资源简介 惠州市 2025 届高三第一次调研考试试题高三数学参考答案与评分细则一、单项选择题:本题共 8小题,每小题满分 5分,共 40分.题号 1 2 3 4 5 6 7 8答案 D A B C A C B C1 2.【解析】由已知 A x∣x 3x 0 {x | 0 x 3}, B {x∣lnx 0} {x | x 1},所以 A B {x |1 x 3}.故选:D.1 z 1 i2.【解析】由题设有 2 i ,故 z 1+i ,故 z z 1 i 1 i 2,故选 A.i i3.【解析】设等差数列 an 的公差为 d,因为 a1 2, a2 a3 2a1 3d 13,所以 d 3,则 a4 a5 a6 3a1 12d 3 2 12 3 42 .故选:B.r7 r 1 r 21 7 r4.【解析】展开式的通项为T Cr 2x3 Cr 27 r 1 x 2r 1 7 7 , x 7由 21 r 0 ,得 r 6,那么展开式中常数项是C6 27 62 7 1 6 14 .故选:C.5.【解析】在正三棱柱 ABC A1B1C1中,若 AB 21 3 , AA1 1,所以 S△ABC 2 2 3 ,2 2由勾股定理可得 A1B A1C 12 22 5 ,2 1 2在等腰三角形 A BC中,底边 BC上的高长为 5 2 1 2 , 2 所以等腰三角形 A1BC1的面积为 2 2 2,2设点 A 1 1 3到平面 A1BC的距离为 h, VA A BC V1 A1 ABC h 2 1 3 h ,故选:A3 3 2 6.【解析】因为向量 p a c,b q , b a,c a , 因为 p / /q,所以 a c c a b b a ,即 c2 a2 b2 ab,a2 2 2cosC b c 1由余弦定理可得 .2ab 2因为C 0, π π,所以C ,故选:C.3高三数学答案 第 1页,共 9页{#{QQABLYYEogCgQIIAAAhCQQWqCgOQkBAAASgGgBAMMAAAQQNABAA=}#} x1 x2 5,7.【解析】设 A x1, log2 x1 ,B x2 , log x . 22 2 由题意, , log2 x1 log2 x2 2. 2 x1 2, x 8,整理得 x1 x2 10, x1x2 16 .1所以 x 或 . 2 8, x2 2.不妨取 A(2,1),B(8,3),则 | AB | (2 8)2 (1 3)2 2 10 .故选:Bf (x) (1 4k) (1 6k) 8.【解析】 的正零点为 (k N) 与 (k N) .12 12 5 7 9 13 17 19 所以 f (x) 从左到右的零点依次为: , , , , , , .12 12 12 12 12 12 12 17 19 为了使得 f (x) 在区间 (0, ) 恰有 6 个零点, 只需 ,12 12 17 19解得 .故选:C.12 12二、多项选择题:本题共 3小题,每小题满分 6分,共 18分。在每小题给出的四个选项中,有多项符合题目要求。全部选对得 6分,部分选对得部分分,有选错的得 0分。题号 9 10 11全部正确选项 BD ACD ABD90 98 90 92 959.【解析】对于选项 A,甲机构测评分数的平均分 x甲 93,5x 93 95 92 91 94乙机构测评分数的平均分 乙 93,所以选项 A 错误,5对于选项 B,甲机构测评分数的方差D 11 [(90 93)2 (98 93)2 (90 93)2 (92 93)2 (95 93)2 ] 9.6 ,5D 1 [(93 93)2 22 (95 93) (92 93)2 (91 93)2 (94 93)2 ] 2,所以选项 B 正确,5对于选项 C,乙机构测评分数从小排到大为:91,92,93,94,95,所以乙机构测评分数的中位数为 93,所以选项 C 错误,对于选项 D,因为甲机构测评分数中有且仅有 2 个测评分数超过平均分,由对立事件的定义知,事件M ,N 互为对立事件,所以选项 D 正确,故选:BD.10. 【解析】A 选项:因为 a1 1, a a 2 82 8 16 ,则 a1 q 16 ,所以 q8 16 ,所以 q 2 ,所以 A 正确;高三数学答案 第 2页,共 9页{#{QQABLYYEogCgQIIAAAhCQQWqCgOQkBAAASgGgBAMMAAAQQNABAA=}#}B 选项:因为 a25 a2a8 16 ,所以 a5 4 ,所以 B 不正确;C 选项:因为T9 a9 9 181a2 a9 a5 ,所以 |T9 | | a5 | 2 ,所以 log2 T9 18,所以 C 正确;D 选项: a2 a23 7 2a3a7 2a2a8 32 ,当且仅当 a3 a7 时,等号成立.所以 D 正确.故选:ACD.11.【解析】由题意得: (x 1)2 y2 (x 1)2 y2 3对于 A 选项:方程中的 x换成 x, ( x 1)2 y2 ( x 1)2 y2 (x 1)2 y2 (x 1)2 y2 3方程不变,所以曲线 C关于 y轴对称,A 选项正确;对于 B 选项: (x2 y2 1) 2x (x2 y2 1) 2x 3, (x2 y2 1)2 4x2 9,故 x2 y2 1 4x2 9 ,所以 B 选项正确;对于 C 选项:△F1PF12 面积为 FF y y ,2 1 2 P P由于 y2 4x2 9 x2 1 ≥0,即 4x2 9 x2 1 0,则 x4 2x2 8 0,解得: 2 x 2,2 2 9令 4x2 9 t t 5 1 3,5 ,则 y2 t t 2 0, 2 ,所以 y 2, 2 .4 4 4 4 则△F1PF2 面积的最大值为 2 ,所以 C 选项错误;对于 D 2选项:因为 OP x2 y2 4x2 9 1 2, 4 ,则 OP 的取值范围为 2,2 ,所以 D 选项正确,故选:ABD.三、填空题:本题共 3小题,每小题 5分,共 15分.1 5 5 12. 13. (满足 k ,k1 Z 即可) 14.3 12 12 3212.【解析】因为双曲线方程 x2 ky2 1,且一个焦点是(2,0),a2 1 1 1 1所以 1,b2 2 2 2,所以 c a b 1 4,解得 k .故答案为:k k 3 3 13.【解析】 A(cos ,sin )与 B cos ,sin 关于 y轴对称, 6 6 高三数学答案 第 3页,共 9页{#{QQABLYYEogCgQIIAAAhCQQWqCgOQkBAAASgGgBAMMAAAQQNABAA=}#} 即 , 关于 y 轴对称, 2k ,k Z5 ,则 k ,k Z ,6 6 125 5 5 当 k 0时,可取 的一个值为 .故答案为: (满足 k ,k Z 即可).12 12 12f x 114.【解析】在 f (x)中,令 x 0 ,得 f (0) 0 ,又 f (x) f (1 x) 1 ,故 f (1) 1 . 5 2 x 1 1 1 1 1 1 1 1 1 1 1因为 f f (x) ,所以 f , f 2 , f , f , f 5 2 5 2 5 4 53 8 54 16 55 32在 f (x) f (1 x)1 1 1 1中,令 x ,得 f2 , 2 2f 1 1 , f 1 1 , f 1 1 1 1所以 , f . 10 4 50 8 250 16 1250 32当 0 x1 x2 1时 f x1 f x2 ,可知 f (x) 是 [0,1]上的非递减函数,1 1 1 1 1 1又 5 f ,所以 .5 3125 2024 1250 2024 32四、解答题:本题共 5小题,共 77分.解答应写出文字说明、证明过程或演算步骤.15.(本小题满分 13 分,其中第一小问 6 分,第二小问 7 分。)【解析】(1)因为 f x ln x 1 a ·······································································2 分在点 1, f 1 处的切线斜率为 k f 1 1 a , ························································ 3 分又 f x 1在点 1, f 1 处的切线与直线 x 2y 2 0相互垂直,所以 f 1 1 ············ 5 分2解得 a 3 . ······································································································· 6 分(2)由(1)得, f x ln x 2 , x 0, , ······················································ 7 分令 f x 0 ,得 x e2 ,令 f x 0 ,得 0 x e2 , ·················································· 9 分即 f x 的增区间为 e2 , 2,减区间为 0,e .························································ 10 分f e2又 e2 ln e2 3e2 2 2 e2 , ······································································11 分所以 f x 在 x e2 处取得极小值 2 e2 ,无极大值. ················································ 13 分【注】没有说明极大值扣一分16.(本小题满分 15 分,其中第一小问 6 分,第二小问 9 分。)2【解析】(1)因为学生初试成绩 X 服从正态分布 N , ,其中 65, 2 102 ,则 75 65 10 , ·························································································1 分P X 75 P X 1 1 P X 1 0.6827所以 ·······················3 分2 2高三数学答案 第 4页,共 9页{#{QQABLYYEogCgQIIAAAhCQQWqCgOQkBAAASgGgBAMMAAAQQNABAA=}#} 0.15865, ·······································································································4 分所以估计初试成绩不低于的人数为 0.15865 1000 159 人. ···········································6 分(2)Y 的取值分别为 0 、10、 20、30, ······························································· 7 分2P Y 0 1 3 1 3 1则 , ····································································· 8 分 4 5 252P Y 10 3 1 3 1 3 C1 2 3 6 2 , ···················································9 分4 5 4 5 5 252P Y 20 3 C1 2 3 2 13 3 9 , ···················································· 10 分4 5 5 4 5 202P Y 30 3 3 27 . ················································································· 11 分4 5 100故Y 的分布列为:Y 0 10 20 301 6 9 27P25 25 20 100··············································································································13 分1 6 9所以数学期望为 E Y 0 10 20 30 27 19.5 . ································15 分25 25 20 10017.(本小题满分 15 分,其中第一小问 6 分,第二小问 9 分。)【解析】(1)证明:由 PC 平面 ABC,DE 平面 ABC ,故 PC DE ······························ 2 分由CE 2,CD DE 2 得CD2 DE2 CE2 ····························································3 分故 CDE为等腰直角三角形,则CD DE ································································· 4 分由 PC CD C,DE垂直于平面 PCD内两条相交直线, ················································5 分故DE 平面 PCD ······························································································ 6 分 (2)解:由(1)知, CDE为等腰直角三角形, DCE ,如图,过点 D作DF垂直CE于 F ,易知4DF FC EF 1 , ···································································································· 7 分又已知 EB 1 ,故 FB 2 . 由CD DE, ACB ,得DF / /AC,2DF FB 2 3 3 ,故 AC DF . ···········································································8 分AC BC 3 2 2高三数学答案 第 5页,共 9页{#{QQABLYYEogCgQIIAAAhCQQWqCgOQkBAAASgGgBAMMAAAQQNABAA=}#} 以C为坐标原点,分别以CACB,CP的方程为 x轴, y轴, z轴的正方向建立空间直角坐标系,则C(0,0,0),,P(0,0,3), A 3 ,0,0 ,E(0,2,0),D(1,1,0), 2 ED (1, 1,0) ,DP ( 1, 1,3)DA 1 , 1,0 ·················9 分 2 设平面 PAD的法向量 n1 x1 , y1 , z1 , 由 n1 DP 0,n 1 DA 0 x y 3z 0 1 1 1 得 1 ,令 x1 2 ,则 y1 1, z1 1 ,故 n1 (2,1,1) . ·········································10 分 x1 y1 0 2 由(1)可知 DE 平面 PCD ,故平面 PCD的法向量 n2 可取为 ED ,即 n2 (1, 1,0) . ·············· 11 分 n1 n2 2 1 1 ( 1) 1 0 3从而法向量 n1,n2 的夹角的余弦值为 cos n1,n2 n n 2 , ····· 14 分1 2 2 1 1 1 1 0 6故平面 PAD与平面 PCD 3所成角的余弦值为 . ······················································ 15 分6 n1 n2【注】写出公式 cos n1,n2 n n 给 1 分,代入数据给 1 分,结果计算正确给 1 分1 2 方法二:设平面 PAD的法向量 n1 x1 , y1 , z1 , 由 n1 PD 0,n 1 PB 0 x1 y1 3z1 0 得 ,令 z 1 ,则 y 1, x 2 ,故 n (2,1,1) . 其它过程同上. 3y1 3z1 01 1 1 118.(本小题满分 17 分,其中第一小问 3 分,第二小问 5 分,第三小问 9 分。)x2【解析】(1)椭圆C1 : y2 1的上顶点坐标为 0,1 , ············································· 1 分4则抛物线C2 的焦点为 F 0,1 , ··············································································2 分故 p 2 . ··········································································································3 分(2)若直线MN 与 y轴重合,则该直线与抛物线C2 只有一个公共点,不符合题意,所以直线MN 的斜率存在,····················································································· 4 分设直线MN 的方程为 y kx 1,点M x1, y1 、 N x2 , y2 ,高三数学答案 第 6页,共 9页{#{QQABLYYEogCgQIIAAAhCQQWqCgOQkBAAASgGgBAMMAAAQQNABAA=}#} y kx 1联立 22 可得 x 4kx 4 0 , ·······································································5 分 x 4y 16k2 16 0恒成立,则 x1x2 4,····································································· 6 分 2 2OM ON x1x2 y1y2 x xx 1x21 2 4 1 3 .··························································8 分4 4(3)设直线 NO、MO的斜率分别为 k1、 k2,其中 k1 0 , k2 0, y k1x 4k 2联立 2 2 可得 1 1 x2 4,····································································· 9 分 x 4y 4x 2 2解得 2 ,点 A在第三象限,则 xA ,4k1 1 4k21 12点 B在第四象限,同理可得 xB 2 ,······························································10 分4k2 1k y1y2 x1x2 1且 1k2 x x 16 4 ················································································ 12 分1 2S OMN OM ON x 1 x2 x 1 x2S OAB OB OA xB xA 2 2 ··············································· 14 分4k 21 1 4k22 1 4k2 1 4k2 1 4k2 1 2 2 4k 2 11 2 1 2 1 2 2 2 ,····································· 15 分4k1 4k11当且仅当 k1 时,等号成立. ··············································································16 分2S OMNS 的取值范围为 2, . ···············································································17 分 OAB(3)方法二:设直线 NO、MO的斜率分别为 k1、 k2,其中 k1 0 , k2 0, y k1x 2 2联立 x2 2可得 4k1 1 x 4,····································································· 9 分 4y 4x 2 2解得 2 ,点 A在第三象限,则 xA 2 ,4k1 1 4k1 12点 B在第四象限,同理可得 xB 2 ,······························································10 分4k2 1k k y1y2 x x 1且 1 2 1 2 x x 16 4 ················································································ 12 分1 2高三数学答案 第 7页,共 9页{#{QQABLYYEogCgQIIAAAhCQQWqCgOQkBAAASgGgBAMMAAAQQNABAA=}#}k1 xB yB k1 xB k2 xB设点 B到直线 OA 的距离 d 1 k 2 21 1 k1|OA | x2 y2 x2 k 2 2A A A 1 xAS 1 |OA | d 1k1 xB k2 xB 2 2 2 OAB x2 2 2 A k 1 xA1 k11 k1 k2 x x1 1 k 2 2 2 A B 2 4k 22 4k 21 1 4k22 11 4k 2 1 2 2 4k 22 12 14k2 14k2 ···································································· 14 分1 4k 22 4k2 22 14k 4k 22 2 1 4k22 1S 1 OMN |OF | x1 x1 22 x1 x2 4x1x2 2 k 2 1 2 ······························ 15 分2 2当且仅当 k 0 时,等号成立. ················································································ 16 分S OMNS 的取值范围为[2, ) . ············································································ 17 分 OAB19.(本小题满分 17 分,其中第一小问 3 分,第二小问 6 分,第三小问 8 分。)【解析】(1)因为 a 2n ,则 a n 2 n 1 n 1n n 2 an 1 2 2 2 ,········································ 1 分an 1 an 2n 1 2n 2n ,······················································································· 2 分n又 2n 1 2n,故 an 2 an 1 an 1 an,数列 2 是“速增数列”.····································3 分(2) a1 1,a2 3,ak 2023,因为 a2 a1 2 , 所以 a3 a2 a2 a1 2 ,又 an Z , 故 a3 a2 3 ·······················································································4 分依次递推可得 a4 a3 4,a5 a4 5, ,ak 1 ak 2 k 1,ak ak 1 k ·························· 5 分当 k 3时, ak 2023 ak ak 1 ak 1 ak 2 a2 a1 a1 ································ 6 分 k (k 1) 3 2 1, ······················································································ 7 分高三数学答案 第 8页,共 9页{#{QQABLYYEogCgQIIAAAhCQQWqCgOQkBAAASgGgBAMMAAAQQNABAA=}#}k k 1 即 2023 , k Z , ················································································· 8 分2k k 1 k k 1当 k 63 时, 2016 ,当 k 64时, 2080 ,2 2故正整数 k 的最大值为 63 . ·················································································· 9 分(3)bk 2 bk 1 bk 1 bk bk bk 1 ,故 bk 2 bk 1 bk bk 1,即 bk 2 bk 1 bk bk 1 ;····10 分bk 3 bk 2 bk 2 bk 1 bk 1 bk bk bk 1 bk 1 bk 2 ,故 bk 3 bk 2 bk 1 bk 2,即bk 3 bk 2 bk 1 bk 2 bk bk 1,········································································11 分同理可得:b2k m 1 bm bk bk 1 ,m N* ,1 m k 1,··········································13 分故 k b1 b2 b2k b1 b2k b2 b2k 1 bk bk 1 k bk bk 1 ,···················15 分故bk bk 1 1, ······························································································ 16 分c c 2bk 2bk 1 2bk bk 1k k 1 2,得证. ·····································································17 分高三数学答案 第 9页,共 9页{#{QQABLYYEogCgQIIAAAhCQQWqCgOQkBAAASgGgBAMMAAAQQNABAA=}#}惠州市2025届高三第一次调研考试试题数学全卷满分150分,时间120分钟.2024.07注意事项:1.答题前,考生务必将自己的姓名、准考证号、座位号、学校、班级等考生信息填写在答题卡上。2.作答单项及多项选择题时,选出每个小题各案后,用2B铅笔把答题卡上对应题目的答案伯息点涂黑。如福改动、用橡皮擦千净后,再选涂其它答案,写在本试卷上无效。3.非选择题必须用黑色字迹签字笔作各,答案必须写在答愿卡各题指定的位置上,写在本试卷上无效。一、单项选择题:本题共8小题,每小题满分5分,共40分。在每小题给出的四个选项中,只有一项符合题目要求,选对得5分,选错得0分。1.已知集合A={x|x-3x<0,B={xx>0),则AnB=A.x|0B.{x|x>0C.{xI0D.xl12.若iQ-z)=1,则z+z=A.2B.1C.-1D.-23.在等差数列(a}中,已知a1=2,4+a=13,则a4+马+4等于A.40B.42C.43D.454.的展开式中常数项是A.42B.42C.14D.-145.在正三棱柱BC-4B,C中,若B=2,M=1,则点A到平面ABC的距离为A.B.35C.5D.2W5246.在△MBC中,内角A,B,C所对的边分别为a,b,c.向量=(a+c,b),9=(b-a,c-a)若p/1g,则角C的大小为B.D.4c数学试题第1页!共6页7.己知点AB在曲战y=log1x上,着A仙的中点坐标为(5,2),则BpA.6B.2/0C:·4kW5D.4N5&.已知函数/口3如-牙引m2ar+贸}在区间0给有6个军点,若0>0。则)的取值花围为入别B.侣)17I912'12侣二、多项选郑题:本题共3小题,每小题湖分6分,共18分。在每小题给出的四个选项中,有多项符合题目要求。全部选对得6分,部分选对得部分分,有选锥的得0分·9.现有甲、乙两家检测机构对某品牌的一款智能手机进行拆解测评,具体打分如下表(满分100分).设事件M表示“从甲机构测评分数中任取3个,至多1个超过平均分”,事件N表示“从甲机构测评分数中任取3个,恰有2个超过平均分”.下列说法正确的是机构名称甲乙分值90989092959395929194A.甲机构测评分数的平均分小于乙机构测评分数的平均分B.甲机构测评分数的方差大于乙机构测评分数的方差C.乙机构测评分数的中位数为92.5D.事件M,N互为对立事件10.设公比为g的锦比数圳()的怕”明积为工、、者a,416、则人.当a=1时,=√2B.g=4C.o%,F,-18D.4+物數华以男 展开更多...... 收起↑ 资源列表 2025届高三惠州一调参考答案.pdf 惠州_数学.pdf