i i
3.【解析】设等差数列 an 的公差为 d,因为 a1 2, a2 a3 2a1 3d 13,所以 d 3,
则 a4 a5 a6 3a1 12d 3 2 12 3 42 .故选:B.
r
7 r 1 r 21 7 r4.【解析】展开式的通项为T Cr 2x3 Cr 27 r 1 x 2r 1 7 7 ,
x
7
由 21 r 0 ,得 r 6,那么展开式中常数项是C6 27 6
2 7 1
6 14 .故选:C.
5.【解析】在正三棱柱 ABC A1B1C1中,若 AB 2
1 3
, AA1 1,所以 S△ABC 2 2 3 ,2 2
由勾股定理可得 A1B A1C 1
2 22 5 ,
2 1 2
在等腰三角形 A BC中,底边 BC上的高长为 5 2 1 2 ,
2
所以等腰三角形 A1BC
1
的面积为 2 2 2,
2
设点 A 1 1 3到平面 A1BC的距离为 h, VA A BC V1 A1 ABC h 2 1 3 h ,故选:A3 3 2

6.【解析】因为向量 p a c,b q , b a,c a ,

因为 p / /q,所以 a c c a b b a ,即 c2 a2 b2 ab,
a2 2 2cosC b c 1由余弦定理可得 .
2ab 2
因为C 0, π π,所以C ,故选:C.
3
高三数学答案 第 1页,共 9页
{#{QQABLYYEogCgQIIAAAhCQQWqCgOQkBAAASgGgBAMMAAAQQNABAA=}#}
x1 x2
5,
7.【解析】设 A x1, log2 x1 ,B x2 , log x

. 22 2 由题意, ,
log2 x1 log2 x2 2.
2
x1 2, x 8,
整理得 x1 x2 10, x1x2 16 .
1
所以 x 或 . 2 8, x2 2.
不妨取 A(2,1),B(8,3),则 | AB | (2 8)2 (1 3)2 2 10 .故选:B
f (x) (1 4k) (1 6k) 8.【解析】 的正零点为 (k N) 与 (k N) .
12 12
5 7 9 13 17 19
所以 f (x) 从左到右的零点依次为: , , , , , , .
12 12 12 12 12 12 12
17 19
为了使得 f (x) 在区间 (0, ) 恰有 6 个零点, 只需 ,
12 12
17 19
解得 .故选:C.
12 12
二、多项选择题:本题共 3小题,每小题满分 6分,共 18分。在每小题给出的四个选项中,有多项符合
题目要求。全部选对得 6分,部分选对得部分分,有选错的得 0分。
题号 9 10 11
全部正确选项 BD ACD ABD
90 98 90 92 95
9.【解析】对于选项 A,甲机构测评分数的平均分 x甲 93,
5
x 93 95 92 91 94乙机构测评分数的平均分 乙 93,所以选项 A 错误,
5
对于选项 B,甲机构测评分数的方差
D 11 [(90 93)
2 (98 93)2 (90 93)2 (92 93)2 (95 93)2 ] 9.6 ,
5
D 1 [(93 93)2 22 (95 93) (92 93)
2 (91 93)2 (94 93)2 ] 2,所以选项 B 正确,
5
对于选项 C,乙机构测评分数从小排到大为:91,92,93,94,95,
所以乙机构测评分数的中位数为 93,所以选项 C 错误,
对于选项 D,因为甲机构测评分数中有且仅有 2 个测评分数超过平均分,由对立事件的定义知,事
件M ,N 互为对立事件,所以选项 D 正确,故选:BD.
10. 【解析】A 选项:因为 a1 1, a a 2 82 8 16 ,则 a1 q 16 ,
所以 q8 16 ,所以 q 2 ,所以 A 正确;
高三数学答案 第 2页,共 9页
{#{QQABLYYEogCgQIIAAAhCQQWqCgOQkBAAASgGgBAMMAAAQQNABAA=}#}
B 选项:因为 a25 a2a8 16 ,所以 a5 4 ,所以 B 不正确;
C 选项:因为T9 a
9 9 18
1a2 a9 a5 ,所以 |T9 | | a5 | 2 ,
所以 log2 T9 18,所以 C 正确;
D 选项: a2 a23 7 2a3a7 2a2a8 32 ,
当且仅当 a3 a7 时,等号成立.所以 D 正确.故选:ACD.
11.【解析】由题意得: (x 1)2 y2 (x 1)2 y2 3
对于 A 选项:方程中的 x换成 x, ( x 1)2 y2 ( x 1)2 y2 (x 1)2 y2 (x 1)2 y2 3
方程不变,所以曲线 C关于 y轴对称,A 选项正确;
对于 B 选项: (x2 y2 1) 2x (x2 y2 1) 2x 3, (x2 y2 1)2 4x2 9,
故 x2 y2 1 4x2 9 ,所以 B 选项正确;
对于 C 选项:△F1PF
1
2 面积为 FF y y ,2 1 2 P P
由于 y2 4x2 9 x2 1 ≥0,
即 4x2 9 x2 1 0,则 x4 2x2 8 0,解得: 2 x 2,
2 2 9
令 4x2 9 t t 5 1 3,5 ,则 y2 t t 2 0, 2 ,所以 y 2, 2 .
4 4 4 4
则△F1PF2 面积的最大值为 2 ,所以 C 选项错误;
对于 D 2选项:因为 OP x2 y2 4x2 9 1 2, 4 ,
则 OP 的取值范围为 2,2 ,所以 D 选项正确,故选:ABD.
三、填空题:本题共 3小题,每小题 5分,共 15分.
1 5 5
12. 13. (满足 k ,k
1
Z 即可) 14.
3 12 12 32
12.【解析】因为双曲线方程 x2 ky2 1,且一个焦点是(2,0),
a2 1 1 1 1所以 1,b2 2 2 2,所以 c a b 1 4,解得 k .故答案为:
k k 3 3

13.【解析】 A(cos ,sin )与 B cos ,sin 关于 y轴对称,
6 6
高三数学答案 第 3页,共 9页
{#{QQABLYYEogCgQIIAAAhCQQWqCgOQkBAAASgGgBAMMAAAQQNABAA=}#}

即 , 关于 y

轴对称, 2k ,k Z
5
,则 k ,k Z ,
6 6 12
5 5 5
当 k 0时,可取 的一个值为 .故答案为: (满足 k ,k Z 即可).
12 12 12
f x 114.【解析】在 f (x)中,令 x 0 ,得 f (0) 0 ,又 f (x) f (1 x) 1 ,故 f (1) 1 .
5 2
x 1 1 1 1 1 1 1 1 1 1 1
因为 f f (x) ,所以 f , f 2 , f , f , f 5 2 5 2 5 4 53 8 54 16 55

32
在 f (x) f (1 x)
1
1 1 1中,令 x ,得 f
2
,
2 2
f 1 1 , f 1 1 , f 1 1 1 1所以 , f
.
10 4 50 8 250 16 1250 32
当 0 x1 x2 1时 f x1 f x2 ,可知 f (x) 是 [0,1]上的非递减函数,
1 1 1 1 1 1
又 5 f

,所以 .
5 3125 2024 1250 2024 32
四、解答题:本题共 5小题,共 77分.解答应写出文字说明、证明过程或演算步骤.
15.(本小题满分 13 分,其中第一小问 6 分,第二小问 7 分。)
【解析】(1)因为 f x ln x 1 a ·······································································2 分
在点 1, f 1 处的切线斜率为 k f 1 1 a , ························································ 3 分
又 f x 1在点 1, f 1 处的切线与直线 x 2y 2 0相互垂直,所以 f 1 1 ············ 5 分
2
解得 a 3 . ······································································································· 6 分
(2)由(1)得, f x ln x 2 , x 0, , ······················································ 7 分
令 f x 0 ,得 x e2 ,令 f x 0 ,得 0 x e2 , ·················································· 9 分
即 f x 的增区间为 e2 , 2,减区间为 0,e .························································ 10 分
f e2又 e2 ln e2 3e2 2 2 e2 , ······································································11 分
所以 f x 在 x e2 处取得极小值 2 e2 ,无极大值. ················································ 13 分
【注】没有说明极大值扣一分
16.(本小题满分 15 分,其中第一小问 6 分,第二小问 9 分。)
2
【解析】(1)因为学生初试成绩 X 服从正态分布 N , ,其中 65, 2 102 ,
则 75 65 10 , ·························································································1 分
P X 75 P X 1 1 P X 1 0.6827所以 ·······················3 分
2 2
高三数学答案 第 4页,共 9页
{#{QQABLYYEogCgQIIAAAhCQQWqCgOQkBAAASgGgBAMMAAAQQNABAA=}#}
0.15865, ·······································································································4 分
所以估计初试成绩不低于的人数为 0.15865 1000 159 人. ···········································6 分
(2)Y 的取值分别为 0 、10、 20、30, ······························································· 7 分
2
P Y 0 1 3 1 3 1则 , ····································································· 8 分
4 5 25
2
P Y 10 3 1 3 1 3 C1 2 3 6 2 , ···················································9 分4 5 4 5 5 25
2
P Y 20 3 C1 2 3 2 1
3 3 9
, ···················································· 10 分4 5 5 4 5 20
2
P Y 30 3 3 27 . ················································································· 11 分4 5 100
故Y 的分布列为:
Y 0 10 20 30
1 6 9 27
P
25 25 20 100
··············································································································13 分
1 6 9
所以数学期望为 E Y 0 10 20 30 27 19.5 . ································15 分
25 25 20 100
17.(本小题满分 15 分,其中第一小问 6 分,第二小问 9 分。)
【解析】(1)证明:由 PC 平面 ABC,DE 平面 ABC ,故 PC DE ······························ 2 分
由CE 2,CD DE 2 得CD2 DE2 CE2 ····························································3 分
故 CDE为等腰直角三角形,则CD DE ································································· 4 分
由 PC CD C,DE垂直于平面 PCD内两条相交直线, ················································5 分
故DE 平面 PCD ······························································································ 6 分

(2)解:由(1)知, CDE为等腰直角三角形, DCE ,如图,过点 D作DF垂直CE于 F ,易知
4
DF FC EF 1 , ···································································································· 7 分
又已知 EB 1 ,故 FB 2 .

由CD DE, ACB ,得DF / /AC,
2
DF FB 2 3 3
,故 AC DF . ···········································································8 分
AC BC 3 2 2
高三数学答案 第 5页,共 9页
{#{QQABLYYEogCgQIIAAAhCQQWqCgOQkBAAASgGgBAMMAAAQQNABAA=}#}

以C为坐标原点,分别以CACB,CP的方程为 x轴, y轴, z轴的正方向建立空间直角坐标系,
则C(0,0,0),,P(0,0,3), A
3
,0,0

,E(0,2,0),D(1,1,0),
2

ED (1, 1,0) ,DP ( 1, 1,3)DA
1 , 1,0 ·················9 分
2

设平面 PAD的法向量 n1 x1 , y1 , z1 ,

由 n1 DP 0,n

1 DA 0
x y 3z 0
1 1 1
得 1 ,令 x1 2 ,则 y1 1, z1 1 ,故 n1 (2,1,1) . ·········································10 分
x1 y1 0 2

由(1)可知 DE 平面 PCD ,故平面 PCD的法向量 n2 可取为 ED ,即 n2 (1, 1,0) . ·············· 11 分

n1 n2 2 1 1 ( 1) 1 0 3
从而法向量 n1,n2 的夹角的余弦值为 cos n1,n2 n n 2 , ····· 14 分1 2 2 1 1 1 1 0 6
故平面 PAD与平面 PCD 3所成角的余弦值为 . ······················································ 15 分
6
n1 n2
【注】写出公式 cos n1,n2 n n 给 1 分,代入数据给 1 分,结果计算正确给 1 分1 2

方法二:设平面 PAD的法向量 n1 x1 , y1 , z1 ,

由 n1 PD 0,n

1 PB 0
x1 y1 3z1 0
得 ,令 z 1 ,则 y 1, x 2 ,故 n (2,1,1) . 其它过程同上.
3y1 3z1 0
1 1 1 1
18.(本小题满分 17 分,其中第一小问 3 分,第二小问 5 分,第三小问 9 分。)
x2
【解析】(1)椭圆C1 : y
2 1的上顶点坐标为 0,1 , ············································· 1 分
4
则抛物线C2 的焦点为 F 0,1 , ··············································································2 分
故 p 2 . ··········································································································3 分
(2)若直线MN 与 y轴重合,则该直线与抛物线C2 只有一个公共点,不符合题意,
所以直线MN 的斜率存在,····················································································· 4 分
设直线MN 的方程为 y kx 1,点M x1, y1 、 N x2 , y2 ,
高三数学答案 第 6页,共 9页
{#{QQABLYYEogCgQIIAAAhCQQWqCgOQkBAAASgGgBAMMAAAQQNABAA=}#}
y kx 1
联立 22 可得 x 4kx 4 0 , ·······································································5 分
x 4y
16k2 16 0恒成立,则 x1x2 4,····································································· 6 分
2 2
OM ON x1x2 y1y2 x x
x
1
x2
1 2 4 1 3 .··························································8 分4 4
(3)设直线 NO、MO的斜率分别为 k1、 k2,其中 k1 0 , k2 0,
y k1x
4k 2联立 2 2 可得 1 1 x2 4,····································································· 9 分 x 4y 4
x 2 2解得 2 ,点 A在第三象限,则 xA ,4k1 1 4k
2
1 1
2
点 B在第四象限,同理可得 xB 2 ,······························································10 分4k2 1
k y1y2 x1x2 1且 1k2 x x 16 4 ················································································ 12 分1 2
S OMN OM ON x 1
x2 x 1
x2
S OAB OB OA xB xA 2 2 ··············································· 14 分
4k 21 1 4k
2
2 1
4k2 1 4k2 1 4k2 1 2 2 4k 2 11 2 1 2 1 2 2 2 ,····································· 15 分4k1 4k1
1
当且仅当 k1 时,等号成立. ··············································································16 分2
S OMN
S 的取值范围为 2, . ···············································································17 分 OAB
(3)方法二:设直线 NO、MO的斜率分别为 k1、 k2,其中 k1 0 , k2 0,
y k1x
2 2联立
x2 2
可得 4k1 1 x 4,····································································· 9 分
4y 4
x 2 2解得 2 ,点 A在第三象限,则 xA 2 ,4k1 1 4k1 1
2
点 B在第四象限,同理可得 xB 2 ,······························································10 分4k2 1
k k y1y2 x x 1且 1 2 1 2 x x 16 4 ················································································ 12 分1 2
高三数学答案 第 7页,共 9页
{#{QQABLYYEogCgQIIAAAhCQQWqCgOQkBAAASgGgBAMMAAAQQNABAA=}#}
k1 xB yB k1 xB k2 xB
设点 B到直线 OA 的距离 d
1 k 2 21 1 k1
|OA | x2 y2 x2 k 2 2A A A 1 xA
S 1 |OA | d 1
k1 xB k2 xB 2 2 2
OAB x2 2 2 A
k 1 xA
1 k1
1
k1 k2 x x
1 1 k 2 2
2 A B 2 4k 22 4k 21 1 4k
2
2 1
1 4k 2 1 2
2
4k 22 1
2 1
4k2 1
4k2 ···································································· 14 分
1 4k 22 4k
2
2
2
1
4k 4k 22 2 1 4k
2
2 1
S 1 OMN |OF | x1 x
1 2
2 x1 x2 4x1x2 2 k 2 1 2 ······························ 15 分2 2
当且仅当 k 0 时,等号成立. ················································································ 16 分
S OMN
S 的取值范围为
[2, ) . ············································································ 17 分
OAB
19.(本小题满分 17 分,其中第一小问 3 分,第二小问 6 分,第三小问 8 分。)
【解析】(1)因为 a 2n ,则 a n 2 n 1 n 1n n 2 an 1 2 2 2 ,········································ 1 分
an 1 an 2
n 1 2n 2n ,······················································································· 2 分
n
又 2n 1 2n,故 an 2 an 1 an 1 an,数列 2 是“速增数列”.····································3 分
(2) a1 1,a2 3,ak 2023,
因为 a2 a1 2 , 所以 a3 a2 a2 a1 2 ,
又 an Z , 故 a3 a2 3 ·······················································································4 分
依次递推可得 a4 a3 4,a5 a4 5, ,ak 1 ak 2 k 1,ak ak 1 k ·························· 5 分
当 k 3时, ak 2023 ak ak 1 ak 1 ak 2 a2 a1 a1 ································ 6 分
k (k 1) 3 2 1, ······················································································ 7 分
高三数学答案 第 8页,共 9页
{#{QQABLYYEogCgQIIAAAhCQQWqCgOQkBAAASgGgBAMMAAAQQNABAA=}#}
k k 1
即 2023 , k Z , ················································································· 8 分
2
k k 1 k k 1
当 k 63 时, 2016 ,当 k 64时, 2080 ,
2 2
故正整数 k 的最大值为 63 . ·················································································· 9 分
(3)bk 2 bk 1 bk 1 bk bk bk 1 ,故 bk 2 bk 1 bk bk 1,即 bk 2 bk 1 bk bk 1 ;····10 分
bk 3 bk 2 bk 2 bk 1 bk 1 bk bk bk 1 bk 1 bk 2 ,故 bk 3 bk 2 bk 1 bk 2,
即bk 3 bk 2 bk 1 bk 2 bk bk 1,········································································11 分
同理可得:b2k m 1 bm bk bk 1 ,m N* ,1 m k 1,··········································13 分
故 k b1 b2 b2k b1 b2k b2 b2k 1 bk bk 1 k bk bk 1 ,···················15 分
故bk bk 1 1, ······························································································ 16 分
c c 2bk 2bk 1 2bk bk 1k k 1 2,得证. ·····································································17 分
高三数学答案 第 9页,共 9页
{#{QQABLYYEogCgQIIAAAhCQQWqCgOQkBAAASgGgBAMMAAAQQNABAA=}#}惠州市2025届高三第一次调研考试试题
数学
全卷满分150分,时间120分钟.
2024.07
注意事项:
1.答题前,考生务必将自己的姓名、准考证号、座位号、学校、班级等考生信息填
写在答题卡上。
2.作答单项及多项选择题时,选出每个小题各案后,用2B铅笔把答题卡上对应题目
的答案伯息点涂黑。如福改动、用橡皮擦千净后,再选涂其它答案,写在本试卷上无效。
3.非选择题必须用黑色字迹签字笔作各,答案必须写在答愿卡各题指定的位置上,
写在本试卷上无效。
一、单项选择题:本题共8小题,每小题满分5分,共40分。在每小题给出的四个选项
中,只有一项符合题目要求,选对得5分,选错得0分。
1.已知集合A={x|x-3x<0,B={xx>0),则AnB=
A.x|0B.{x|x>0
C.{xI0D.xl12.若iQ-z)=1,则z+z=
A.2
B.1
C.-1
D.-2
3.在等差数列(a}中,已知a1=2,4+a=13,则a4+马+4等于
A.40
B.42
C.43
D.45
4.
的展开式中常数项是
A.42
B.42
C.14
D.-14
5.在正三棱柱BC-4B,C中,若B=2,M=1,则点A到平面ABC的距离为
A.
B.35
C.5
D.2W5
2
4
6.在△MBC中,内角A,B,C所对的边分别为a,b,c.向量=(a+c,b),9=(b-a,c-a)
若p/1g,则角C的大小为
B.
D.
4
c
数学试题
第1页!共6页
7.己知点AB在曲战y=log1x上,着A仙的中点坐标为(5,2),则Bp
A.6
B.2/0
C:·4kW5
D.4N5
&.已知函数/口3如-牙引m2ar+贸}在区间0给有6个军点,若0>0。
则)的取值花围为
入别
B.
侣)
17I9
12'12

二、多项选郑题:本题共3小题,每小题湖分6分,共18分。在每小题给出的四个选项
中,有多项符合题目要求。全部选对得6分,部分选对得部分分,有选锥的得0分·
9.现有甲、乙两家检测机构对某品牌的一款智能手机进行拆解测评,具体打分如下表(满
分100分).设事件M表示“从甲机构测评分数中任取3个,至多1个超过平均分”,
事件N表示“从甲机构测评分数中任取3个,恰有2个超过平均分”.下列说法正确的

机构名称


分值
90
98
90
92
95
93
95
92
9194
A.甲机构测评分数的平均分小于乙机构测评分数的平均分
B.甲机构测评分数的方差大于乙机构测评分数的方差
C.乙机构测评分数的中位数为92.5
D.事件M,N互为对立事件
10.设公比为g的锦比数圳()的怕”明积为工、、者a,416、则
人.当a=1时,=√2
B.g=4
C.o%,F,-18
D.4+物
數华以男

展开更多......

收起↑

资源列表